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translation initiation
Sarah S. Mohammad-Qureshi, Martin D. Jennings and Graham D. Pavitt1

Faculty of Life Sciences, The Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K.

Abstract
A variety of cellular processes rely on G-proteins, which cycle through active GTP-bound and inactive GDP-
bound forms. The switch between these states is commonly regulated by GEFs (guanine-nucleotide-exchange
factors) and GAPs (GTPase-activating proteins). Although G-proteins have structural similarity, GEFs are very
diverse proteins. A complex example of this system is seen in eukaryotic translation initiation between eIF
(eukaryotic initiation factor) 2, a G-protein, its five-subunit GEF, eIF2B, and its GAP, eIF5. eIF2 delivers Met-
tRNAi (initiator methionyl-tRNA) to the 40S ribosomal subunit before mRNA binding. Upon AUG recognition,
eIF2 hydrolyses GTP, aided by eIF5. eIF2B then re-activates eIF2 by removing GDP, thereby promoting
association of GTP. In the present article, we review data from studies of representative G-protein–GEF pairs
and compare these with observations from our research on eIF2 and eIF2B to propose a model for how
interactions between eIF2B and eIF2 promote guanine nucleotide exchange.

eIF2 and eIF2B in translation initiation
Protein synthesis initiation is the multistep process necessary
to form a complex between Met-tRNAi (initiator methionyl-
tRNA) and the correct AUG start codon of a selected mRNA
within the P-site (peptidyl site) of an 80S ribosome. This
is facilitated and regulated by a series of eIFs (eukaryotic
translation initiation factors) [1]. One of the key protein
factors is eIF2, which recruits Met-tRNAi to the 40S
ribosomal subunit and plays a role in start site selection. eIF2
displays several features characteristic of a classic G-protein:
it is active in its GTP-bound form and inactive when bound
to GDP. Similarly to other G-proteins, the switch between
these nucleotide-bound states is regulated by other factors.
GTP hydrolysis by the GAP (GTPase-activating protein)
eIF5 occurs only once the eIF2-bound Met-tRNAi forms a
codon–anticodon pair with the AUG start codon. eIF2 · GDP
and eIF5 are then released from the ribosome-bound Met-
tRNAi.

For released eIF2 to participate in further rounds of
translation initiation, the GEF (guanine-nucleotide-exchange
factor) eIF2B regenerates active eIF2 · GTP. This step is
tightly controlled and is a major point for regulation of
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protein synthesis in all eukaryotic systems studied. eIF2B can
be controlled directly through changes in its phosphorylation
status, or indirectly via phosphorylation of eIF2. Both of
these regulatory mechanisms have been reviewed extensively
elsewhere [2,3], so are not discussed here. It is clear that,
under a variety of physiological conditions and cell stresses,
changes in eIF2 phosphorylation occur that can modulate
the rates of protein synthesis. In mammals, this can affect
responses to viral infection, diet and memory formation,
among others [4]. One important finding is that, although
most mRNA translation is down-regulated by these controls,
specific mRNAs are known to escape repression and can
become actively translated. Two well-studied mRNAs encode
transcription factors: yeast GCN4 and mammalian ATF4
(activating transcription factor 4) both contain regulatory
upstream open reading frames that enable their own
translational control [5–7].

Interest in the GEF eIF2B has also increased following
the discovery that inherited mutations in eIF2B genes cause
a fatal brain disorder. This disease has various forms and
multiple names including: CACH (childhood ataxia with
central nervous system hypomyelination), VWM (leukoen-
cephalopathy with vanishing white matter), or eRDs (eIF2B-
related disorders) [8–10]. As the disorder names suggest,
the principally affected cells are white-matter oligodendro-
cytes and astrocytes within the brain, which disappear or
vanish over time to be replaced with cerebrospinal fluid.
These cells normally insulate axons with myelin sheaths, and
their damage and loss prevents neuronal signals reaching
their destinations; this causes ataxia. In addition, affected
individuals also suffer seizures. Onset and progression is very
varied, ranging from severe rapidly progressing infant forms
to slower progressing adult-onset variants [10].
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Figure 1 Structural features of G-proteins and GEFs

Ribbon cartoons of selected G-proteins (A–C), G–GEF co-structures (D and E) and eIF2Bεcat (F). Uniform labelling colours are

used throughout: G-domain (cyan) with P-loop (green), Sw1 (red), Sw2 (blue), GDP (orange) and Mg2+ ion (white sphere).

