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Abstract
Background—Truncating mutations in ATM have been shown to increase the risk of breast
cancer but the effect of missense variants remains contentious.

Methods—We have genotyped five polymorphic (MAF 0.9% to 2.6%) missense single
nucleotide polymorphisms (SNPs) in ATM (S49C, S707P, F858L, P1054R, L1420F) in 26,101
breast cancer cases and 29,842 controls from 23 studies in the Breast Cancer Association
Consortium (BCAC).

Results—Combining data from all five SNPs, the OR was 1.05 for being a heterozygote for any
of the SNPs and 1.51 for being a rare homozygote for any of the SNPs with an overall trend
OR=1.06 (Ptrend=0.04). The trend OR among bilateral and familial cases was 1.12 (95% CI
1.02-1.23; Ptrend=0.02).

Conclusions—In this large combined analysis, these 5 missense ATM SNPs were associated
with a small increased risk of breast cancer, explaining an estimated 0.03% of the excess familial
risk of breast cancer.

Impact—Testing the combined effects of rare missense variants in known breast cancer genes in
large collaborative studies should clarify their overall contribution to breast cancer susceptibility.

INTRODUCTION
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar
ataxia, telangiectases, immune defects, radiosensitivity and a predisposition to malignancy
(MIM #208900). The gene that is mutated in A-T, ATM (MIM #607585), encodes a protein
kinase that plays a key role in cellular responses to DNA damage. The large majority of A-T
cases are known to harbour mutations in ATM leading to a truncated or absent protein.
Epidemiological studies of families of A-T patients have shown a two to fivefold increased
risk of breast cancer for female relatives who are obligate heterozygous carriers of an A-T
mutation (1, 2).

The increased risk of breast cancer in ATM mutation carriers has been confirmed by direct
analysis of ATM mutations in breast cancer cases compared to controls. In a study of British
familial breast cancer cases and controls, Renwick and colleagues identified nine mutations
that result in premature termination or exon-skipping among 443 strongly familial cases
(2.0%) compared to two in 551 controls (0.4%, P = 0.028) (3). They also found three cases
and no controls who carried one of two missense variants for which there is strong a priori
evidence of a pathogenic phenotype in individuals with A-T (V2424G or SV2855_2856RI).
Bernstein and colleagues identified seven heterozygotes for the V2424G missense variant
among 3,743 population-based breast cancer cases (0.2%) unselected for family history and
none among 1,268 controls (P = 0.1) (4). Based on the breast cancer history of first- and
second-degree relatives of carrier cases, the breast cancer risk to age 70 years for
heterozygotes was estimated to be 52% (95% CI: 28 - 80%; P <0.0001).

An association between other ATM variants, particularly amino acid substitutions that are
not expected to be associated with A-T, and breast cancer has also been hypothesised (5),
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but to date there has been little evidence to support this (6, 7). In a previous study we
genotyped nine missense variants in ATM in 473 bilateral breast cancer cases and 2,463
controls as part of a high-throughput screen of 1,037 non-synonymous single nucleotide
polymorphisms (nsSNPs) within candidate “cancer genes” (8). None of these variants was
common, with minor allele frequencies (MAFs) in controls ranging from <0.1% (0/4924
chromosomes) to 2.4% (116/4926 chromosomes). Although no single ATM missense
variant was significantly associated with breast cancer risk there was a significant trend in
risk with increasing numbers of variant ATM SNPs (odds ratio (OR) = 1.27, 95%CI: 1.04 -
1.56; Ptrend= 0.02). We selected the 4 variants with MAF>1% (S707P (rs4986761), F858L
(rs1800056), P1054R (rs1800057) and L1420F (rs1800058)) for further analysis in 26,101
invasive breast cancer cases and 29,842 controls in 23 studies within the Breast Cancer
Association Consortium (BCAC). We also included a fifth variant (S49C (rs1800054)) with
MAF 1.2% which was not genotyped in our previous analysis (8) but for which there had
been some prior evidence of an association with breast cancer risk (OR = 1.13, 95% CI 0.99
- 1.30 P = 0.08) in an earlier BCAC analysis (9) that included a subset of the current studies.

