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Modeling Spatial Variability with One and
Multidimensional Continuous-Lag Markov Chains’

Steven F. Carle’” and Graham E. Fogg®*

The continuous-lag Markov chain provides a conceptually simple, mathematically compact, and
theoretically powerful model of spatial variability for categorical variables. Markov chains have a
long-standing record of applicability to one-dimensional (1-D) geologic data, but 2- and 3-D ap-
plications are rare. Theoretically, a multidimensional Markov chain may assume that 1-D Markov
chains characterize spatial variability in all directions. Given that a 1-D continuous Markov chain
can be described concisely by a transition rate matrix, this paper develops 3-D continuous-lag
Markov chain models by interpolating transition rate matrices established for three principal di-
rections, say strike, dip, and vertical. The transition rate matrix for each principal direction can
be developed directly from data or indirectly by conceptual approaches. Application of Sylvester’s
theorem facilitates establishment of the transition rate matrix, as well as calculation of transition
probabilities. The resulting 3-D conti) -lag Markov chain models then can be applied to geo-
statistical estimation and simul techniques, such as indicator cokriging, disjunctive kriging,
Lo .

sequential indicator simulation, and ling.

KEY WORDS: cokriging, indicator geostatistics, stochastic simulation, transition probability.

BACKGROUND

Markov chains provide a conceptually simple and mathematically compact, yet
theoretically powerful, stochastic model for categorical variables such as geo-
logic units. Conceptually, the one-dimensional (1-D) Markov chain model ap-
plied to time series assumes that the future depends entirely upon the present
and not the past. With lag replacing time for spatial applications, a 1-D Markov
chain model of spatial variability assumes that a local occurrence of a category
depends entirely upon the nearest occurrence of another (or the same) category,
independent of more distant occurrences. Mathematically, a continuous Markov
chain is a transition probability model described by a matrix exponential function
(Krumbein, 1968; Agterberg, 1974, p. 457), which provides a solution to first-
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order stochastic (Kolmogorov) differential equations (Agterberg, 1974, p. 454-
458; Ross, 1993, p. 290). In geological applications, Markov chains can be
used to characterize not only random-looking patterns of spatial variability, but
also relatively structured patterns involving asymmetry and cyclicity (Gingerich,
1969; Schwarzacher, 1969; Agterberg, 1974, p. 409). Theoretically, Markov
chain models can be extended to 2- or 3-D spatial applica-{ions by assuming that
a 1-D Markov chain characterizes spatial variability in any direction (Switzer,
1965; Lin and Harbaugh, 1984; Politis, 1994).

The usefulness of Markov chain models in geology, primarily to vertical
lithologic successions, has been demonstrated convincingly for 1-D applications
to quantitative interpretation and stochastic simulation, starting with the pioneer-
ing work of Vistelius (1949) followed by many other works including Carr and
others (1966), Krumbein (1967), Potter and Blakely (1967), Krumbein (1968),
Krumbein and Dacey (1969), Gingerich (1969), Schwarzacher (1969), Dacey
and Krumbein (1970), Doveton (1971), Miall (1973), Ethier (1975), Miall
(1982), Lin and Harbaugh (1984), Moss (1990), and Rolke (1991). Most of
these works applied embedded Markov chains, which model successive occur-
rences of embedded objects, such as individual strata, independently of length.
Of the remaining works, most have applied discrete-lag Markov chains, which
model successive occurrences at fixed length intervals with a transition proba-
bility matrix. This paper, however, considers continuous-lag Markov chains
only, which mathematically encompass discrete-lag Markov chains (Agterberg,
1974, p. 457). For purposes of stochastic simulation, continuous-lag and embed-
ded Markov chain approaches may produce similar results, but continuous-lag
Markov chains provide a more compact model of spatial variability (Harbaugh
and Bonham-Carter, 1970, p. 140-149).

The suitability of the Markov chain models to 1-D geologic applications
hints at potential 2- and 3-D applicability to modeling of petroleum reservoirs,
aquifer systems, rock fabrics, and mineralization patterns (Doveton, 1994). Al-
though Krumbein (1968), Lin and Harbaugh (1984), and Moss (1990) have
applied Markov chain models to 2- and 3-D stochastic simulation techniques,

from a mathematical standpoint, these approaches have not exploited the full

potential of the multidimensional Markov chain model. A multidimensional
Markov chain may include direction-dependent patterns of spatial variability
that consider not only elongation of individual categories, but also juxtaposi-
tional relationships between categories. Methods for developing direction-de-
pendent multidimensional Markov chain models have not previously emerged.