In (B) and (C), additional G-protein domains are in pale cyan (II) and deep teal (III). Extra aIF2 subunits are coloured pink and

rust and are labelled in (C). In this structure PO4 replaces Mg2+. GEFs are shown in (D–F) (yellow), with residues important

for nucleotide exchange indicated (magenta). In (D), GDP–Mg2+ intermediate is stabilized by brefeldin A (lime). The Figure

was drawn with PyMOL software (http://pymol.sourceforge.net) using PDB codes 1U81, 1R8Q, 1TUI, 1EFU, 2QMU and

1PAQ.

It is not clear how mutations in eIF2B, a ubiquitous
protein, can cause such a cell-type-specific defect. Where
measured, eIF2B activity is reduced in patient lymphocytes
and some cellular models of disease. It is also unclear how the
cell specificity observed is caused. Two alternative ideas are
that mutations alter translation of a glial-cell-specific eIF2B-
regulated gene. Alternatively eIF2B protein levels or activity
may be intrinsically low in these cells normally, so that they
have heightened sensitivity to cell stress. In the latter case,
it is possible that the mutations lower eIF2B activity below
a threshold critical for cell survival, leading to the disease
observed [11–15].

Because eIF2 and eIF2B are essential proteins within all
eukaryotic cells, one strand of research in our laboratory has
been to probe the mechanism of eIF2B-catalysed guanine
nucleotide exchange. In the following sections, we review

our progress and that of other researchers and compare these
studies with other related G-proteins and their GEFs.

Similarities between eIF2 and other
G-proteins
In common with all members of the large family of G-
proteins, eIF2 activity is regulated by alteration of bound
guanine nucleotide. All are active in a GTP-bound state
and inactive when GTP is hydrolysed to GDP. Although
their functions are diverse, G-proteins share common
structural features in their nucleotide-binding G-domain
(containing elements G1–G5). A small representative sample
of determined G-protein structures is shown in Figures 1(A)–
1(C), where the small G-protein ARF (ADP-ribosylation fac-
tor) [16] is shown alongside EF (translation elongation
factor)-Tu [17] and the archaeal homologue of eIF2 [aIF2
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(archaeal initiation factor 2)] [18]. In Figure 1, the G-domains
are coloured cyan. Additional protein domains required for
the function of specific G-proteins are often located within
other domains or separate proteins of multisubunit G-protein
complexes. For the prokaryotic EF-Tu and aIF2/eIF2, these
are shown in different colours in Figure 1.

Common motifs in all G-proteins include the nucleotide-
base-binding G4 motif (N/TKXD), and the P-loop (phos-
phate-binding loop) sequence (GXXXXGKS/T; coloured
green in Figure 1), which interacts with the α- and β-phos-
phates to stabilize nucleotide binding. Sw (switch) regions 1
and 2 (red and blue in Figure 1) are critical to G-protein func-
tion and alter (or switch) conformation depending on whether
GTP or GDP is bound. Sw2 interacts with the γ -phosphate
of GTP. Finally, critical for stabilizing nucleotide binding
to G-proteins is an Mg2+ ion (white spheres in Figure 1).
Magnesium is variously co-ordinated in different G-proteins
to residues in Sw1 and/or Sw2 and to the nucleotide itself.

eIF2 binds multiple ligands during
translation initiation
The main difference between translation factor G-proteins
and small G-proteins is that they contain multiple additional
domains, and, in the case of eIF2, extra subunits, that are
essential to their functions. For example, EF-Tu shown in
Figure 1(B) has two additional domains: II and III. These
make contacts with aminoacylated tRNA [19], its GEF (EF-
Ts; Figure 1E) [20] and the ribosome [21].

