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Abstract. Sensitivity analysis of atmospheric models is tion effect. Such sensitivities would not be detected in the
necessary to identify the processes that lead to uncertaintgommonly used single parameter perturbation experiments,
in model predictions, to help understand model diversitywhich would therefore underpredict total uncertainty. Gaus-
through comparison of driving processes, and to prioritisesian process emulation is shown to be an efficient and useful
research. Assessing the effect of parameter uncertainty itechnique for quantifying parameter sensitivity in complex
complex models is challenging and often limited by CPU global atmospheric models.

constraints. Here we present a cost-effective application
of variance-based sensitivity analysis to quantify the sensi-

tivity of a 3-D global aerosol model to uncertain parame- )

ters. A Gaussian process emulator is used to estimate thd Introduction

model output across multi-dimensional parameter space, us- ) o

ing information from a small number of model runs at points A€rosols have an important but very uncertain impact on
chosen using a Latin hypercube space-filling design. Gausclimate Eorster et al.2007. The uncertainty has many
sian process emulation is a Bayesian approach that uses i§9Urces, but inter-model differences, as well as uncertain-
formation from the model runs along with some prior as- ties and limitations in the driving aerosol processes, are key
sumptions about the model behaviour to predict model outfactors. Until recently, climate models used simple repre-
put everywhere in the uncertainty space. We use the Gausentations of aerosol, which were based mostly on just parti-
sian process emulator to calculate the percentage of expectéde mass. But the recognition that simplification of physical
output variance explained by uncertainty in global aerosolProcesses limits model predictive capability has led to the
model parameters and their interactions. To demonstrate thd€velopment of more complex “second generation” aerosol
technique, we show examples of cloud condensation nuclemicrophysics schemes that are intended to enhance model re-
(CCN) sensitivity to 8 model parameters in polluted and re-alism and improve the reliability of predictionBifikowski

mote marine environments as a function of altitude. In the@nd Shankar1995 Jacobson1997 Whitby and McMurry
polluted environment 95 % of the variance of CCN concen-1997 Ackermann et a].1998 Ghan et al.2001 Adams and
tration is described by uncertainty in the 8 parameters (ex-Seinfeld 2002 Lauer etal.2005 Liu et al, 2005 Stier et al,
cluding their interaction effects) and is dominated by the 2005 Spracklen et al.2005a Debry et al, 2007 Spracklen
uncertainty in the sulphur emissions, which explains 80 %€t al, 2008. Model realism has undoubtedly improved,

of the variance. However, in the remote region parameterbUt the diversity in model aerosol radiative forcing estimates
interaction effects become important, accounting for up tohas remained high in successive IPCC assessnécitingel
40% of the total variance. Some parameters are shown t§t @l 1996 Penner et a] 2001, Forster et al.2007).

have a negligible individual effect but a substantial interac- There are three reasons why an understanding of model
sensitivity to uncertain inputs is important. Firstly, we need
to attribute the uncertainty in model predictions to vari-

Correspondence td:. A. Lee ous processes and the poorly constrained model parame-
BY (l.a.lee@leeds.ac.uk) ters that describe these processes. At present, most of our
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understanding about model uncertainty derives from the diing to improve on the OAT approacM(rphy et al, 2004).
versity of predictions of several structurally different models Sensitivity analysis experiments with a single model are of-
(Textor et al, 2006 2007 Meehl et al, 2007). The computa- ten referred to as perturbed physics ensembles (PPEs) and
tional demands of complex global atmospheric models meara good review of those carried out in the Hadley Centre
that the sources of uncertainty at the process level have natan be found inCollins et al.(2010. Another important
been rigorously quantified. Secondly, the sensitivity analy-PPE study called climateprediction.net used the home com-
sis of individual models will help to quantify how much di- puters of many users to repeatedly run the Hadley Centre
versity is due to different parameter settings and how muchHadCM3 climate model with different parameter settings.
is due to differences in model formulation and complexity. The climateprediction.net ensemble was used\akerley
The third reason is that sensitivity analysis can guide futureet al. (2009 to study the climate responses to changes in at-
model development. It is recognised that aerosol models inmospheric aerosol, albeit with a simpler aerosol scheme than
clude only a fraction of the important processes, and that thave use here. I8anderson et al2008 an emulator was used
models need to develop further in the future. We thereforetogether with the many climateprediction.net runs to carry
need procedures to assess the necessary level of model commdt sensitivity analysis. The number of ensembles produced
plexity objectively. At present, our limited understanding of by climateprediction.net is seldom possible in practice. PPEs
the main sources of model uncertainty means that it is dif-have been carried out with other climate models including
ficult to justify an increase in aerosol model complexity in Niehorster et al. (2006 andAnnan et al.(2005. Yokohata
favour of deploying computational resources to better effectet al.(2010 compared two different climate models using the
in other parts of climate models. information from the PPE studies on each modebugier

The most commonly used sensitivity analysis approachet al. (2009 discussed the idea of emulating the climate
used in complex global atmospheric models is single pamodel so that every point in the output space is estimated
rameter perturbation or one-at-a-time (OAT) tests. The OATin order to carry out an uncertainty analysis where the un-
test quantifies the departure of the model output from someertainty in the model output due to the uncertain inputs is
baseline case to a perturbation in a single model input. Weguantified.
have used that approach previously in our own global aerosol The first uncertainty analysis of the aerosol indirect effect
model Spracklen et al.20050). The OAT approach is ap- was carried out byPan et al(1997. They used the proba-
pealing because it always calculates the change in the modéiilistic collocation method to produce an approximation to
away from a well known baseline calculated using “default” their computer model in order to make uncertainty analysis
parameters. However, there are two significant disadvantagefgasible. Liu et al. (2007 isolated the uncertainty in global
of OAT tests: firstly, the fraction of parameter space sampledaerosol models due to meteorology by running the same
quickly tends to zero as the number of model inputs increasemodel with different meteorological datasets. More recently,
(Saltelliand Annonig2010. Secondly, the approach ignores Haerter et al(2009 studied the parametric uncertainty in
interactions between parameters (for example, whether seraerosol indirect radiative forcing based on 7 cloud-related pa-
sitivity to aerosol nucleation varies as emissions change); essameters with the ECHAMS model using both OAT tests and
sentially all sensitivity information is calculated at one point multi-parameter perturbation tests. A Latin hypercube de-
in parameter space. For these reasons, it is well recognisesign was used to define multiple parameter perturbation ex-
in policy applications that the OAT approach is inadequateperiments which are compared to single perturbation experi-
(Gaber et a].2009. ments to identify the interaction effectgignati et al.(2010

Other methods of sensitivity analysis have been developedised two models to assess parameter uncertainty. They com-
that cover the space of the uncertain parameters and thepared a simple bulk model and a more detailed chemistry
interactions. For example, factorial analysissher 1926 transport model to look at the effect of the wet deposition pa-
uses a more effective experimental design than OAT becausemeters on black carbohohmann and Ferrach@010 ex-
it is based on setting the different parameters (or factors) tamined the parametric uncertainty effects on the climate by
several values and testing all possible combinations of thesystematically varying 4 cloud parameters at specified values
different parameter values. However, the number of experifollowing a factorial design with 168 model runs.
ments required grows rapidly with the number of parameters Here we introduce the use of variance-based sensitivity
examined; for example, when testing only the highest andanalysis Galtelli et al, 2000 to understand the sensitivity
lowest plausible value for each &f parameters there will of a global aerosol model at the process level. The aim of
be Z experiments necessary. Factorial designs provide inthe sensitivity analysis is to quantify the relative contribution
formation about parameter interactions, but the number obf different model parameters and their interactions to the
experiments quickly becomes prohibitive for complex atmo- overall uncertainty in the model prediction. Two measures
spheric models. of sensitivity are computed for each model inp&altelli

The Met Office Hadley Centre quantifying uncertainty in et al, 2000: the “main effect” measures the reduction in
model predictions (QUMP) project has resulted in severalthe output variance when the model input can be learnt ex-
sensitivity studies undertaken using climate models attemptactly, and the “total effect” measures the remaining variance
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in the model output when everything except the input un-
der investigation is learnt. The total effect sensitivity com-

2. Screen out
parameters if too

1. Choose mode
parameters for

. R N C | dy.

pared to the main effect sensitivity gives an indication of | yoin e study oy

how each input interacts with others, which can then be fur- .

ther investigated. Variance-based methods require complete V l

specification of the model output throughout the space of the — 4. Design the

parameter uncertainty. In many applicatioSaitelli et al 3. Elictt experiment,
. ’ parameter | .. » including

2000 these outputs are generated in a Monte Carlo simu
lation using a very large number (usually many thousands

uncertainties
from experts.
Not in this study

of model runs. Here we use Gaussian process emulation,
which generates the same level of information required by
variance-based sensitivity analysis but requires considerably
fewer model runs than Monte Carlo (see S&kt.