Most applications of Markov chains in geology have relied on continuous
logs, a mapped stratigraphic section, or digitized patterns. In practice, exhaus-
tive 2- or 3-D data are typically unavailable. ‘‘Hard’’ data, such as cores or
even geophysical logs, usually are too sparse to firmly establish a model of
spatial variability for nonvertical directions. Incorporation of geologic interpre-
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tation may be essential to development of a geologically plausible and realistic
3-D model of spatial variability. The theoretical and conceptual simplicity of a
Markov chain model provides a framework for translating subjective or semi-
quantitative interpretations into a quantitative model of spatial variability. Con-
cepts such as mean length, juxtapositional tendencies, (a)symmetry, and cy-
clicity (Schwarzacher, 1969) are incorporated readily into the parameters of a
Markov chain model. Thus, a Markov chain model can prove useful in geology
not only as an empirical model, but also as tool for quantifying a conceptual
model (Vistelius, 1967; Krumbein, 1968; and Moss 1990).

Since the 1970s, however, the application of Markov chain models to
geology has waned, mainly because of an absence of demonstrated applicability
to 3-D problems. Attention has been shifted away from Markov theory to other
geostatistical approaches that address the practical needs for grid geometry and
data conditioning in 2- and 3-D estimation and stochastic simulation (e.g.,
Deutsch and Journel, 1992). Alternatively, indicator geostatistics can be imple-
mented with the transition probability in lieu of the indicator (cross-)variogram
(Carle and Fogg, 1996). Corresponding indicator Cross-variogram, Cross-co-
variance, or cross-correlation models can be derived easily from the transition
probability. Thus, the 2- or 3-D continuous Markov chain could potentially
become a useful and theoretically significant ““coregionalization’’ model that
intrinsically maintains consistency with probability laws (Ross, 1993, p. 137).
Markov chain models could be used in geostatistical applications where consid-
eration of significant spatial cross-correlations or asymmetric juxtapositional
patterns, such as fining-upward tendencies (Allen, 1970b), is important. Markov
chain models also could be applied to disjunctive kriging, which is theoretically
equivalent to indicator cokriging (Rivoirard, 1994, p. 19). Furthermore, Markov
chain models can be implemented in the simulated annealing algorithm for
conditional simulation by incorporating the transition probability in the objective
function (Deutsch and Journel, 1992, p- 159).

This paper presents methods for developing 1-, 2-, or 3-D continuous-lag
Markov chain models, with emphasis on geostatistical applications. The 2- and
3-]? Markov chain models will assume that continuous 1-D Markov chain prop-
erties exist in all directions (Switzer, 1965; Lin and Harbaugh, 1984; Politis,
1994). Thus, the development of multidimensional continuous Markov chain
models relies strongly on 1-D continuous-lag Markov chain theory.

1-D CONTINUOUS-LAG MARKOV CHAINS

(;onsider a 1-D categorical dataset (e.g., lithologies in a vertical strati-
graphic sequence) for which the spatial variability is assumed to be characterized
by a second-order stationary model of univariate (e.g., proportions) and bivariate
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(e.g., joint probability, indicator cross-covariance, transition probability) spatial
statistics. The spatial variability in one direction, say ¢, may be described by
a 1-D transition probability matrix T(h,)

t(hy) - tiglhy)
Thy) =| : .
tri(hg) - txx(hy)

which depends on a positive lag separation distance &, but not location x. The
entries ;(h,) denote conditional probabilities defined as

ti(hy) = Pr {(category k occurs at x + h,)|(category j occurs at x)}

where j, k = 1, ..., K denote mutually exclusive, exhaustively defined cate-
gories such as geologic units. The continuous-lag Markov chain model assumes
that

T(hy) = exp (Ryhy) 1)

where R, is a transition rate matrix (Krumbein, 1968)

e °°° Tke
R, =

k¢~ TkK.¢

with entries r; , denoting conditional rates of change per unit length from
category j to category k in the direction ¢. Entries in T(h,) for the continuous-
lag Markov chain model satisfy the Chapman-Kolmogorov relation

K
Galhig + hg) = 2 Gl tilhag) Vi K @

for any two lags h; 4 and h, 4 positive in the direction ¢ (Agterberg, 1974, p.
420; Ross, 1993, p. 266).

Although the continuous-lag Markov chain model is expressed simply and
compactly in its matrix exponential form (1), the structure of each transition
probability entry #;(h,) consists of a linear combination of exponential functions,
some of which may have complex rate coefficients indicating cyclicity. As a
result, the continuous-lag Markov chain potentially can model rather compli-
cated nonexponential-looking structures.
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Theoretical Significance

Markov chain models are significant in the context of stochastic theory.
Assuming stationarity, the continuous-lag Markov chain model (1) applied in
the direction ¢ is the solution to the Kolmogorov forward differential equation

F K
o 1) = D Gy N, k ®
b m=1
or Kolmogorov backward differential equation
F K
o 1) = X itV k @
b m=1

Agterberg (1974, p. 454). These first-order stochastic differential Equations (3)
and (4) reiterate that outcomes of a Markov chain model (1) in a direction ¢
depend entirely on the transition rates r; . As a ‘‘first-order model’* that con-
ceptually assumes outcomes depend entirely on the closest datum, the Markov
chain theoretically, is the most simple stochastic model of spatial variability for
categorical variables.