MATERIALS AND METHODS
Study populations and genotyping

Table 1s (supplementary online) summarises study details and genotyping platform for all
studies that contributed data. Genotyping was performed by 5′ nuclease assay (Taqman®),
Sequenom iPLEX or Illumina Golden Gate technology. Taqman genotyping reagents were
designed by Applied Biosystems as Assays-by-DesignSM and distributed by the University
of Cambridge group to each of the centres that used this technology. Genotyping was
performed using the ABI PRISM 7900HT or 7500 Sequence Detection Systems according
to manufacturer’s instructions. For five studies, SNPs were genotyped using matrix assisted
laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) for the
determination of allele-specific primer extension products using Sequenom's MassARRAY
system and iPLEX technology (Sequenom, San Diego, CA, USA). The design of
oligonucleotides was carried out according to the guidelines of Sequenom and performed
using MassARRAY Assay Design software (version 1.0). In one study SNPs were
genotyped using customised Illumina Sentrix Bead Arrays according to manufacturers
instructions.

Quality control criteria
We applied BCAC standard quality control (QC) guidelines (http://www.srl.cam.ac.uk/
consortia/bcac/). In addition, we imposed a threshold of 99% for the call rate (compared
with the standard threshold of 95%) and we excluded SNPs from studies where cluster plots,
scored from 1 (poor) to 4 (good), scored by a single reader blinded to identifiers scored 2 or
less. These more stringent thresholds were imposed because the minor alleles of these SNPs
are rare, and therefore more susceptible to differential calling between cases and controls.
S49C was not genotyped by 3 studies and data were excluded from analyses for QC criteria
for 3 studies. S707P was not genotyped by 2 studies and data were excluded from analyses
for QC criteria for 8 studies. F858L was genotyped by all studies; data were excluded from
analyses for QC criteria for 1 study. P1054R was genotyped by all studies and data were
excluded from analyses for QC criteria for 3 studies. L1420F was not genotyped by 2
studies and data were excluded from analyses for QC criteria for 8 studies. Full details of
studies that contributed data for each SNP, numbers of cases and controls genotyped by each
study and genotypes of cases and controls for each SNP are given in supplementary tables 1s
and 2s online.
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Statistical methods
The OR for each SNP and for being a carrier or rare homozygote for any SNP was tested
using logistic regression with “study” as a stratifying covariate. To maximise the amount of
data included in the analysis, SNPs that were not genotyped by a study or were excluded for
QC criteria were coded as 0 for all subjects for the analysis of being a carrier or rare
homozygote for any SNP. The effect of this will be to bias our OR estimate, marginally,
towards the null.

LD metrics between SNPs (r2 and D′, supplementary table 3s) were computed separately for
each study using the Tagzilla module as implemented in GLU version 1.0a6. rs1800056
(F858L) and rs1800057 (P1054R) are correlated (r2=0.38 – 0.71; supplementary table 3s),
otherwise these rare SNPs are independent of each other (r2<0.001). Maximum likelihood
estimates of haplotype frequencies for the four alleles defined by F858L and P1054R
(namely F858+P1054, F858+1054R, 858L+1054R, and 858L+P1054) were estimated in
cases and controls separately and in each of the studies separately using HaploStats (http://
mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm); supplementary table 3s).
ORs for F858+1054R, 858L+1054R and 858L+P1054 versus the common allele F858+
P1054 were estimated using unconditional logistic regression weighted for the phase
assignment probability and with study as a stratifying covariate.

Statistical analyses were performed using STATA version 10 (State College, Texas, US).
All P values reported are two-sided. Meta analyses (Figure 1) were carried out using the
Metan routine within STATA, using inverse variance weighting of the study specific
estimates. Cochran's Q statistic and the I2 statistic (10) to quantify the proportion of the total
variation due to heterogeneity between studies were calculated.

Results
The distribution of genotypes in cases and controls in each study for each ATM SNP is
shown in table 2s (supplementary online). Subjects reporting ethnicities other than
Caucasian were excluded (table 2s, footnote). The MAFs for each of the five SNPs
genotyped in this analysis differed significantly (P<0.007, footnote table 1s) between the 22
studies of Caucasian subjects; medians (and ranges) were: S49C 1.2% (0.2%-1.7%), S707P
0.9% (0.6%-1.6%), F858L 1.5% (0.2%-2.4%), P1054R 2.6% (0.6%-3.7%) and L1420F
1.6% (0.2%-2.7%). In the one study in which the majority of subjects were of Asian
ethnicity (SEBCS) three SNPs were monomorphic (S49C, S707P and F858L) and for the
other two SNPs (P1054R and L1420F) there was only one carrier among 872 control
subjects.