The aim of this paper is to demonstrate the potential of
the emulation approach applied to a complex global aerosol

validation.
Section 2.3 and 2.4

5. Run
computer
model, including
validation runs.

l

model. We use the Global Model of Aerosol Processes, G-Cglz'f‘:}t’]l:)orde'
GLOMAP (Spracklen et a).2005a Mann et al, 2010 and emlﬂation_
Section 3.2

follow a previous sensitivity study using the OAT technique
(Spracklen et a].20050. The model predicts a wide range
of aerosol properties relevant to climate and air quality. Here

|
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. . . . 8a. Revise
we focus on cloud condensation nuclei (CCN), which is the [idiod design to
subset of aerosol particles that can form cloud drops. The model output. g:‘nﬂflg‘t';
concentration of CCN is a key quantity in the prediction Section 2.2 predictive
of the very uncertain aerosol indirect effect. It is also a l \ f?p;‘?”“{- ;
. . . . otin S S

quantity where an understanding of model uncertainty will s SHey

tly benefit the analysis of newl iled global dataset Bt 3
greatly benefit the analysis of newly compiled global datasets omulator
(Spracklen et a]2011). eOmREtd 19 Emulator not valid

This paper is set out as follows. In Se2temulation is
introduced and compared with other approaches. In Sect.
we describe the global aerosol model and specify the uncer-
tain parameters. In Seet.the application of the sensitivity
analysis on the global aerosol model using emulation is pre-
sented.

9. Collect 10. Quantify

emulator variance and
2 Emulation of the global aerosol model GLOMAP results. parameter

Section 4.2 sensitivities.

The basic procedure for an emulation study is shown in

Fig. 1. No screening or formal elicitation is carried out as Fig. 1. The basic procedure to follow in an emulation study.

part of the initial study.

2.1 Why is emulation necessary?

emulator
prediction and
model outputs.

Section 4.1

Validated emulator

O’Hagan (2006 compares Monte Carlo and emulation

Emulation is the process by which the computer model is retechniques in the sensitivity analysis of computer models.
placed by a statistical surrogate model that can be run moré comprehensive variance-based sensitivity analysis may re-
efficiently. The global aerosol model used here is a complexguire millions of model runs, and even for a model that takes
computer code so it is practically impossible to explore thejust one second to run just one million runs takes 11.5 days
entire parameter uncertainty spattaerter et al(2009 and  of continuous CPU time. With a complex computer code
Lohmann and Ferrach§2010 study various combinations such as a global aerosol model a Monte Carlo simulation
of parameter values but the amount of information generateds not feasible. The aim of the emulator is to estimate the
is not sufficient for a full variance-based analysis. When aoutput of the model at a large number of untried parame-
simple computer model with very short run time is available ter combinations so that variance-based sensitivity analysis
emulation is redundant since the actual computer model cafSaltelli et al, 2000 becomes feasible. In this work the
be used to provide output throughout the parameter uncerGaussian process is used for emulati@tHagan 2006, but
tainty space; this is a Monte Carlo simulation. other emulation methods are available and have been applied
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curve shown in red, but in reality the points would be gener-
ated through simulations of the complex model.

The Bayesian paradigm is used to combine prior beliefs
about model behaviour with results from some model runs
to produce a posterior distribution for the model which is
then used to estimate the model output across the parameter
space, and to quantify the uncertainty and carry out sensitiv-
ity analysis. In this work the prior is the Gaussian process.
The Gaussian process is a statistical model that exploits the
theory of conditional probability to estimate model output
; : ; : ; ; ; throughout the input uncertainty space using some known
@) ’ ’ ’ . model output. Using conditional probability allows prob-
abilistic statements to be made about model output and so
uncertainty can be quantified. The Gaussian process repre-
sents a smooth function (here the global aerosol model out-
put versus parameter value) such that each unknown output
point has a normal distribution and any collection of outputs
has a multivariate normal distribution. The functional form
of the model is not assumed and so it is a non-parametric
method. The posterior distribution is also a Gaussian pro-
cess (the functional analogue of the conditional multivariate
normal distribution) conditioned on the training data (model
: ; runs). The result is a posterior mean function and a posterior
5 % q 3 ! 2 3 covariance function from which the model output can be esti-
(b) x mated and all the sensitivity measures can be derived analyti-
cally. The uncertainty from using the emulator for sensitivity
\ , ) I analysis rather than the simulator can also be derived analyt-
These five points are used to train the emulgloy 600 realisations .1 The green curves in Fig.show different estimates of
(green lines) from a one-dimensional emulator based on the flve-the aerosol model based on the posterior Gaussian process,

points in(a). The mean of the emulator (dashed) is used to estimate . .
the true curve (the solid red line) and the spread of the realisation?nd the red dashed curve shows the mean function estimated

gives visual indication of the emulator uncertainty. The histogramsPY the emulator. The mean curve is used to carry out the pa-
inset show the posterior Gaussian distribution at two points on the'@meter sensitivity analysis while the spread of green curves
curve shown by the arrows, one point is near the training data so théndicates the uncertainty in using the emulator rather than
Gaussian distribution is much narrower (the blue histogram). the simulator. Figur&® shows the same curve but with five
badly spaced training points. Here the uncertainty outside the
range of the known points is so large that the mean cannot be
to climate and ocean modelSgnderson et al2008 Gold- used to estimate the true curve with any confidence. This ex-
stein and Rougie2006. The mathematics behind the Gaus- ample highlights the importance of using sufficient and well
sian process emulator is explained in Appendik and in  distributed training data.
Sect.2.2 the emulator is described with a one-dimensional The Gaussian process has the desirable properties that the
toy example followed in Sect.3and2.4by a discussion of  curve fits through the known points (each of the green lines
the design of the model runs used to inform and validate thepasses exactly through all five training points) and a measure

12

10

f(x)

12

10

f(x)

Fig. 2. (a) Five known points from some unknown functigiix).

emulator. of uncertainty is calculated for every estimated point. In two-
dimensions the Gaussian process would fit a surface with un-
2.2 The Gaussian process emulator certainty calculated for each estimated point in both dimen-

sions. The same is true in higher dimensions, so the Gaussian
The application of the Gaussian process to understandingrocess can be used to build an emulator with any number of
parametric uncertainty in global models is quite new, soinput variables given a suitable number of model runs. More
we start by explaining the mechanism by which the emula-mathematical descriptions of the Gaussian process emulator
tor becomes an estimator for the global model. The Gausean be found in AppendiAl and inSacks et al(1989, Cur-
sian process is illustrated by a simple example of emulatingin et al. (1991), O’Hagan(1994, Neal (1999 and Santner
with just one parameter, which can be viewed as a form ofet al. (2003. A discussion of different specifications of the
non-parametric curve fitting. Figur2 shows such a func- prior beliefs can be found iDakley (1999. A tutorial on
tion f(x), for which we know the solution at five “training Gaussian process emulation for non-mathematicians can be
points”. Here the five points have been drawn from the truefound inO’Hagan(2006).
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Fig. 4. Upper: the design used here. Lower: the design used in