Whether a first-order model is appropriate or adequate for a given appli-
cation remains to be judged by the practitioner. It is possible to develop higher
order Markov chains (Schwarzacher, 1969), but the resulting practical benefits
may not justify the added complication, which is beyond the scope of this paper.
Nonetheless, the proven applicability of first-order Markov chain models to
many geologic patterns suggests that 2- or 3-D Markov chain models could be
useful in geostatistical applications. Furthermore, the conceptual simplicity of
the Markov chain is appealing for many practical situations where data sparse-
ness might not support a theoretically more complicated model of spatial vari-
ability.

Comparison to Discrete-Lag Markov Chain Models

One-dimensional Markov chain models usually are implemented in the
discrete form in terms of a transition probability matrix T(Ah,) for a fixed lag
interval Ah,. The magnitude of Ahy, may depend rather arbitrarily on a sampling

interval or data spacing. Entries in T(iAhy) fori = 1,2, ..., o are calculated
by successive application of the Chapman-Kolmogorov relation (2)
K
tidhy) = 2 Ll — D) Ahy)t,u(Ahy) V), k (%)

m=1

(Ross, 1993, p. 140).
The main advantages of the continuous-lag Markov chain (1) over the




896 Carle and Fogg

discrete approach of (5) are continuity in functional representation of the model
and independence from the issue of choosing a sampling interval Ahy (Rolke,
1991). A discrete-lag Markov chain model can be reexpressed as a continuous-
lag Markov chain (1) by computing the transition rate matrix R, from

_ In [T(ahy)]

R, an,

©)
which enables computation of the entries #;(h,) continuously for lag hy by (1),
not just for lag multiples of Ak as in (5). Note that if a pattern is characterized
by a Markov chain, Equation (6) will yield the same (or similar) transition rate
matrix Ry, regardless of the selected Ah,. Thus, the continuous-lag Markov
chain provides a more general and rigorously defined model as compared to the
discrete form.

For example, Figure 1 shows vertical (z)-direction transition probabilities
(circles) obtained at a sampling interval of Ah, = 0.30 m for four types of

Transition Probability
Vertical (z) Direction

debris flow floodplain  levee channel

|

T

}
|

floodplain debris flow

levee
il =

- 10 . - — —
w ] ] 3
H ] ] ]
3 05 3 - e
-~ 4 o~ p
L*) e <4
0.0 Jrrpery
0

Lag (m)
Figure 1. Transition probabilities for vertical (z) direction
(dots) and Markov chain models based on T(Ah, = 0.3 m)
and T(Ah, = 0.9 m) shown by dashed and solid lines,
respectively.
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unconsolidated alluvial sediments categorized by lithofacies

1 = debris flow (7%)
2 = floodplain (56%)
3 = levee (19%)

4 = channel (18%)

a -

I

as interpreted from cores, textural descriptions, and geophysical logs obtained
from vertical boreholes drilled at the Lawrence Livermore National Laboratory,
Livermore, California (Qualheim, 1988; Noyes, 1990; Carle 1996), with ob-
served proportions given in percent (%). Two continuous-lag Markov chain
models were developed by applying (6) to transition probabilities at different
lag intervals Ak, one for T(Ah, = 0.30 m) shown by dashed line, the other for
T(Ah, = 0.90 m) shown by the solid line. Both models provide a similar fit to
the transition probabilities, although the solid line provides a slightly better
overall fit. In typical applications of discrete-lag Markov chains using (5), the
transition probabilities for the sampling interval Ah, = 0.30 m would, by de-
fault, define the Markov chain model, without regard to fitting of the transition
probabilities at larger lags. The larger lag transition probabilities, such as T(Ah,
= 0.90 m) in this example, would yield an undesirably coarsely spaced model
in the discrete approach (5). The continuous approach (6) provides flexibility to
establish the Markov chain from transition probabilities at different magnitudes
of Ah,, while maintaining continuity in the functional representation of the
model.