In the combined analysis across studies, the point estimates for each of the heterozygote
ORs were above 1.0 and the estimates of the homozygote ORs were higher (table 1). The
only significantly elevated OR was for L1420F homozygotes (OR=5.31, 95%CI
1.35-20.87). Two SNPs F858L (rs1800056) and P1054R (rs1800057) are correlated (r2 0.38
to 0.71 across studies, supplementary table 3s). The G allele of rs1800057 (1054R) is more
common than the C allele of rs1800056 (858L; table 1s) thus the rare C allele of rs1800056
(858L) is almost completely contained on the rare G allele of rs1800057 (1054R) such that
there are 3 main haplotypes for these two allelic variants (F858_P1054, F858_1054R and
858L_1054R) and one extremely rare haplotype (858L_P1054, supplementary table 3s). The
trend OR estimates for each of the two haplotypes that carried the rare (C) allele of
rs1800056 (858L_1054R and 858L_P1054) compared to the most common haplotype
(F858_P1054) were 1.05 (95% CI; 0.95-1.16, P=0.47) and 1.12 (95% CI; 0.61 – 2.05,
P=0.71) respectively. The OR estimate for the haplotype that carried the rare (G) allele of
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rs1800057 with the common T allele of rs1800056 (F858_1054R) was 0.97 (95% CI;
0.86-1.10, P=0.65).

Combining data from all five SNPs, the OR was 1.05 for being a heterozygote for any of the
SNPs and 1.51 for being a rare homozygote for any of the SNPs (Ptrend=0.04), with an
overall ORtrend of 1.06 (table 1) and no evidence of heterogeneity between studies (figure
1a, Cochrane Q=21.5 21df, P=0.43, I2=2.4%). Restricting the analysis to bilateral cases and
those with a family history of breast cancer the overall ORtrend was stronger (ORtrend=1.12,
Ptrend=0.02, table 1) with no evidence of heterogeneity between studies (figure 1b, Cochrane
Q=15.5 18df, P=0.62, I2=0%)

Discussion
Based on Swift's demonstration that carrier status for recessively inherited A-T is associated
with a three-fold increase in risk of female breast cancer (1) and the more recent molecular
validation of this observation (3) it is arguable that there is a high prior likelihood that a
subset of polymorphic (MAF>1%) missense ATM variants will be associated with a modest
increase in breast cancer risk. In our previous analysis of the combined effects of nine
missense ATM variants (MAF <0.1% -2.4%) we demonstrated that on average, each
missense ATM SNP was associated with an OR of 1.27 (95%CI: 1.04-1.56) in bilateral
breast cancer cases, implying an OR of 1.13 (95% CI: 1.02–1.25) for cases with a single
primary breast cancer (11, 12).

We selected five SNPs for further investigation. Despite restricting our follow-up analysis to
SNPs with MAFs estimated to be ≥1% we did not have power to estimate individual effects
for these SNPs or the effects of individual haplotypes. The aim of this present analysis was,
therefore, to test the composite hypothesis that rare polymorphic ATM variants are, on
average, associated with an increased risk of breast cancer. The five SNPs we genotyped in
this analysis had a combined carrier frequency of ~12.5%; by genotyping 20,000 cases and
20,000 controls we had 90% power at 1% significance to detect an OR of 1.10.

Our OR estimate of 1.06 (95% CI 1.00-1.12) provides independent evidence that
polymorphic missense variants in ATM are associated with a very modest increase in breast
cancer risk, albeit at a nominal level of statistical significance (P=0.04). The stronger OR
estimate for bilateral cases and cases with a family history of breast cancer (OR=1.12, 95%
CI; 1.02-1.23, P=0.02) provides additional support.