eIF2 has three subunits (α–γ ). Its nucleotide-binding
subunit eIF2γ is a close sequence and structural homologue
of EF-Tu and its eukaryotic counterpart, eEF1A [22]. In
addition to nucleotides, EF-Tu · GTP and its eukaryotic
equivalent eEF1A · GTP bind all aminoacylated elongator
tRNAs. By analogy and from analysis of mutations, eIF2γ ·
GTP is thought to make the major contribution to Met-
tRNAi-binding eIF2 [23,24]. Macromolecular modelling
suggests that a pocket in eIF2γ formed by the position of
Sw1 in the GTP form provides a site for the aminoacylated
3′-end of Met-tRNAi. Loss of eIF2α has been shown to
influence Met-tRNAi affinity [25], and the eIF2α CTD (C-
terminal domain) may contact Met-tRNAi directly [23,24].
The eIF2 · GTP · Met-tRNAi ternary complex interacts with
initiation factors eIF5 (the GAP), eIF3 and eIF1 and also with
the 40S ribosome [26]. Direct contact between eIF2β and
eIF1A [27], eIF5 [28] and eIF3 [29] has been demonstrated
and mutations in eIF2β destabilize these interactions. A
separate interaction between eIF2γ and eIF5 is proposed to
mediate the GAP activity upon AUG codon recognition [30].

In its GDP-bound form, eIF2 interacts with the GEF
eIF2B, which binds all three eIF2 subunits. eIF2α is a
target for the kinase-regulated inhibition of eIF2B described
above [31,32]. However, both eIF2β and eIF2γ interactions
are implicated in nucleotide exchange (as described below).
Recently, a complex of eIF2 with eIF5 has been described that
lacks Met-tRNAi [33,34]. It is proposed that this represents
an eIF2 · GDP/eIF5 complex released from the ribosome

after GTP hydrolysis, and genetic evidence suggests that this
complex can antagonize the function of eIF2B [33,34].

GEFs: mechanistic information from
structural and biochemical studies
All GEFs function to promote GDP and Mg2+ release
from their cognate G-protein to allow formation of active
GTP-bound forms. Despite the common structural elements
found within all G-domains, each GEF studied varies
dramatically in structure and interaction with its cognate G-
protein. There are some excellent reviews of the literature
describing both similarities and differences between mechan-
isms [35–37]. In general, GEF interactions cause structural
rearrangements of Sw1 and Sw2 domains, disrupt Mg2+ co-
ordination and destabilize the nucleotide-binding motifs. In
the present article, we focus on a few key examples where both
structural and biochemical information is available. We use
these to compare directly with studies of the more complex
eIF2 and eIF2B.

ARF · ARNO (ARF nucleotide-binding-site opener)
GEFs specific for ARF1, including the yeast Gea1p and the
human ARNO, each possess a Sec7 domain that carries out
the exchange. The ARNO Sec7 domain has an α-helical
structure, and mutagenesis of residues at the ARF1-binding
site have shown that a glutamic acid residue, ARNOE156, is
critical for GDP-release. As shown in Figure 1(D), ARNO
interacts with and displaces both Sw1 and Sw2 [38]. Both are
extensively remodelled, reducing the affinity of the bound
Mg2+ and GDP. (Note that in the structure shown, Mg2+

and GDP are stabilized by the binding of the small inhibitor
molecule brefeldin A.) GEF assays with ARNOE156A mutant
showed that Glu156 is critical for ARNO function.

EF-Tu · EF-Ts
Unlike the ARF · ARNO example, EF-Ts makes more exten-
sive contacts with EF-Tu, including G-domain and domain
III contacts (Figure 1E). An interaction between EF-TsF81 and
Sw2 causes displacement of Sw2 EF-TuD80−C81−P82, reducing
affinity for Mg2+ and GDP [20].