PROPERTIES OF MARKOV CHAINS

Transition Probabilities and Proportions

Consider a region D with K mutually exclusive categories. Each category
k will occupy a certain volume fraction or proportion p; in D. According to
probability theory, the proportions p, obey

K
2= 1 ®)
and the row sums of T(k,) obey

K
Z ) =1 V) V)
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and the column sums of T(k,) obey

K
2 pituthe) = pi VK (10)
where
0=<uhy) =1  Vjk (11

(Ross, 1993, p. 137; Carle and Fogg, 1996). Equations (9) and (10) are instru-
mental for ensuring that

lim thy) = pe Vi, k (12)
he— o

as required of an ergodic Markov chain model (Ross, 1993, p. 272-274), so
that local outcomes will be representative of the proportions and transition prob-
abilities prescribed for the region D. The entries in T(h,) also define the entries
in the transition probability matrix T(#_,) for the direction —¢ (opposite of ¢)
by

tulh_y) = (’f) tihy) Vi k (13)
J

Transition Rates

The transition rate corresponds to the slope of the transition probability as
it approaches a lag of zero, as evident by differentiating (1) with respect to h,
athy, =0

9;(0) _

o, = ke Wik (14)

Applying (14) to (9) and (10) yields corresponding constraints on the row sums

of Ry
K
Zrs=0 v (15)
and column sums
K
2 prs =0 Vk (16)

where
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and
Tikg =0 Vj, k #j

(Ross, 1993, p. 267 and 273). Applying (14) to (13) yields the corresponding
entries for R_, for the opposing direction —¢

=g = (’3) roo ik a7
p;

The constraints (15) and (16) are useful for ensuring that the Markov chain
model satisfies (9) and (10) as required by probability law for all hy. In addition,
(15) and (16) ensure that the Markov chain model honors (12) with the appro-
priate stationary proportions p,, which can be predetermined from conceptual
information or univariate data such as the percentages given in (7). Note that
(15) and (16) imply that the row and column entries of R, for one category,
say (3, and herein referred to as the ‘‘background’’ category, need not be esti-
mated. Instead, 1.4 can be calculated by

K
Tpe = =2 Tie Vi # B (18)
and rg can be calculated by
1 K
= — > pr vk 19
Tako = T S Pilike (19)

Thus, application of (18) and (19) ensures that a Markov chain model honors
(12) and, using prior knowledge of proportions, requires direct specification of
only (K — 1) of the K? entries in the transition rate matrix.

(A)symmetry

In some situations, juxtapositional tendencies may be assumed symmetric,
eliminating the need to prescribe opposing off-diagonal entries. Let h_, denote
a lag of the same magnitude, but opposite direction of 4,. Assuming symmetry
in the direction ¢ for a transition between categories j and k indicates that ty(hy)
= ty(h_y) or, equivalently by applying (13)

p;
tij(hy) = <p_:> ti(hy) (20)

Applying (1) to (20) and differentiating with respect to h, for h, — 0, an
assumption of symmetry for transitions between categories j and k requires that

p.
Tij.¢ = (j) Tik, ¢ 21
%
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Equation (21) provides an important tool during model development because if
symmetry in juxtapositional tendencies is assumed for categories j and k, then
establishment of one transition rate r; , establishes the opposing transition rate
Ti.¢» OF vice versa. From an interpretive standpoint, symmetry would be as-
sumed for a direction in which the pattern of heterogeneity does not change
when viewed by the opposite direction. For eample, if symmetric juxtapositional
patterns of ABCBA tend to occur one direction, then the same ABCBA tendency
would persist in the opposing direction. However, if an asymmetric ABCABC
pattern tends to occur in one direction, that tendency would occur as CBACBA
in the opposing direction. Most indicator geostatistical models intrinsically as-
sume symmetry by quantifying spatial variability with the indicator (cross-)var-
iogram, which is symmetric by definition. However, asymmetric patterns are
not unusual in geology, particularly in vertical lithologic successions (Schwar-
zacher, 1969). Consequently, the transition probability is more appropriate than
the indicator (cross-)variogram for certain geological applications.

Sparse Data

Most applications of Markov chains to geology have applied the discrete
approach (5) to ‘‘continuous’” data such as vertical stratigraphic sequences or
continuously logged core. However, geologic data are seldom adequately nu-
merous and closely spaced in nonvertical directions to apply directly a discrete-
lag Markov chain model. For example, Figure 2 shows strike (x)-direction
transition probabilities sampled at an interval of 3 m for the same dataset
described in Figure 1. Most of the boreholes are spaced farther apart than the
mean strike-direction lengths of the lithofacies categories. Consequently, far
fewer data are available to evaluate strike-direction spatial variability as com-
pared to the vertical. This problem hampers application of geostatistics to sub-
surface datasets.