We identified four previous studies (13-16) in which at least 100 Caucasian breast cancer
cases and 100 Caucasian controls were genotyped and for which individual effect sizes for
S49C (rs1800054), S707P (rs4986761), F858L (rs1800056), P1054R (rs1800057) or
L1420F (rs1800058) were reported (table 2); we also obtained data for all five variants from
the Wellcome Trust Case Control Consortium analysis (Table 2, (17)). For three of these
(13, 14, 16), the case control series overlap with the current analysis; the other two (15, 17)
do not support an association but are entirely consistent with a per SNP OR of 1.06. A recent
analysis of rare (MAF<1%), evolutionarily unlikely missense substitutions in ATM (18)
reported a per SNP OR estimate of 1.14 (0.90-1.44, P=0.39) for the combined effects of 121
variants in 1,948 cases and 1,852 controls. We also identified two studies that compared the
frequency of ATM variants in bilateral breast cancer cases versus unilateral breast cancer
cases. One (19) reported no difference in the frequency of missense variants between
bilateral cases and unilateral cases overall but a longer median time to developing a second
cancer in carriers of a missense variant who also received radiotherapy. In the other (20), a
study of gene-environment interactions (WECARE study) in which bilateral cases were
counter-matched to unilateral “controls” on the basis of exposure to radiotherapy, rare

Fletcher et al. Page 6

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(MAF<1%) A-T associated variants and those that were classified as deleterious according
to the prediction algorithm SIFT (21) were associated with a non-significantly increased risk
of a second breast cancer while those that were classified as tolerated and several of the
more common missense variants were associated with a protective effect. For the linked
variants F858L and P1054R, this was statistically significant (OR=0.5, 95% CI 0.3-1.0 and
OR=0.5, 95% CI: 0.3-0.9 for F858L and P1054R respectively) raising the possibility of an
interaction between radiotherapy and a subset of ATM variants.

It is not yet clear whether polymorphic (MAF>1%) missense variants in ATM and other
validated breast cancer genes could make a contribution to explaining the excess familial
risk of breast cancer. With a combined carrier frequency of 12.6% in Caucasian controls and
an estimated average OR of 1.06, these five ATM variants explain 0.03% of excess familial
risk of breast cancer, compared to between 0.07% and 1.7% explained by each of the
common variants identified in recent GWA studies (7, 22-27). Rare SNPs (MAF≤5%),
however, account for a relatively large proportion of genetic variation (28); there are 83 rare
missense SNPs in ATM listed in dbSNP (including the five genotyped in this study) and
large numbers in other breast cancer genes. (29-32).

Testing the combined effects of rare missense variants in known breast cancer genes in large
collaborative studies should, eventually, clarify their overall contribution to breast cancer
susceptibility. Gutierrez-Enriquez et al (33) compared radiosensitivity of lymphoblastoid
cell lines (LCLs) from breast cancer cases who were carriers of one or more rare allele(s) of
S707P, F858L, P1054R and L1420F to LCLs from healthy controls. They demonstrated
increased radiosensitivity in the LCLs from the breast cancer cases compared to controls
generally, and specifically for the six LCLs from patients with at least one copy of the 858L
+ 1054R haplotype. Incorporating information from such functional assays and from next-
generation in silico prediction algorithms may help to identify a subset that are most likely
to be predictive of risk (34-36).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Trend OR estimates for S49C, S707P, F858L, P1054R and L1420F combined by study
in (a) all cases and all controls and (b) bilateral cases and cases with a family history of breast
cancer and all controls
ORs and Ptrends were calculated coding individuals who were common homozygotes for all
genotyped SNPs as 0, individuals who were heterozygous for any rare variant as 1 and
individuals who were rare homozygotes as 2 (statistical methods). Horizontal lines represent
95% CIs. The diamond represents the combined, fixed-effects estimate of the OR and 95%
CI. The vertical line indicates the null effect (OR = 1.0).