Mutational analysis revealed that combining both EF-
TsD80 and EF-TsF81 mutations reduced activity 10-fold [39].
This observation, and kinetic data on the relatively low disso-
ciation rate of GDP from EF-Tu in the absence of Mg2+, both
support the idea that EF-Ts must use a mechanism in addition
to Mg2+ displacement for nucleotide exchange. Nucleotide
base attack is proposed [40]. Another key observation from
the kinetic analysis was that, although GTP/GDP binding
to EF-Tu alone is slow, the binding of nucleotides to an
EF-Tu · EF-Ts complex increases 10-fold, therefore binding
of EF-Ts opens up the nucleotide-binding pocket, allowing
rapid association/dissociation of nucleotides with EF-Tu [40].

eIF2B
eIF2B is a heteropentamer. Subunits α, β and δ form a regulat-
ory subcomplex that binds to and recognizes phosphorylated
eIF2α and down-regulates the activity of the eIF2B catalytic
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Figure 2 Effect of eIF2Bεcat mutations on surface electrostatic potential

(A) Left: surface representation of wild-type eIF2Bε CTD with key residues coloured. Right: electrostatic potential mapped

on the surface of wild-type eIF2Bε CTD with negative potential in red, positive potential in blue and neutral potential in

white. (B and C) Close-ups of either wild-type (wt) or mutant eIF2Bε CTD, with key surface changes circled. The Figure was

generated using PyMOL with APBS (adaptive Poisson–Boltzmann solver) (http://apbs.sourceforge.net).

subcomplex (subunits γ and ε) [2]. eIF2Bε is the subunit
that carries out nucleotide exchange [31]. The N-terminus
of eIF2Bε mediates interactions between eIF2B subunits
[13,41,42], while both nucleotide exchange and substrate
binding have been located to the CTD (residues 518–712;
numbering relates to the Saccharomyces cerevisiae sequence)
hereafter denoted εcat [43].

εcat structure
The crystal structure of the isolated εcat domain revealed that
it is an all-helical domain (Figure 1F) [44], later shown to
be highly similar to the eIF5 CTD [45,46]. This suggested
that eIF5 and εcat interact with eIF2 in similar ways and may
compete for binding. Within this domain, two conserved mo-
tifs of largely acidic and aromatic residues (AA-boxes) at the
extreme C-terminus have been identified. In both proteins,

AA-box 2 mutations disrupt eIF2β binding [28]. In addition,
εcat can also bind to eIF2γ [30,47]. A second region of
conserved residues specific to εcat is found at its N-terminus.
It has been termed the ‘catalytic centre’, as it is essential for
nucleotide exchange [43].

Residues critical for eIF2B GEF function

Trp699

Observations of the crystal-stacking interactions between
eIF2Bε544−702 proteins drew attention to the conserved
tryptophan residue at position 699 [44]. Trp699 lies in one
AA-box region and protrudes from the surface (Figures 1F
and 2A). We demonstrated the necessity of this residue
for eIF2 binding in yeast, as the lethal mutation W699A
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weakens binding to both eIF2β and eIF2γ and consequently
prevents nucleotide exchange [47] without destabilizing the
helical structure, as determined by CD experiments. Macro-
molecular modelling of the W699A mutant structure agrees
with this result (Figure 2B). Together, these results show that
this surface of the protein is pivotal for maintaining sub-
strate interaction.

Catalytic centre residues
The opposite face on the structure contains the catalytic
centre. Our research has also highlighted the importance of
four residues in the catalytic centre: Thr552, Leu568, Glu569

and Ser576. The last three of these cluster on the surface of the
protein, whereas Thr552 is buried just beneath the critical
Glu569 residue (Figure 2A). Mutation of Glu569 was conside-
rably detrimental to eIF2B function; changes to alanine,
glutamine, lysine and even the conservative acidic aspartic
acid all conferred lethality on yeast cells. In one sensitive
in vivo assay for activity, eIF2BεE569D demonstrated some
residual activity, therefore it appears that retaining a negative
charge at this site is important for GEF function. Interest-
ingly, protein interaction studies between eIF2 subunits and
εcat confirmed that the latter interacts independently with
both eIF2β and eIF2γ . All Glu569 mutants, except E569A,
reduced eIF2γ binding, showing that this surface is important
for the εcat · eIF2γ interface [47].