Uncertainty in the transition probability data does not favor direct appli-
cation of (6) to formulate a continuous-lag Markov chain model. In Figure 2,
for example, T(Ah, = 3 m) and T(Ah, = 9 m) applied to (6) yield Markov
chain models shown by the dashed and dotted lines, respectively. Note that the
sills for these two models are slightly different because different proportions are
associated with a limited number of data pairs used to estimate T(Ah, = 3 m)
and T(Ah, = 9 m); the proportions p; determined by the entire dataset are more
likely a better indicator of an appropriate model sill according to (12). Further-
more, if a transition probability for the selected lag interval is errant or incon-
sistent with other transition probabilities at other lags, for example, #,,(Ah, =
9 m) for the debris flow — floodplain transition in Figure 2, the resulting model
will not be representative of the overall trend of the data. Thus, given uncertain
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Transition Probability
Strike (x) Direction

debris flow floodplain levee channel

2

g

£

% 1 1

B
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-§ e ] N
T J"' T LU LA ¢
Lag (m)

Figure 2. Transition probabilities for strike (x) direction
(dots) and Markov chain models based on T(Ah, = 3 m)
and T(Ah, = 9 m) shown by dashed and dotted lines, re-
spectively; Markov chain model developed by fitting tran-
sition rates shown by solid line.

transition probability data, no single transition probability matrix for a particular
lag is likely to yield a fully satisfactory Markov chain model.

Alternatively, one can develop a 1-D continuous-lag Markov chain model
by ““fitting”’ (K — 1)* of the K? transition rates in conjunction with an a priori
assumption for the proportions based on the entire dataset. Note that (14) implies
that r; 4 can be established from the slope of #;(h,) at hy = 0. Thus, instead
of focusing on a transition probability matrix for one particular lag, one can
develop the model from (1) by fitting transition rates ry , to estimates of
0t,(0)/0h, exhibited by the trend of the transition probabilities as h, — 0.
Application of (15) or (18) determines the transition rate of one entry given the
other K — 1 entries along a row. The assumed proportions can be applied with
(16) or (19) to obtain one entry from the remaining K — 1 entries along a
column. The resulting model will obey (12) with sills that correspond to the
measured or assumed proportions.

For example, a rate-fitting approach was used to develop a continuous-lag
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Markov chain model, shown in Figure 2 by the solid line, from (1) with category
2 (floodplain) assumed as background. The rate matrix R, for the strike (x)
direction was developed as

-0.16 ¢, s s
G G (&) (&)

R, = , m™! 2)
0.010 ¢ -0.20 K

0.002 ¢ 0.07 -0.11

where ‘‘c;”” denotes the row-sum constraint of (15) or (18), ‘‘c,”’ denotes the
column-sum constraint of (16) or (19), and ‘‘s’’ denotes a symmetry assumption
(21). Note that in this example, only 6 of the 16 rate coefficients needed direct
specification by fitting of 31;(0)/dh,. The resulting continuous Markov chain
model provides good overall fit to the strike-direction transition probabilities,
and the sills (or stationary proportions) are consistent with proportions given in

).

CONCEPTUAL DEVELOPMENT

Clearly, the development of a continuous-lag Markov chain model, whether
directly from T(Ahy) by applying (6) or indirectly by fitting d¢,(0)/dh, relies
on establishing the transition rate matrix R,. In addition, R, can be developed
from conceptual information, thus enabling the use of geologic interpretation in
developing Markov chain models.

In many subsurface investigations, particularly those relying on vertical
boreholes as control, the data are insufficient to empirically establish a spatial
variability model in all but the vertical direction. Even if data are relatively
abundant and closely spaced in nonvertical directions, the effects of unknown
variations in dip and strike can rarely be accounted for. Thus, geologic inter-
pretation usually must intervene in model building because a purely empirical
approach overlooks valuable subjective geologic information. A conceptual un-
derstanding of the transition rate matrix can be used to develop Markov chain
models from interpretations of proportion, mean length, juxtapositional tend-
encies, and (a)symmetry. Such understanding also helps ensure geologic plau-
sibility during model development whether data are abundant or sparse.

The Background Category

In applying (18) and (19) to development of a transition rate matrix, it may
be useful to conceive of the ‘‘background category’’ (B as the category that
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““fills’’ in the remaining space not occupied by other categories. For example,
in modeling a mineralization pattern, the last mineral to form or a nonminer-
alized zone would be a logical selection for a background category. In modeling
a fluvial depositional system, a floodplain depositional unit would tend to occupy
the remaining accommodation space not taken up by the units formed by higher
energy depositional processes and, consequently, would be a logical choice for
background category. Thus, from a conceptual viewpoint the choice of back-
ground category is usually clear. However, from the mathematical viewpoint of
(18) and (19), any category can be selected as a background category.

Mean Length

The mean length ZM, of a category k along lines in the direction ¢ is the
total length occupied by category k divided by the number of embedded occur-
rences of k. For example, mean length for the vertical direction corresponds to
the more widely used term of ‘‘mean thickness.”” Given that

31,0 1
ﬂ - - = 23)
dhy L4
(Carle and Fogg, 1996), applying (14) to (23) yields
1
= — = 4
Tk, L., 24)

Thus, a plausible estimate of Zk, » can be used in expression (24) to specify the
diagonal entries ry, 4 in the transition rate matrix for a Markov chain model.