Fletcher et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fletcher et al. Page 12

Ta
bl

e 
1

Su
m

m
ar

y 
he

te
ro

zy
go

te
, h

om
oz

yg
ot

e 
an

d 
tr

en
d 

od
ds

 r
at

io
s 

fo
r 

S4
9C

, S
70

7P
, F

85
8L

, P
10

54
R

 a
nd

 L
14

20
F

SN
P

M
A

F
 1

 (
ra

ng
e)

N
ca

se
s

N
co

nt
ro

ls

H
et

er
oz

yg
ot

e 
O

R
(9

5%
 C

I)
H

om
oz

yg
ot

e 
O

R
(9

5%
 C

I)
T

re
nd

 O
R

(9
5%

 C
I)

S4
9C

1.
2 

(0
.2

, 1
.7

)
22

,0
11

25
,8

65
1.

08
(0

.9
5 

– 
1.

22
)

1.
44

(0
.3

9 
– 

5.
32

)
1.

08
(0

.9
6 

– 
1.

22
)

S7
07

P
0.

9 
(0

.6
, 1

.6
)

17
,0

68
22

,3
30

1.
1

(0
.9

6 
– 

1.
26

)
5.

56
(0

.5
8 

– 
53

.0
2)

1.
12

(0
.9

7 
– 

1.
28

)

F
85

8L
1.

5 
(0

.2
, 2

.4
)

26
,4

55
29

,7
85

1.
03

(0
.9

3 
– 

1.
14

)
1.

58
(0

.6
2 

– 
4.

05
)

1.
04

(0
.9

4 
– 

1.
15

)

P
10

54
R

2.
6 

(0
.6

, 3
.7

)
24

,1
91

27
,0

48
1.

01
(0

.9
3 

– 
1.

10
)

1.
04

(0
.5

7 
– 

1.
89

)
1.

01
(0

.9
4 

– 
1.

10
)

L
14

20
F

1.
6 

(0
.2

, 2
.7

)
18

,6
07

22
,5

65
1.

05
(0

.9
5 

– 
1.

17
)

5.
31

(1
.3

5 
– 

20
.8

7)
1.

07
(0

.9
7 

– 
1.

20
)

F
85

8L
 P

10
54

R
 h

ap
lo

ty
pe

 2

85
8L

+1
05

4R
1.

5 
(0

.2
, 2

.4
)

24
,1

91
27

,0
48

1.
04

(0
.9

4 
- 

1.
16

)
1.

67
(0

.5
9 

- 
4.

73
)

1.
05

(0
.9

5 
- 

1.
16

)

F
85

8+
10

54
R

1.
1 

(0
.4

, 1
.9

)
24

,1
91

27
,0

48
0.

98
(0

.8
7 

- 
1.

10
)

0.
72

(0
.2

1 
- 

2.
46

)
0.

97
(0

.8
6 

- 
1.

10
)

85
8L

+P
10

54
0.

1 
(0

.0
4,

 0
.2

)
24

,1
91

27
,0

48
1.

06
(0

.5
3 

- 
2.

12
)

1.
93

(0
.2

2 
- 

16
.6

7)
1.

12
(0

.6
1 

- 
2.

05
)

A
ny

 S
N

P

A
ll 

ca
se

s
6.

3 
3

26
,1

01
29

,8
42

1.
05

 4
(0

.9
9 

– 
1.

11
)

1.
51

 5
(0

.9
5 

– 
2.

41
)

1.
06

(1
.0

0 
– 

1.
12

)

P
tr

en
d 

=0
.0

4

B
ila

te
ra

l &
 f

am
ili

al
ca

se
s

5,
75

0
29

,8
42

1.
12

(1
.0

2 
– 

1.
23

)
1.

22
(0

.5
5 

– 
2.

72
)

1.
12

(1
.0

2 
– 

1.
23

)

P
tr

en
d 

=0
.0

2

C
I;

 c
on

fi
de

nc
e 

in
te

rv
al

, M
A

F;
 m

in
or

 a
lle

le
 f

re
qu

en
cy

 in
 c

on
tr

ol
s 

ex
pr

es
se

d 
as

 a
 p

er
ce

nt
ag

e,
 O

R
; o

dd
s 

ra
tio

, N
/A

; N
ot

 a
va

ila
bl

e

1 M
ed

ia
n 

an
d 

ra
ng

e

2 th
e 

O
R

 f
or

 b
ei

ng
 a

 c
om

po
un

d 
he

te
ro

zy
go

te
 w

as
 1

.0
4 

(0
.9

4 
- 

1.
15

).
 D

ue
 to

 th
e 

co
rr

el
at

io
n 

be
tw

ee
n 

F8
58

L
 a

nd
 P

10
54

R
, h

ow
ev

er
, 1

58
7/

16
90

 (
93

.9
%

) 
of

 c
om

po
un

d 
he

te
ro

zy
go

te
s 

w
er

e 
ca

rr
ie

rs
 o

f 
th

e 
85

8L
10

54
R

 h
ap

lo
ty

pe
.