The Gaussian process has been used to carry out unceppracklen (2005).
tainty analysis laylock and O’Hagan1996 O’Hagan and
Haylock 1997 Oakley and O’'Hagar2002 including meth-
ods for estimating the percentiles of the output uncertainty2.2.1 Important assumptions for the Gaussian process
distribution. Oakley and O’Hagaf2004 extend their previ- emulator for sensitivity analysis
ous work to include sensitivity analysis in order to apportion
the uncertainty in the output to the inputs and their interac-There are two important assumptions relating to the use of
tions. The effect of the individual inputs and their interac- the Gaussian process emulator for sensitivity analysis. These
tions on the output is found by integrating the posterior mul- gre:
tivariate mean with respect to various subsets of inputs and The computer model is smooth and continuous with re-
the expected variances are found similarly. The details of thespect to its inputhe increased efficiency of the emulator
int_egrations a_nd the formulas_involved in performing the sen-q\ or the computer model is based upon being able to use the
sitivity analysis can be found iDakley and O'Haga(2004.  jnformation from a few runs to predict the output at untried
Morris et al.(2008 show a practical application of Gaussian ngints, This information comes from the output covariance
process emulation for sensitivity analysis using a radiativepgween pairs of points and depends on the distance between
transfer model. _ _ _ the two points. When the output is smooth and continuous

Here we used readily available software, the Gaussian Emyith respect to the inputs there is higher correlation between
ulation Machine for Sensitivity Analysidittp://ctcd.group.  points; allowing a lower uncertainty in predictions far from
shef.ac.uk/gem.htmIGEM-SA produces the main effectand he training points. If the computer model is not smooth then
total effect sensitivity measures for each input variable antie increased efficiency is lost since too many runs would be

the relationship between the model output and each of thggquired to build the emulator. The smoothness assumption
uncertain parameters can be plotted. The spread of the lingg tested using validation data.

in the plots produced compared to the range covered on the

-axis gives an indication of the emulator uncertainty com- . o
);;ared ?o the effect of the parametric uncertainty. Tﬁ/e first-pUtS (the model parameters under investigation) should be
' separately identifiable. The identifiability of the inputs may

order interaction sensitivity measures can be requested an ot be known before the emulator is built but when there is

their relationship with the model output plottedkennedy . . e i
ot al. (2009 use GEM-SA for sensitivity analvsis of a dv- some prior knowledge of an identifiability issue between pa
- (2009 y Y Y rameters then only one or some function of them should be

hamic vegetation model. varied. Using separately identifiable inputs also keeps the
necessary model runs to a minimum.

Separately identifiable emulator inputhe emulator in-

www.atmos-chem-phys.net/11/12253/2011/ Atmos. Chem. Phys., 11, 1P2Z5R3-2011
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2.3 Designing to inform the emulator 3 The global aerosol model GLOMAP

To minimise the required number of model runs, itis impor- 3.1  Aerosol model description
tant that the model runs generate information about as much
of the uncertainty space as possible. The design of such exrfhe GLObal Model of Aerosol Processes (GLOMAP)
periments has been, and continues to be, a huge area of s§Spracklen et al]2005a Mann et al, 2010 is an aerosol mi-
tistical researchSacks et a).1989 Bates et a].1995. crophysics module simulating the evolution of the size dis-
Here we use a maximin Latin hypercubddKay et al, tribution and composition of a population of aerosol parti-
1979 to fill the uncertainty space of the parameters, whichcles via processes such as new particle formation, coagu-
has been shown to be the best design for Gaussian procekstion, gas-to-particle transfer and cloud processing. The
emulation Jones and JohnspB009. The maximin Latin  original version of the modelSpracklen et al. 20053
hypercube is based on the Latin square, a common exampleses a bin-resolved aerosol dynamics approach (GLOMAP-
of which is the sudoku puzzle, which consists of nine overly- bin) but more recently a computationally cheaper version
ing Latin squares; that is there is precisely one of each numhas been developed which uses modal aerosol dynam-
ber in each row and column. The maximin Latin square max-ics called GLOMAP-mode Mann et al, 2010. Both
imises the minimum distance between points in the square IGLOMAP-bin and GLOMAP-mode are implemented within
order to ensure optimum space filling. The maximin Latin the TOMCAT global 3-D offline chemistry transport model
hypercube has the same properties as the Latin square but {Stockwell and Chipperfield 996 Chipperfield 2006 and
higher dimensions. GLOMAP-mode is also implemented within the HadGEM-
The number of points in the Latin hypercube used here iSUKCA composition-climate model Morgenstern et al.
10 times the number of parameters investigated, as recon2009. We use GLOMAP-mode (from here on referred to as
mended byLoeppky et al.(2009. The maximin Latin hy- ~ GLOMAP), which represents the aerosol by a particle num-
percube can be augmented with further points if diagnosticder concentration and several component masses in a series
suggest there are not enough runs to build a suitably accuef log-normal modes. These modes are split between two
rate emulator. In this analysis there are 8 uncertain paramedistributions (hydrophillic and hydrophobic) and four aerosol
ters and therefore we configure 80 initial model runs with thesize categories (nucleation, Aitken, accummulation, coarse).
parameter values based on Latin hypercube sampling in th&he component mass and number concentrations of the log-
same ranges as Bpracklen et al(2005h. The space filling  normal modes are prognostic variables on the model grid, but
properties of the 80 runs used here are shown in&Fiext  the geometric standard deviation is fixed. The modal struc-

to the OAT design used iBpracklen et ali2005h). ture is similar to that used bStier et al.(2005 andPringle
. . etal.(2010.
2.4 Designing to validate the emulator The model is run with the same setup as described in detail

by Mann et al.(2010. It includes the treatment of sea spray,

It cannot be guaranteed that the design used to build the €MSlack carbon organic carbon and dust and has been shown to

u[ator IS sufficient to descr!be the model t.)ehawour. atthe un'compare well to ground based observations of aerosol mass
tried points. The emulator is therefore validated using further

runs of the model. For the validation design we follow the and numberNfann et al, 201q Spracklen et al2010. The

. . model resolution is 2.8% 2.81° with 31 vertical levels. The
recommendations ddastos and O'Hagaf2009 and set the outputs are requested monthly for all model levels across the

number of addition_al runs gqual to three times the.number lobe and daily at the surface. An OAT parameter uncertainty
of parameters studied. A third of these runs are dehberatehgtudy was carried out in GLOMAP-bin bgpracklen et al.

frlfoze to sorre O:; tpetrpl)omts n thi ongmgl design antd tl\ivotf 2005h. As well as the difference in aerosol dynamics, the
Irds are placed Iurther away, chosen by a separate Latlly, , 5 G| oMAP version used in this present study differs

hypercube design. Choosing specific runs to validate th(?rom that used irfSpracklen et al(20058 in two important
emulator helps to identify specific failures with the statisti-)NayS_ (i) Spracklen et al(20058 used a single-component

: ' 0
cal assg_mpﬂons u;ed to build the emulator. When the 95. Version with only sulphate and sea-salt aerosol, and (ii) the
probability bound is constructed around the emulator predic-

tion it should contain the GLOMAP prediction for 95 % of models are separated by five years of model development (in

L . ) X ., particular emissions have been updated and boundary layer
the validation points. In this experiment there are 24 Va“da'nucleation has been implementeSiptacklen et al.2008

tio_n_runs, 8 of which have input setti_ngs_close to those in theMerikanto et al. 2009). Nevertheless, the model treatment
prlgrl]nal 8.0 GLOMAP runs. The validation of the emulator of the core microphysical processes has remained similar.
Is shown in Sect. For detailed information on the GLOMAP-bin model used
in Spracklen et al(2005h seeSpracklen et ali20053.
At the resolution used here GLOMAP-mode takes about
5200 s to run per month on 32 cores on the HECTOR XT4
supercomputer and requires a spin-up period of at least 3

Atmos. Chem. Phys., 11, 122582273 2011 www.atmos-chem-phys.net/11/12253/2011/
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months. The perturbations are then applied with all model
runs having identical initial conditions. After the perturba-
tion, a further spin-up of 2 months is then carried out for
each model run to ensure the perturbations take effect and the
model output is assessed over the month after that. To carry
out 80 model runs with which to train the emulator therefore
takes 1263 600 s on 32 cores, or nearly<132 core-days.