For the two-category (K = 2) situation, the mean length in a direction ¢
relates to the “‘effective range’’ of ‘‘3a,’’ traditionally used in geostatistics for
an exponential structure (Deutsch and Journel, 1992, p. 23) by

- a
bue = 1 ij

However, for K = 3 each entry of the Markov chain becomes a sum of two or
more exponential structures, which also may involve complex rate coefficients.
Thus, compared to mean length, a ‘‘range’’ parameter becomes more difficult
to directly incorporate into conceptual development of Markov chain models.

Juxtapositional Tendencies

The off-diagonal transition rates prescribe the juxtapositional tendencies,
that is the probabilities at which embedded occurrences of different categories
occur adjacent to each other. A significant reason that embedded Markov chain
analyses have been applied to geologic data is to examine how off-diagonal
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transions deviate, if at all, from various reference states such as maximum
entropy (disorder) or independent (random) juxtapositional tendencies. Thus, a
transition rate r; , could be interpreted relative to r ,, a transition rate for a
particular reference state, by

Tio = GikoTikg)  fork #j 25
where a;, , denotes a positive coefficient. For example, assuming that a; , =
2.0 would constitute a transition rate of two times greater than the reference
state.

Juxtapositional tendencies have been interpreted relative to entropy of tran-
sition probabilities of embedded occurrences (Hattori, 1976), proportions of
transition probabilities (Carle and Fogg, 1996), numbers of embedded occur-
rences (Miall, 1973; Miall, 1982), or transition frequencies of embedded oc-
currences (Goodman, 1968; Turk, Naylor, and Woodcock, 1979). The follow-
ing derivations show how these models also could be applied to continuous-lag
Markov chain models in terms of proportions, mean lengths, and transition rates.

' Entropy
The entropy E; of juxtapositional tendencies in terms of transition proba-
bilities of embedded occurrences in a direction ¢ is measured by

K
E4= - E. Tik,g I [Tje 4]

where 7; , is defined as

Tit,s = Pr {k is juxtaposed to j in the direction ¢ | an embedded occurrence of
i}

Hattori (1976). Recognizing by (15) and (24) that 7; , also can be defined in

terms of transition rates and mean length by

Tik, ¢ =

Tike = _

Tij.e
the entropy also could be measured in the framework of a continuous-lag Markov
chain analysis by

K
Ejg = — k§| L; o7k, 0 [Lj 7t 6]
A transition rate matrix with entries rj , corresponding to a reference state of

maximum entropy (disorder) then could be derived by maximizing Ele E
subject to subject to (15) and (16) and assumed mean lengths.
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Proportions of Auto-Transition Rate

If Pr{k # j occurs at X + hy|j occurs at x} is assumed to depend on
category proportions py, then off-diagonal transition probabilities £(h4) refer-
enced with respect to p, would be calculated by

tihy) = [1 — 1(h,)] 1—’1"7 fork # j 26)
J
(Carle and Fogg, 1996). Differentiating (26) with respect to hy at by, = 0,

corresponding off-diagonal transition rates ’}2» referenced to proportions would
be

* Pk
jk

Tes = ~Tie 1—p fork # j 27)
J

Numbers of Embedded Occurrences

In an embedded Markov chain analysis (Krumbein and Dacey, 1969), the
*‘transition counts’’ or frequencies f; 4 of transitions between embedded occur-
rences of j to k # j in the direction ¢ are considered, irrespective of the lengths
of the embedded occurrences. Defining s, = I/, f; , as the number of
embedded occurrences of k along lines in the direction ¢, the conditional prob-
ability q}i_d, that a transition occurs according to the numbers of embedded
occurrences is determined by

s
T @8)
2 S
m#j
(Miall, 1973, 1982). Considering that s; , o pk/Zk,,,, (Carle and Fogg, 1996)
and applying r; , = —Ef,; rie and 1 = I, g% ,, then transition rates

ri 4 referenced to the numbers of embedded occurrences can be established by
P

L
The = —Tie Tt 9)

> Pm

m#%j Lm,¢

where L, , denotes mean length.