3 T
o 

ca
lc

ul
at

e 
th

e 
co

m
bi

ne
d 

M
A

F 
w

e 
as

su
m

ed
 a

ll 
ca

rr
ie

rs
 o

f 
th

e 
ra

re
 a

lle
le

 o
f 

F8
58

L
 a

ls
o 

ca
rr

ie
d 

th
e 

ra
re

 a
lle

le
 o

f 
P1

05
4R

 a
nd

 in
de

pe
nd

en
ce

 b
et

w
ee

n 
th

e 
ot

he
r 

SN
Ps

4 H
et

er
oz

yg
ot

e 
fo

r 
an

y 
of

 th
e 

fi
ve

 S
N

Ps

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 March 01.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fletcher et al. Page 13
5 R

ar
e 

ho
m

oz
yg

ot
e 

fo
r 

an
y 

of
 th

e 
fi

ve
 S

N
Ps

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 March 01.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fletcher et al. Page 14

Ta
bl

e 
2

Su
m

m
ar

y 
of

 p
re

vi
ou

sl
y 

pu
bl

is
he

d 
an

d 
pu

bl
ic

ly
 a

cc
es

si
bl

e 
da

ta
 o

n 
S4

9C
, S

70
7P

, F
85

8L
, P

10
54

R
, L

14
20

F

St
ud

y 
(r

ef
er

en
ce

)
D

or
k 

(1
3)

Sp
ur

dl
e 

(1
4)

B
re

ts
ky

 (
15

)
St

re
dr

ic
k 

(U
SR

T
) 

(1
6)

St
re

dr
ic

k 
(P

ol
an

d)
 (

16
)

W
T

C
C

 (
17

)

N
os

 c
as

es
/c

on
tr

ol
s

10
00

/5
00

14
53

/7
93

11
0/

11
0

85
6/

10
42

19
78

/2
28

6
10

45
/1

47
6

S4
9C

—
—

—
1.

60
 (

0.
88

 –
 2

.9
0)

1.
87

 (
1.

14
 –

 3
.1

1)
1.

26
 (

0.
81

 –
 1

.9
6)

S7
07

P
2.

4 
(1

.0
 –

 5
.6

)
1.

08
 (

0.
59

 –
 1

.9
7)

0.
66

 (
0.

05
 –

 5
.9

0)
0.

47
 (

0.
23

 –
 0

.9
3)

1.
25

 (
0.

80
 –

 1
.9

4)
0.

90
 (

0.
55

 –
 1

.4
6)

F
85

8L
1.

4 
(0

.7
 –

 2
.7

)
—

2.
02

 (
0.

10
 –

 1
20

.1
5)

2.
03

 (
1.

05
 –

 3
.9

0)
1.

12
 (

0.
67

 –
 1

.8
6)

0.
66

 (
0.

40
 –

 1
.1

0)

P
10

54
R

1.
4 

(0
.8

 –
 2

.2
)

1.
35

 (
0.

85
 –

 1
.9

8)
0.

83
 (

0.
19

 –
 3

.3
6)

—
—

0.
84

 (
0.

58
 –

 1
.2

2)

L
14

20
F

1.
5 

(0
.9

 –
 2

.7
)

—
0.

66
 (

0.
05

 –
 5

.9
0)

—
—

0.
93

 (
0.

63
 –

 1
.3

5)

C
om

bi
ne

d
1.

56
 (

1.
11

 –
 2

.2
0)

1.
25

 (
0.

89
 –

 1
.7

7)
0.

75
 (

0.
25

 –
 2

.2
5)

1.
22

 (
0.

84
 –

 1
.7

7)
1.

37
 (

1.
04

 –
 1

.8
1)

0.
96

 (
0.

78
 –

 1
.1

8)

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 March 01.