3.2 GLOMAP parameter uncertainties
3.2.1 Choice of model output and region

The GLOMAP model simulates the global distribution of
many aerosol properties describing particle mass, number
concentration, size distribution, chemical composition, etc.
Each build of the emulator calculates the relationship be-
tween the parameter values and one of these many outputs in
one grid cell or, with appropriate aggregation, over a larger
domain of the model. Emulation of the output averaged over
multiple grid points (not done here) needs to take into ac-
count whether the chosen output depends on the parameters
in a similar way, which could be identified using cluster anal-
ysis, for example. Here, we focus on the sensitivity of sim-
ulated concentration of cloud condensation nuclei (CCN) at
two representative locations; one polluted centred over Lon-
don (UK, 51.0 N, 0.° E) and one remote centred over the
Pacific Ocean (425, 165.9 E). The emulation is carried out

for June 2000 using monthly mean model output.

CCN are the subset of the aerosol particles that activate to
form cloud droplets at a given supersaturation (here 0.2 %).
They play a pivotal role in the interaction of aerosols and
clouds. Prediction of CCN within a global model has only re-
cently become possible with the development of microphys-
ical models, and the processes and model parameterisations
controlling their abundance and distribution remain uncer-
tain.

3.2.2 Choice of model parameters

Spracklen et al(2005h examined the sensitivity of global
mean condensation nuclei (CN) and CCN concentrations to 8
model parameters. The parameters include factors that scale
the precursor emissions as well as microphysical process pa-
rameters. The parameters are briefly described below, and a
full description of their handling in GLOMAP-mode is given

in Mann et al.(2010. The chosen parameters may not be
generic to all models and may also not represent the optimum
selection, but our aim is to illustrate the method following a
previous OAT approach. No formal elicitation is carried out
as part of this study. Some uncertainty ranges here are differ-
ent to those irBpracklen et ak20058 where the uncertainty

is thought to be better understood compared to five years ago.

— X1: oxidation activation diametefOX_DIAM) In
GLOMAP the agueous phase oxidation activation diam-
eter defines the diameter above which aerosol particles

www.atmos-chem-phys.net/11/12253/2011/

12259

activate into cloud droplets in stratiform clouds. Droplet
formation is an important process in the global CCN
budget because it enables Sxidation chemistry to
grow the activated aerosol particles through addition of
sulphate mass. The activation diameter varies greatly
between clouds and regions depending on the particle
size distribution, chemistry and updraught speed but
is given a constant global value in these simulations.
The sensitivity of CCN to all these processes could be
investigated separately, but followir§pracklen et al.
(20058 we quantify the sensitivity of CCN to the un-
certainty in the aqueous phase oxidation activation di-
ameter in the range (0.04, 0.125) um.

X>: mass accommodation coefficie(ACC_COEF)

In GLOMAP the mass accommodation coefficient de-
fines the probability that a molecule 0b80O, becomes
bound to an aerosol particle upon collision. Changes
in the accommodation coefficient affect particle growth
rates as well as the amount 0f &0, available for nu-
cleation, which are important (but sometimes compet-
ing) processes in the production of CCWgodhouse

et al, 2008. This is one of the interaction effects that
may be highlighted through the sensitivity analysis. The
uncertainty in the accommodation coefficient is set in
the range (0.02, 1.00).

X3: HoSOy nucleation thresholfNUC_THRESH) In

the Kulmala et al.(1998 mechanism the formation of
new particles through binary nucleation occurs only
when the atmospheric 430, concentration is greater
than a defined threshold value. Reducing the nucleation
threshold causes more frequent nucleation and higher
aerosol concentrations. The uncertainty in theSBy
nucleation threshold is set in the range (0.25x4he
baseline value.

X4: nucleation critical cluster sizdNUCRIT _SIZE)

The nucleation critical cluster size defines the smallest
size above which a cluster ob80; molecules is stable.
Smaller critical cluster sizes take longer to grow and so
are subject to coagulational scavenging for a longer pe-
riod of time. The uncertainty in the nucleation critical
cluster is set in the range (50, 100) molecules.

— Xs5: particulate emissions associated with anthro-

pogenicSO, (SO2PART) This parameter defines the
fraction of the total sulphur emissions in a grid box
emitted as particulate sulphate (rather than)SO'he
large grid scale of the model means particle formation
in power plant plumes cannot be resolved, so a frac-
tion of the anthropogenic SOn global models is of-
ten emitted directly as particleddams and Seinfeld
2003. The uncertainty in the particulate emissions of
anthropogenic S@is set in the range (0, 5) % of an-
thropogenic S@.
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- Xe: cloud nucleation scavenging diameter Emulator predictions (with 95% limits) versus GLOMAP predictions
(SCAV_DIAM) The nucleation scavenging diame- o T T
ter defines the diameter of aerosol particles above
which they form cloud drops that subsequently
undergo efficient collision-coalescence to produce
raindrops, and are therefore wet scavenged. In reality
SCAV_DIAM ought to be related to the aqueous
activation diameter. However, global models do not
currently resolve the in-cloud raindrop formation
processes, so there are likely to be many additional ﬁ |
uncertainties in the scavenging diameter than in the 1
activation diameter alone. In GLOMAP we therefore 400
treat the activation diameter and scavenging diameter e
as independent parameters with their own uncertainties.a 400 o0 et 2 1000
The uncertainty in the cloud scavenging activation
diameter is set in the range (0.08, 0.25) um.

1000

800

¢ i
oF 5

600

Emulator predictions (cm—3)

Emulator predictions (with 95% limits) versus GLOMAP predictions
o————F————————————

gt

— X7: sulphur emissiongSO2 EMS) Emissions invento- 1

ries used to drive global models are known to be highly [ 1{
uncertain, although uncertainties are smaller in areas

with more information. The uncertainty in the AERO-
COM emissions used herBéntener et al200§ is be-
lieved to be no more that 30 %, so the uncertainty range
here is (70, 130) % of the baseline emissions and is con-
sidered to be the same everywhere in this study.

Xg: sea spray emissio($SEMS) GLOMAP uses the
sea spray function oong (2003. Under clean ma-
rine conditions sea spray particles may dominate the ac- [
cumulation mode and hence contribute significantly to e e e
CCN. Uncertainty in the sea spray emissions have bee@b) GLOMAP predictions (cm=3)
reviewed byde Leeuw et al(2011). Here we set an un-
certainty in the particle flux in the range (0.1, 10) times Fig. 5. GLOMAP estimates of June 2000 surface CCN concentra-
the baseline value and apply it uniformly over the ocean.tions in(a) London andb) the Pacific Ocean versus emulator pre-
dictions of June 2000 surface CCN with 95 % probability YAm-
The uncertainty distributions of the parameters are assumegks. The uncertainty here represents the emulator uncertainty rather
to be uniform (giving equal weight to any point in a bounded than uncertainty due to the parameters. The red points are those
range of uncertainty). The experimental design depends prifrom the experimental design that were purposely placed close to
marily on the range of uncertainty given to individual param- the original training data.
eters rather than the specific uncertainty distribution, and the
same models runs can be used to perform sensitivity analysis o ] )
if the uncertainty distribution on any parameter is changed# The application of Gaussian process emulation for
The robustness of the statistical assumptions can therefore be S€NSitivity analysis of GLOMAP
tested by building emulators based on different input uncer- .
tainty distributions as shown iRougier and Sexto(2007). 4.1 Evaluation of the emulator

In contrast, Monte Carlo methods require completely NeWpq,,re5 shows the evaluation of the emulator at the polluted

experimental designs and thus further model runs when the, remote marine sites. With the emulator the variance (and

distribution is changed. The range of the uncertainty givenyence uncertainty) due to emulation versus the simulator can

to the pargmeters however _Sh,OUId remain the same to avoigg calculated, so it is possible to construct 95 % probability

extrapolation beyond the training data. bounds for the emulator predictions, which are shown as the
error bars in Figs. The 95 % probability bounds around the
validation points should cover the GLOMAP simulations for
95 % of the validation points.