Transition Frequencies of Embedded Occurrences

One noticeable deficiency in the previous two methods as described for
establishing what could be construed as ‘‘random’’ transition rates is the lack
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of symmetry in accordance with (21), which would be expected in truly random
juxtapositional relationships. This point has been brought to attention by Turk
(1982) and Turk, Naylor, and Woodcock (1979), who suggests that ‘‘random’’
juxtapositional relationships should be defined according to independence of
transition frequencies of embedded occurrences including the ‘‘unobservable’’
self-transitions. Let f; , denote the frequency of embedded occurrences of j in
the direction ¢ and fj 4, correspondingly, the frequency of transitions from j to
k, including the possibility for self-transitions f} ,. The entries f ;2,4, of an in-
dependent transition frequency matrix will obey

fﬁw = fiofes

Because self-transitions are unobservable, only the off-diagonal transition fre-
quencies can be observed. The problem of determining independent juxtaposi-
tional relationships is to find f; , which satisfy (30) while obeying the observed
off-diagonal row/column totals s; ,

vjik=1,...,K (30)

K
Sj6 = Ejfjk',,, vi=1,...,K 31

which are related to proportions and mean length by

Pj ;
S 4 X = vi=1,...,K
J.® Lj_¢
An iterative scheme analogous to iterative proportion fitting (Goodman, 1968)
can be devised to satisfy (15) and (16) as follows:

1. Initialize f; 4 with s; ;.

2. Estimate f}; , by applying (30).

3. Estimate f; 4, by f 4 = j,¢/2f¢ j f};d, to maintain consistency with
31).

4. Repeat steps 2 and 3 until convergence.

The independent transition frequencies can be translated to ‘‘independent’’ tran-
sition rates rj; , consistent with observed proportions and mean lengths by

o _L<f72-¢>
A
! Lig \ sj6

s

Example

The lithofacies data used in the previous examples to assess the vertical-
and strike-direction spatial variability were inadequate to assess dip-direction
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spatial variability. This was the result of not only a shortage of lag pairs, but
because of unknown subsurface variations in azimuthal and dip directions of the
alluvial deposits, which have a profound impact on measuring spatial variability
in the direction of greatest elongation (the dip direction). Rather than force-
fitting a model to inadequate data, a dip model of spatial variability could be
synthesized aided by geologic interpretation.

For example, the juxtapositional tendencies for the dip direction may be
assumed similar to those for the strike direction, but with different mean lengths
for each category. Applying (25) to (27), the strike (x) direction transition rate
matrix (22) could be viewed as

[ 1
625 v ¢ s
%) (%) (&) ()
R, = . | m™! (32)
0.58r% o
T31,x 50 s
0.22r% 2.8rf -
L . 41,x <0743, x 9.00_|

where the denominators in diagonal entries ry, , represent the mean length Z,(vx
of category k in the x direction according to (24), and the rj; , terms in the off-
diagonal entries are referenced, in this situation, with respect to proportions of
the autotransition rates by (27). Note that the reference state model (27) gen-
erally is easier to apply than either (31), (29), or the entropy concept because
it does not require an input for the mean length of a background category. Based
on geologic interpretation, dip:strike anisotropy ratios of 4:1 for debris flow
lobes, 8:1 for channel stringers, and 6:1 for levee deposits were assumed,
which yield dip (y)-direction mean lengths Zk'y of 25 m, 30 m, and 72 m for
categories 1, 3, and 4, respectively. Assuming similar juxtapositional tendencies
for both the dip direction and the strike direction, as established by (32), a dip
(y)-direct transition rate matrix can be obtained from

_ 1 -
—E C) s S
(%] C C G .
R, = . 1 m
0.58r3,,, ¢ ~300 s
0.22rf,, ¢, 2.8rf L
L . 41,y 1 <0743,y 72.00 |
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where, again, r}',:_y would be referenced to (27), but with respect to the y-direction
autotransition rates. The resulting transition probability model for the dip (y)
direction is shown in Figure 3.

Clearly, alternative interpretations could have been made to develop the
dip-direction rate matrix. For example, an interpretation of Walther’s Law, that
vertical successions represent the lateral succession of environments of deposi-
tion (Leeder, 1982, p. 122; Doveton, 1994), might incorporate the fining-up-
ward asymmetry seen in vertical-direction transition rates to establish a fining-
outward asymmetry in the dip-direction transition rates.

The coefficients in (25) mainly serve as a tool for establishing off-diagonal
entries for R, that are interpreted more easily than the actual numerical values.
Thus, the patterns of heterogeneity implied by the rate coefficients can be eval-
uated empirically by generating 3-D stochastic simulations from the Markov
chain models (Carle, 1996). If the resulting stochastic simulations do not yield
expected or desired patterns, the entries in the rate matrices can be adjusted
accordingly.

Transition Probability
Dip (y) Direction

debris flow floodplain levee channel

J J
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T T T Lk |

1
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sl

floodplain debris flow

levee
| I
1
ol
liay

paleagy

1.0— — . '
0.5 3 = K

0.0 | T
0 200 400

channel

Lag (m)

Figure 3. Markov chain model for dip (y) direction de-
veloped by rescaling strike-direction model.
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SYLVESTER’S THEOREM

Sylvester’s theorem provides a rapid, direct method for calculating poly-
nomials of a matrix (Agterberg, 1974, p. 406-409), which can be extended to
the determination of the entries in a 1-D continuous-lag Markov chain (1) es-
tablished by transition rates or transition probabilities at a discrete lag. Equations
(1) and (6) involve matrix exponentials and matrix logarithms, respectively,
which can be evaluated in canonical form (Agterberg, 1974, p. 85), by power
series (Agterberg, 1974, p. 406), or, more directly, by applying Sylvester’s
theorem (Agterberg, 1974, p. 412, p. 457).