Residues surrounding Glu569 also make important contri-
butions for eIF2B function. Non-lethal mutants eIF2BεT552I

and eIF2BεS576N are slow-growing in yeast and, together with
a third mutant, L568A, all exhibit cold sensitivity, which is
an indicator of protein interaction defects [41,47]. In vitro
studies found that these mutant proteins have reduced GEF
activity [41] and can weaken eIF2–eIF2B interactions [47].
Because of these results and the fact that the residues form
part of an acidic patch on the εcat surface (Figure 2A), we
propose that they form an interacting surface for eIF2γ and
GEF activity.

Macromolecular modelling of the effects of catalytic centre
mutations on the structure and surface charge (Figure 2C)
show that each mutation has a small effect on the overall
structure. Only local changes are predicted, consistent with
our CD studies [47]. Leu568 protrudes from the surface,
whereas mutation to alanine (a smaller residue) eliminates
this, without affecting the overall charge. Ser576 is conserved
as a small alanine residue in other species. Its mutation to
asparagine introduces a much larger side chain. It is likely
that these changes destabilize close contact between eIF2γ

and the eIF2Bε catalytic centre.
Glu569 is the residue that appears to be most critical for

nucleotide exchange. E569D and E569A mutations are both
lethal, but only E569D reduces binding to eIF2 [47]. The
predicted structural change caused by aspartic acid suggests
that a surface pore just under residue 569 becomes concealed
by the aspartic acid side chain. In contrast, the alanine
substitution increases the size of this surface pore, and reduces
the overall acidic charge (red colour in Figure 2A) of this
region.

Figure 3 Model for the interaction between eIF2 and eIF2Bεcat

A schematic diagram based on the experimental data described in the

text. Protein domains are coloured as in Figure 1(C) and 1(F). The GDP,

Mg2+, Sw regions and the P-loop are labelled, as are residues in eIF2Bεcat

that are critical for guanine nucleotide exchange.

Model for eIF2–eIF2B interaction and
exchange
By comparing structural and mutagenic data with studies of
how different GEFs affect their G-proteins, we can speculate
how eIF2Bεcat interacts with eIF2 and achieves nucleotide
exchange. Our proposed model accommodates the following
observations.

(i) That the W699A mutant in this region has reduced
binding to both eIF2β and eIF2γ . This suggests that Trp699

binds somewhere along the interface between these two
subunits.

(ii) Residues within the catalytic centre (Leu568, Glu569 and
Ser576) are critical for interaction with eIF2γ . We therefore
predict that these residues either function directly to remove
the nucleotide from eIF2γ or help to stabilize a reorganized
folding of the G-domain.

(iii) E569D mutation reduces eIF2γ affinity, whereas
E569A does not.

(iv) Modelling of the effects of catalytic centre mutations
on the surface of εcat.

(v) The GEFs discussed above all appear to insert residues
directly into the G-domain and cause rearrangement of the
switch regions and/or P-loop.

Our model (Figure 3) proposes that the surface patch
containing Leu568, Glu569 and Ser576 contacts residues directly
on the G-domain of eIF2, and the acidic residue Glu569 inserts
further and is required to disrupt either the switch regions or
the P-loop, or both, to destabilize the bound nucleotide and
Mg2+ ion.

Future directions
Our model on eIF2Bε GEF activity is largely based on
the mutagenic and structural data of the catalytic domain.
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In order to confirm our theories, we need to extend our
analyses to the G-domain of eIF2γ . Currently, we are limited
to using structural data from the archaeal eIF2 homologue,
aIF2, to base our model of eIF2B nucleotide exchange on.
Ideally, a three-dimensional structure of eIF2 in complex
with eIF2B would put studies into this G-protein–GEF
relationship at the level of the other examples described here.
This would allow more precise models for eIF2B-catalysed
exchange. In addition, it would allow modelling of the effects
of mutations causing CACH/VWM/eRD that may help to
better understand these diseases. This would, however, mean
obtaining a detailed structure for an eight-protein complex. A
structure of the eIF2γ G-domain interacting with eIF2Bεcat

may be a more realistic goal.
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