IS o o
=] =) S
T

Emulator predictions (cm—23)

N
S
I
|
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@

phur emissions parameter values in the 80 original GLOMAP runs

(red) and the new GLOMAP runs where all parameters were set low 3 80 - ® Main Effects
(green). The numbers show the experiment number in each of the -% ® Interactions
designs: original and low. c
() 60 -
(]
=
The 8 validation points placed close to the training data -% 40
(shown in red) have small 95% confidence intervals that >
cover the GLOMAP simulations showing that the emulator is 5 20
estimating well close to the training data. With the exception ﬁ;
of one, the other 16 emulated points have 95 % confidence < o = s I . [ .

intervals that cover the GLOMAP simulations showing the
emulator is estimating well even at points far away from the
training data.

Normally, one outlying point would not indicate that the
emulator is invalid, but in Figba (the London grid box)
the 95% confidence interval is very small considering the
distance of the point from the GLOMAP simulated value.
We therefore investigated more closely the model predictiondi9- 7- A bar chart displaying the parameter sensitivitie¢dnthe
corresponding to this point. The outlying point in F&ia is pol!uted grid cell.a}n.q.b) the remote grid cell. The red bars show the
shown to have high CCN in the original GLOMAP simula- main effgct sensmw_tles and the green bars show how much ea_lch pa-
tion and it is necessary to evaluate the realism of this mode[ameter interacts with the others to contribute to the CCN variance.
prediction by comparison with observations. The outlying
point corresponds to all the parameters set to their lowest val- ) ) o
ues. The high CCN concentrations are surprising because a There are two reasons to reject points from this 'qny corner
low value of some parameters (especially SEXIS) should of parameter space. Flrstly,.the g'lobal aerospl fields show
favour low CCN. To explore both the model and the emu- that total particle concentrations lie well outside qbserved
lator behaviour when all parameters are set low a further ganges $pracklen et 8].2010. Secondly, the_ behaviour of
GLOMAP runs were performed with all parameter values inthe aero;ol system appears to be unp_hysmal and not con-
the bottom 5% of the parameter range, defined using Latirﬁ'Stem with observed behaviour. _The high CCN concen.tra-
hypercube sampling. Figut@ shows the relationship be- tions are c_:reated by extremely hlgh number_ concentrations
tween CCN and SOEMS in London from all 88 GLOMAP of nucleation mode aerosol, which grow mainly by coagu-

simulations. As expected CCN concentrations generally jn-ation to CCN SIZES. Rapid nucleation throughogt the_ atmo-
crease with SOZEMS, but the additional 8 simulations be- sphere is sustained by a low vapour condensation sink (low

have differently. Figuré shows that the model is behaving particle surface areas) caused by efficient aerosol scaveng-

oddly in this region of the parameter space, the emulator can"9 (low SCAV_DIAM) gnd a,IOW nucleation threshold (IOW
not capture this behaviour. NUC_THRESH). In this environment, lower sulphur emis-

sions act to exacerbate the low condensation sink more than
they reduce the nucleation rate, so nucleation is enhanced
further.

OX_DIAM
ACC_COEF

NUC_THRESH
NUCRIT_SIZE
SO2_PART
SCAV_DIAM

(b)
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This trial emulation of a complex global aerosol model scribed by the first-order interaction effects and the remain-
shows how odd behaviour can occur in very small fractionsing 2 % by higher order interactions). The interaction vari-
of the entire parameter space sampled by the space-fillingnce contributions and the total variance contributions are
design. In future applications, such behaviour needs to balso added together from the 8 parameters in the table. The
detected by evaluating multiple diagnostics against observatotal variance contributions will typically not add to 100 %
tions and by studying the various microphysical budgets. Itbecause the variance contributions are shared between pa-
is possible to build the emulator with the original design andrameters in the presence of interactions, the further it is away
to remove implausible regions of the joint probability space from 100 % gives a quick indication of the interaction effects.
(calibration) before carrying out the sensitivity analysis but In Tablel the summed total effect variance is 107 % showing
this will be a topic of further research and will not be part that the interaction effects are small.
of this paper. The robustness of the emulator results in this The parameter sensitivities are plotted in Fgvhere the
study and the leverage of the outlier in the corner of the pa-main effects and interactions can be seen clearly. The rela-
rameter space are tested by building the emulator withoutionship between CCN concentration and each parameter are
training point one and comparing to the original emulator. plotted in Fig.8. Figure7a shows the parameter sensitivities
The two emulators show similar results so in this study theand Fig.8a shows the CCN versus parameter relationships
point is included. in the London grid box. There is a clear positive linear rela-

Figure5b shows the emulator performance for the Pacific tionship between the sulphur emissions (SEMS) and the
grid cell. It can be seen that one point in the validation de-estimated CCN. There is also a negative correlation between
sign is not well predicted by the emulator. This point is not the oxidation activation diameter (QRIAM) and CCN and
the same one that was highlighted in the London validationa positive correlation between the particulate sulphur emis-
procedure since that has already been removed from the plosions (SO2PART) and CCN, but these are not very strong
The outlier in Fig.5b is not an extreme outlier, there is noth- relationships compared to that with sulphur emissions, and
ing unusual about the GLOMAP simulation, and 95 % of all the other parameters show little variation with CCN. Over-
the points cover the GLOMAP simulations in their 95 % con- all, the emulator predicts that 79 % of the variance in June

fidence interval, so the emulator is considered valid. 2000 surface-level CCN is due to the uncertainty in the sul-
phur emissions, 8 % is due to the uncertainty in the oxidation

4.2 Sensitivity analysis activation diameter, and 4 % due to the uncertainty in partic-
ulate sulphur emissions. The green sections in Fgare

4.2.1 Variance contributions at the surface relatively small compared to the red sections showing that

the main effects are most important in the London grid cell.

The CCN concentration at the surface for London (in June The estimated CCN concentration at the surface of the re-
2000) is estimated by the emulator to be 647 énwith mote marine site in the Pacific is 57 cf with an emulator
an emulator standard deviation of 2.1th Uncertainty in  standard deviation of 0.5 cm and a parametric standard de-
the 8 parameters leads to an estimated standard deviationation of 14 cnt3. The sensitivity results are summarised
of 106 cnT2 around the expected CCN concentration. A in Table2 and plotted in Fig7b. The total effect sensitiv-
strength of the emulator is that it predicts not only the CCNiities indicate much stronger interaction between the model
value and the parametric uncertainty, but also the 95 % probparameters than at the polluted site, shown by the fact that
ability bounds as a measure of the “confidence” of the emuthe summed total effect is 126 %. The interactions between
lated prediction. The small emulator standard deviation herehe model parameters are also shown clearly by the green
along with the successful validation in Figa shows that regions in Fig.7b. Overall, 80 % of the variance is due to
using the emulator has had a very small effect on the accuthe individual parameters and 20 % due to the interactions.
racy with which the parameter sensitivities are estimated and'he interaction effects are separated by parameter. For ex-
hence we have an accurate emulator. ample, the total effect of the oxidation activation diameter

The sensitivity analysis partitions the variance due to the 8s 87 % compared to its main effect of 70%, and the total
parameters into the variance due to each parameter and thesffect of the nucleation scavenging diameter is 12% com-
interactions. The results are summarised in TdbleThe pared to its main effect of only 2%. The main effect rela-
main effect variancés the percentage of the total variance tionships between the parameters and CCN concentration for
due to the perturbation of each parameter individually (thisthe Pacific grid box can be seen in F&p where the dom-
is the variance captured by the OAT tests) anditital effect  inance of oxidation activation diameter is clear. Fig8ke
varianceis the percentage of the total variance calculatedshows that non-linear relationships between the parameters
due to the main effect plus the interaction between differ-and CCN concentration can be captured by the emulator. The
ent parameters. In London, 95 % of the variance due to thdirst order interaction between the oxidation activation diam-
8 parameters is described by the main effect variance termster and nucleation scavenging diameter is the most impor-
and there are only weak interactions between the uncertaitant of the interaction effects and accounts for 6 % of the to-
parameters (only a further 3 % of the variance in CCN is de-tal variance in CCN concentration. The joint effect of the

Atmos. Chem. Phys., 11, 122582273 2011 www.atmos-chem-phys.net/11/12253/2011/
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Fig. 8. The relationship between the CCN concentration and each of the parameters listed 3f@¢et) London grid cell andb) Pacific

grid cell. In each case the thickness of the line represents the emulator uncertainty whilst the spread on the y axis represents the uncertaint
due to the uncertainty in the parameter. Each plot here is based on all other parameters being fixed. It is shown that uncertainty in sulphur
emissions dominates uncertainty in CCN concentration.

oxidation activation diameter and nucleation scavenging di-ber of CCN available are optimised for wet deposition when
ameter is shown in Figd. The CCN concentration is more the oxidation diameter is in the range of 0.06 and 0.1 um.
sensitive to the nucleation scavenging diameter when the oxiEmulator uncertainty is increased outside of the oxidation
dation activation diameter is between 0.06 and 0.1 um and theliameter range of 0.06 and 0.1 pm which can be seen by the
stronger relationship can be seen when oxidation diameter ispread of the lines showing the relationship between CCN
0.074 um in Fig9. A possible explanation for the increased concentration and nucleation scavenging diameter for given
sensitivity to nucleation scavenging is that the size and num-oxidation diameter in Fig0.
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Table 1. Model parameters and their effect on the variance of CCN concentration at the surface in a polluted grid cell covering London (UK).

Expected CCN = 647 ciP Emulator st. dewemulator= 2.1 cns Parametric st. deviparametric= 106 cni>

Main effect Parameter inter- Total effect

Number Parameter Range variance action variance variance
contribution (%)  contribution (%) contribution (%)

X1 Oxidation activation diameter 0.04-0.125pum 8.2 1.3 9.5

X2 Mass accommodation coefficient 0.02-1.0 15 1.2 2.7

X3 H>SOy nucleation threshold 0.25-4xbaseline 0.5 0.4 0.9

X4 Nucleation critical cluster size 50-100 molec 0.0 0.4 0.4

X5 Sulphate particulate emissions 0-5% of,SO 4.0 2.0 6.1

X6 Cloud nucleation scavenging diameter  0.08-0.25um 0.9 1.3 2.2

X7 Sulphur emissions 70-130 % baseliner9.1 3.0 82.1

X8 Sea spray emissions 0.1-4Baseline 0.5 3.0 3.5

- All 8 parameters - 94.7 12.7 107.4
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Fig. 9. The joint effect of oxidation activation diameter and nucleation scavenging diameter in the Pacific Ocean grid cell. For four different
values of oxidation activation diameter the effect of nucleation scavenging is shown. The sensitivity of CCN concentration to nucleation
scavenging is shown to differ (by the shape of the line) when oxidation activation diameter changes. The emulator is less certain in its
nucleation scavenging estimate given a high oxidation diameter, as indicated by the spread of the lines.

4.2.2 Vertical profile of variance contributions model parameter (Fig.0Ob and d) is calculated using separate
emulators for each model level. The solid lines in Hifb
Oand d show the main effect of the different parameters and

The vertical profile of CCN concentration and the associate i .
P the corresponding dashed lines show the total effect of each

variance contributions are shown in Fif). FigurelGa and c
show that the absolute CCN concentration and the parameparameter.
ric uncertainty (measured by the 95 % confidence intervals)

decrease with altitude in the London grid box but that the
parametric uncertainty remains relatively high with altitude

in the Pacific grid box. The CCN sensitivity to each uncertain
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Fig. 10. Emulator estimated CCN concentration (solid line) and its 95 % confidence interval due to uncertainty in the model parameters
(dotted line) in(a) London and(c) the Pacific Ocean as estimated by the emulator at 26 model levels. The results from the 26 emulators
are shown as circles but have been linearly interpolated to show the vertical profile. The variance contribution (%) or sensitivity of each
parameter is shown itb) for London and(d) for the Pacific Ocean. The solid lines show the main effect sensitivity and the dashed lines
show the total effect sensitivity. The shaded background shows the total uncertainty explained by the main effects of each parameter; this is
the maximum uncertainty that could be measured using one-at-a-time tests.

Table 2. Model parameters and their effect on the variance of CCN concentration at the surface in a remote grid cell over the Pacific Ocean.

Expected CCN = 57 ¢ Emulator st. deWemylator= 0.5 cni3 Parametric st. deviparametric= 14 cnt>

Main effect Parameter inter- Total effect
Number Parameter Range variance action variance variance
contribution (%)  contribution (%) contribution (%)
X1 Oxidation activation diameter 0.04-0.125um 70.2 17.0 87.2
X2 Mass accommodation coefficient 0.02-1.0 1.7 0.8 25
X3 H>SO4 nucleation threshold 0.25-4xWaseline 2.5 1.0 3.5
X4 Nucleation critical cluster size 50-100 molec 0.1 1.2 1.3
X5 Sulphate particulate emissions 0-5% of,SO 0.3 5.1 5.4
X6 Cloud nucleation scavenging diameter 0.08-0.25um 1.8 10.5 12.3
X7 Sulphur emissions 70-130 % baselined.4 5.6 6.0
X8 Sea spray emissions 0.1-4baseline 3.0 8.2 11.2
— All 8 parameters - 80.0 46.2 126.2

In the London grid cell the sulphur emissions are the dom-the uncertainty in the accommodation coefficient contributes
inant source of uncertainty in the CCN near the surface, butnost of the variance in the CCN concentration and from 6 km
higher in the atmosphere the uncertainty in the model paramto 12 km the uncertainty in the nucleation scavenging diam-
eters becomes more important. Between 1 and 3 km altitudeter is the dominant source of CCN variance. However, as
the uncertainty in the oxidation activation diameter explainsat the surface, most of the variance at higher altitudes is ex-
most of the variance in CCN concentration, which is consis-plained by the individual parameters, with interactions be-
tent with the altitude of low-level clouds. From 3 to 6 km tween parameters accounting for no more than 20 % of the

www.atmos-chem-phys.net/11/12253/2011/
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total uncertainty. Above 12 km at this location the interac- advantage of our approach over the widely used one-at-a-

tion effects become more important; however, as shown irtime tests is that it also enables the interactions between all

Fig. 10a both the CCN and its variance are very low and andcombinations of parameters to be calculated, and the para-

so the interactions are not investigated further here. metric uncertainty refers to the entire parameter space, rather

It is clear that to improve the estimate of the June 2000than being restricted to one point (the baseline model) de-

CCN concentration near the surface in London it is mostfined by “default” parameters. As such, the variance-based

important to reduce the uncertainty in the sulphur emissionsapproach produces a more realistic estimate of uncertainty

used to force GLOMAP. Since the uncertainty near the sur-and provides more useful information to the model devel-
face is very strongly dependent on emissions rather thamoper.

processes, models might be expected to be in closer agree- We have shown that the emulator approach is very well

ment over more polluted regions when the same emissionsuited to a complex global aerosol model. With an appro-

databases are used. To improve the estimates of CCN highgriate experimental design and number of model runs, the
in the atmosphere it is most important to reduce the unceruncertainty in using the emulator instead of the global model
tainty in the model process parameters. is very small compared to the parametric uncertainty of the

Figure 10c shows the estimated CCN concentration andmodel itself. The number of model simulations required to

its 95 % confidence interval due to the uncertain parametergrain the emulator rises linearly with the number of parame-
through the vertical profile for the Pacific Ocean location. Inters. Thus, for a very large number of uncertain parameters
general, the CCN concentration decreases through the vertthe approach will become much more efficient (and compre-
cal profile as does its uncertainty. In Figdd CCN concen-  hensive in its coverage of parameter space) than widely used
tration can be seen to be most sensitive to the oxidation actifactorial designs.
vation diameter throughout the atmosphere. However, inter- The primary aim of this paper was to present and test the
actions between the model parameters become increasingiyiethod for carrying out a sensitivity analysis on a global
important in the free and upper troposphere. From abougerosol model. The next step is to include a more com-
4km upwards, only about 60% of the total variance is ex-prehensive study of the model parameters, including for ex-
plained by main effects. The interaction of the scavenging di-ample carbonaceous emissions, size distributions, bound-
ameter and the sea spray emission flux with other paramete®'y layer particle formation, secondary organic aerosols, all
dominate the mid-tropospheric CCN variance. The strongof which are thought to be important for CCN concentra-

interaction effects of these two parameters means that theffons Spracklen et al.2006 2008 Merikanto et al. 2009

exert an indirect control on CCN concentration in the remoteSpracklen et al.2011). In the next experiment more ef-

marine free troposphere. This interaction effect is plausiblefort will be taken to elicit parameter uncertainty distribu-

since nucleation is an important source of CCN in this parttions from experts rather than simply assigning uncertainty
of the atmosphereMerikanto et al, 2009, and the nucle- ranges. Another advantage of this approach is that the un-
ation rate is strongly affected by the surface area of existingeertainty distribution of the inputs can be changed in the em-
particles, which itself is affected by large sea spray particlesulator without more model runs, which is not possible with
and by the particles removed by precipitation. These interacthe Monte Carlo approach. It is also possible to investigate
tion effects could not be quantified using the traditional OAT further model diagnostics without any more experiments pro-
tests, thus the total effect of scavenging and sea spray on th¢ded the emulator is validated.

CCN uncertainty would be significantly underestimated. The results here show that the uncertainty in the CCN con-
centration due to the model parameters as measured by vari-
ance contributions is dependent on the location and altitude.

5 Discussion and future work Uncertainty in emissions dominates over the model parame-
ters close to emission sources, but process parameters domi-

We have presented a statistically rigorous but computationfate in the remote region we examined. For the 8 parameters
ally efficient approach to quantifying the parametric uncer-we examined, we also found that their main effects (diag-
tainty of a complex global aerosol model. The approach isnosed in one-at-a-time tests) dominated the overall variance
equally applicable to other models that require long compu-close to sources. However, in the remote location interac-
tation times. The combination of a good parameter samplingions between parameters become very important, meaning
design (here, Latin hypercube) and Gaussian process emuhat the overall model uncertainty would be underestimated
lation enables the results from a relatively small number ofin one-at-a-time tests.

model simulations to be used to perform a full variance-based Little has been discussed in this paper about the statisti-

sensitivity analysis, which would otherwise require many cal assumptions behind the Gaussian process emulator and

thousands of models runs in a Monte Carlo-type approachin particular how to deal with failure of the emulator valida-

Through variance decomposition the variance-based senstion. The work here was shown to be robust to the statistical

tivity analysis calculates the contribution of each uncertainassumptions by changing the assumptions and carrying out

parameter to the overall prediction uncertainty. However, thethe same sensitivity analysis with little change in the results.
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A more comprehensive study with additional model parame-unknown. The model parameters are definedkbgind are

ters may be more sensitive to the statistical assumptions. Imncertain. The GLOMAP model is some function of the pa-
particular, it might be expected that the parameter space leadameters that leads to an estimate of the CCN concentration
ing to unrealistic output will be larger and irregularly shaped defined byY = f(X). The GLOMAP modelf is unknown
(some combinations of parameter values might be unrealistiin the sense that it is so complicated the oufpig unknown
despite their marginal uncertainties being reasonable) requirntil the model is run on a computer. In this matexiakfers

ing a more sophisticated method of specifying the joint distri- to the values set for each of the 8 unknown parameters in any
bution of the input parameters. The emulation is still possiblesingle GLOMAP run so here is actually a vector of length 8.
with a more sophisticated joint distribution but the software Once GLOMAP has been run with inputswe have a real-

will need to be advanced to carry out the sensitivity analysisisation defined as = f(x) yielding model outpuy. In this

with this new joint distribution since in GEM-SA the joint papery is the monthly mean CCN concentration in a defined
distribution is a regular shape based on the marginal uncergrid cell.

tainty distributions. The basic idea is to remove the area of e unknown functiory is approximated byf using the

the parameter space that contains unrealistic parameter valye, ;ssian process emulator. The aim of the emulator is to

combinations. o _ _ produce an accurate approximation for the GLOMAP func-
A future direction is multivariate emulation which may be jon f using the minimum number of model runs. The sensi-

useful to help reduce prediction uncertainty in Fiiﬁerent as-fivity of the outputY to the uncertain input¥ is quantified

pects of aerosol modelling. It may be used to build an emulay,y, sensitivity analysis using the emulator. The emulator is

tor for multiple outputs to describe specific aspects of 9|°ba|required since the model is too CPU intensive to carry out

aerosol distribution determined by multiple model outputs, the number of runs needed to perform a full sensitivity anal-
or to describe the vertical or regional distribution of aerosolysiS using GLOMAP itself.

by allowing structure between model output in neighbouring Ei d ibe th licati fthe G .
grid boxes. Our current work has not allowed for structure Irst, we describe the application of the Gaussian process

between model outputs but we have instead built univariaté® produce an emulator for. .G.LOMAP a_nq then the use of the
emulators of individual model outputs. Given the nature Ofgmullator to carry out sensitivity analysis is shown. The work
the global aerosol model we would be in an ideal position to'N this Appendix is based oDakley and O’Haga(2004).

compare the univariate emulation study we have completed
so far with the multivariate emulation. Al The Gaussian process emulator
The next step in reducing the uncertainty in the global

model will be to compare the results more comprehensively_l_h G . lat d bability distri
to observation data, i.e. calibration. Calibration is used to € Laussian process emuiator produces a probability distri-

L . bution for the GLOMAP mode} as a function of the model
reduce the uncertainty in the model parameters and thus im- LT .
Y P arameters. The distribution is used to estimate CCN con-

prove knowledge about them. The study here shows Whlcrpentrations predicted by GLOMAP and quantify the uncer-

parameters efforts should be focussed on to improve the&® . .
model prediction of CCN concentration. The sensitive pa-talnty around this estimate. We used the GEM-SA software

rameters can be improved using lab experiments or observe{—Kenmady 2004) to build the emulator but it is important to

tions when available. The same methods described here Catg,rderstand the choices that can be made in the software and

be carried out by any modelling group to quantify the un- also its limitations.
certainty in a number of global aerosol models (though these The emulator is “built” by combining some runs of the
methods are not restricted to aerosol models). The sensitivenodel (the training data) and some beliefs about the model
processes can then be compared in the different models imPehaviour using the Bayesian paradigm. The key assump-
proving our understanding of, and perhaps reducing, modelion is that the model behaves smoothly so that each run of
diversity. The implications of the different model structures the model gives information about the model output at neigh-
on the model predictions will be better understood when thebouring parameter settings. The beliefs about the model be-
uncertainty of each model and its sources is quantified. haviour are formulated using the Gaussian process, the prior
distribution for f at given values at. The Gaussian process
is the functional analogue of the normal distribution so is

Appendix A described in terms of a mean function and a covariance func-

tion. The Gaussian process prior is updated with the training
Mathematical description of Gaussian process data to produce a posterior distribution, which is therefore
emulation a conditional Gaussian process (conditioned on the model

data). The mean function is used to estimate GLOMAP
The June 2000 CCN concentration in a single grid box isand the covariance function used to calculate the uncertainty
defined byY. In factY can be any model quantity of inter- around this mean function. The mean and covariance func-
est. A capital letter is used since the CCN concentration igion for the prior Gaussian process need to be specified.
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The mean function in the Gaussian process prior is given The GLOMAP modelis run to produce the 80 sets of train-

by ing data. The runs are designed using Latin hypercube sam-
; pling in 8 dimensions to ensure that the space of the joint
E{f(x)|B}=h(x)" B, (Al)  input uncertainty, defined by, is well represented. In this

. _ ) ) paper we are studying CCN concentration so the calculated
whereh(.) is a vector of regression functions with unknown j,ne 5000 CCN is taken from each run to define the training
coefficientsB. The mean function is expressed in terms of data{yr = f(x1),y2 = f(x2).... o= f(xg0)}. The Gaus-
the expectation (or expected value) since it is technically thesjay process is such that any subset of points on the function
population mean of a random variable and often estimated by, e gescribed by the joint multivariate normal distribution
the sample mean. Thgparameters are hyperparameters and, it the mean and covariance function specified as above.
thems_elves hgve a prior distribution, discussed below. ThEUsing this multivariate distribution for the training data the
mean is conditional of because these have to be calculatedy, yornarameters are calculated. When there is specific in-
in order to work out the prior mean function. In GEM-SAthe 5 ai0n about the model behaviour this can be included

vectorh(-) can represent a constant mean or a simple lineagy, ., ,gh more sophisticated specifications of the hyperparam-
regression function othhe inputs on outputy and hence  gerq-"in this work there is no specific information about the
h()=1or h(')_z (1,x7). For this paper bOth_ choices for hyperparameters and so they are calcuated using the training
the mean function were compared with little difference. The data via GEM-SA.

results shown in the paper used the simple linear regression The posterior Student t-process (the Gaussian process with

mean function. estimated variance) is a result of conditioning the prior Gaus-

The cpvariance fgnction specifies the covariance in thesian process on the training data. The posterior mean func-
output given any pair of parameter settingandx” and is  tionis

defined by . A
m*(x) =h(x)" B+t(x) A" (y—HB), (A4)
COV{f (x), f ()0 %} = oPc(x,x"), (A2)
and the posterior covariance function is
wherec(x,x’) is the correlation function and? is another "2 rx a2 , Tn—ler s T
hyperparameter. As witl, o2 is given a prior distribu- 0 ¢ X¥)"=6"(c(x,x) —t(x)" A7t (x") +(h(x)" (AS)
tion, discussed below. The correlation functiawx,x’) de-  —tx)"ATTH)HTATIH) ()T —t(x)TATIH)T),
creases as the distance betweeandx’ increases, is equal

to 1 whenx = x’ and ensures that the covariance matrix is where

positive semidefinite, i.e. invertible. The correlation function y7 — (£(x1), ... f(x,)), (A6)
usually takes one of a number of specified forms to ensure a
valid covariance function. In this paper the Gaussian correH” = (h(x1), ..., h(x,)), (A7)

lation form is used, defined by
, 1 clx1,x2) - clx1,xy,)
A _ . 4 .
cx,x")y=exp{—(x—x")' R(x —x")}, (A3) N c(ra.x1) 1 : ’8)
whereR is a diagonal matrix with elements digg) wherer; : -

is a hyperparameter describing the smoothness of the func- c(xn.,xl) 1
tion with respect to parameter
The hyperparameterg are given a multivariate normal  ¢(x)7 = (c(x,x1), ..., c(x,x,)), (A9)
distribution (a conjugate prior ensuring that the Gaussian
process remains the posterior distribution oficare inte- g=H"AH)"THTA 1y (A10)

grated out). The hyperparametef is given the inverse
gamma distribution. The prior distributions for the hyper- and
parameterg ando? are specified such that the joint distri- - yT (A" A-IHHTA-IH)"IHTA 1)y

bution of the two is the weak normal inverse gamma distribu-6 < = - (A11)

tion p(B,02) x o2 so that the prior variance for the function
f is infinite. The result is that no real information about In this experiment = 80 is the number of training runs and
GLOMAP is given by the prior distributions on the hyperpa- ¢ =9 is the number of coefficients in the mean function, i.e.
rameters so tha# ando2 are calculated using the training the number of parameters plus one. The derivation of the
data. The hyperparameterare also given weak prior distri- posterior formulae can be found @Hagan(1994).

butions (the weak uniform distribution) and calculated from  Any other pointx in the function can be estimated with a
the training data. The choice of prior distributions in this measure of uncertainty using the above formulae. The whole
study are standard uninformative priors for the hyperparamfunction and properties of it, such as the variance, can also
eters. be estimated from the above formulae for further inference.
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A2 Sensitivity analysis and other parameters. The first-order interaction sensitivities

are also calculated in GEM-SA using
In this work a probabilistic sensitivity analysis is carried

out. The term probabilistic implies that the uncertainty in Vi.j =VaE(Y|X; j)} = var{z; (X;) (A14)

the model parameters is described formally by a probability — +z; (X ;) +z; ;(X; j)}.

distribution. That is the uncertainty in the true parameter val- ) . ) o

uesX is described by some probability distributich The The higher order interactions follow similarly but are not cal-
uncertainty in¥ due toG(X) is quantified and in particular ~culated in GEM-SA. o

the sources of uncertainty ifi from the different elements When emulation is used to calculate the sensitivities we
of X (the different parameters) are identified. In practice the2'® In fact finding the expected sensitivitiés (V;) and
probability distributionG; of the different parameterx; is £ (Vri). This is done by integrating formulae based on
specified and then characterised by the joint distribugon ~ Eds- @4) and (AS5) over d|fferen't subsets of the parameters
In GEM-SA the parameter distributio are limited touni- ~ @nd is detailed irDakley and O Hagamfoo‘b- The uncer-
form or normal. Different distributions fo; can be used if ~ {@inty in the sensitivity measures (i.&*(V;)) are not cal-

the distribution can be transformed to uniform or normal butculated. With an accurate emulator the uncertainty in the
care must be taken in the interpretation of the results. Th€nsitivity measures is assumed to be small. N
emulator software has to be developed further if different 1he variance-based methods quantify the relative sensitiv-
probability distributions forG; are essential. The distribu- 1ty Of the model output’ to each of the uncertain parameters
tion G; of X; can be formally elicited from experts but in Xi but they do not give any indication of how the output
this paper the uniform distribution has been used given thdS actually responding to each of the input parameters. The

parameter ranges Bpracklen et a{20058 based on expert '€SPonse of the output to each inpu; is plotted in GEM-
advice. SA to visualise the effect of the individual parameters. The

There are two sets of sensitivity results used in this work.fI'st-order interaction can also be plotted. This is possible by
The main sensitivity results are the variance-based sensitivitfl€cOmPosing the outpytinto main effects and interactions
indices but the relat|on§h|p between fthe parameters and th;= fx)=EX)+2L 12 (e) + Dicjzi (%)) (A15)
output based on conditional expectations are plotted to help
interpret the effect on the output from each input and their tota12..p(),
interactions. The two sets of sensitivity results are describeqor , independent parameters. The main effect given the

here. above decomposition is
Using the variance to assess uncertainty in the presence
of independent model parameters means that variance de&:(x;) = E(Y|x;) — E(Y) (A16)

composition can be used to assess the relative importancaen d the first-order interaction is
of each model parameter and its interactio@®X, 1982

which 'is importgnt in idgntifying the major sources of uncer- z; ; = E(Y|x; ;) —zi(x;) —z;(x ;) — E(Y). (A17)
tainty in modelling studies. GEM-SA reports two measures ) )
of sensitivity for each parameter based on the variance: thd e values required to draw these plots are calculated using
main effect sensitivity and the total effect sensitiviajtelli  the emulator. _ . _

et al, 2000. GEM-SA uses variance decomposition to cal- The main effects and first-order interactions are calculated

culate the sensitivities as a percentage of the total variancd? GEM-SA by finding the conditional expectations of the

explained. outputY given each of the parameters and the subsets of each
Not considering the use of the emulator here, the main efPair of parameters. In general, the main effect of paranieter

fect variance is is calculated using the conditional expected valu& of

Vi=varnE(Y X} =vartz; (X)), A2 EWx = f®dG-ii(x-ilx), (A18)

the expected amount by which the uncertainty is reduced if "

the true value off; was learnt. The total effect variance is ~ and the unconditional expected valueyof

Vri =varY) —vadE(Y|X_)}, (A13) gy =/ @)dG. (A19)

the expected amount of uncertainty left after everything ex- X

cept forX; is learnt (i represents all parameters excgpt  That is the function (GLOMAP) is integrated over the joint
The sensitivities for each parameter are compared by dividdistribution of all other parametersi. Again, because we
ing these variances by the total variance of the outpgiv- are using the emulator, we are actually calculating the ex-
ing the main effect and total effect sensitiviti€s,and St;. pected values of the main effects and interactions instead.
The total effect sensitivity compared to the main effect sen-We therefore find the posterior conditional mean of the out-
sitivity is used to highlight interactions between parameter putY defined here a&*{E(Y|x,)} where E* denotes the
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