The transition rate matrix R, can be expressed as

K
R, = 2 MoZio (33)
where the \; , are the [ = 1, ..., K eigenvalues of Ry, and Z, , is a spectral

component matrix associated with each \, 4. The Z, , are computed by

II \J-Ry
i+l

Z =
“ T (g — Ao
i+l

vi=1,...,K (34)

where I represents the identity matrix. Application of Sylvester’s theorem to the
power-series representation of a continuous-lag Markov chain model (1) yields

K

T(hy) = exp Ryhy) = 2 exp (o) Zig (35)

(Agterberg, 1974, p. 412, p. 457). Thus, for a Markov chain model, the eigen-

values 0;(hy), I = 1, ..., K of T(hy) relate to the eigenvalues of Ry, by
Oihy) = exp W.ohy) VI=1,....K
or
In 0,(h
L, = Ok K (36)
s h¢

Furthermore, the entries z; ; 4 in Z, 4, obtained from T(h,) by




910 Carle and Fogg

II [6:h)T — T(h,)]
_ i#l

e I 10h) = 6.

vi=1,...,K 37

are identical to those defined for R, in (34).

Under the assumption of a Markov chain model of spatial variability,
T(Ah,) for a discrete lag interval Ahy can be used to establish R, by finding
the eigenvalues 6,(Ah,) corresponding to T(Ah,) and applying (36) and (37) to
obtain

K

_ In 0,(Ah,) ‘
R, = 1§| Ahy Ziy (38)

Application of (38) to (1) yields a continuous-lag Markov chain model based
on T(Ah,)

K
T(hy) = 2 0/Ahg)" "2, (39)

which represents, in effect, a continuous version of the more widely used dis-
crete-lag Markov chain model (5).

Note in (35) that a 1-D continuous-lag Markov chain model can be viewed
as a linear combination of exponential functions 8,(h,). Nonnegative definiteness
can be satisifed if the Z, , matrices and exp (A, 4h,) functions are nonnegative
definite, thus conforming to a ‘‘linear model of coregionalization’’ (Journel and
Huijbregts, 1978, p. 171; Goulard and Voltz, 1992; Goovaerts, 1994).

The largest eigenvalue of T(hy), say 6,(hy), should be equal to unity to
ensure complicance with (8) and (12). The corresponding entries for the spectral
component matrix for 6,(hs) will be z; | 4 = pi, Where p, are the stationary
proportions intrinsic to T(h, — o0). Considering (36), the eigenvalue A, for Ry
should be zero. Some eigenvalues 6/(h;) of T(h,) may be complex, forming
conjugate pairs if cyclicity exists in the model. However, the real part should
be nonnegative but less than unity to ensure compliance with (11). Correspond-
ingly, the real part of the remaining eigenvalues A, 4 for R, should be negative.
Nonnegative eigenvalues for T(h,) maintain nonnegative-definiteness and avoid
undefined values for the eigenvalues of R,.

In practice, either the eigenvalues N, , or 6,(h,) corresponding to the real
general matrices R, or T(h,), respectively, can be computed from FORTRAN
subroutines given by Smith and others (1976) or Press and others (1992). The
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spectral matrices Z, , then are computed by applying (34) or (37), and the
continuous-lag Markov chain model of T(h,) is computed from (35) or (39).

EXTENSION TO 3-D

The extension of Markov chain models to 2- and 3-D applications may rely
on an assumption that spatial variability along any direction can be modeled by
a Markov chain, in accordance with Switzer’s (1965) theorem and the definition
of a multidimensional Markov chain given by Politis (1994). Each 1-D Markov
chain model for each of the infinity of directions may differ, as long as the
assumed category proportions remain constant. However, subsurface data usu-
ally will be insufficient to develop a multidimensional Markov chain model for
an infinity of directions. Alternatively, development of a 3-D continuous Markov
chain model can focus on establishing 1-D Markov chain models for each of
three principal directions, say strike, dip, and vertical (upward) or stratigraphic
X, y, and z. Then, 1-D Markov chain models for any direction can be established
by interpolation from the principal-direction models. The resulting 3-D Markov
chain models may consider different juxtapositional tendencies in different di-
rections as established from the principal-direction models using the purely quan-
titative, semiquantitative, or conceptual approaches previously described in this
paper.

The key to development of a 1-D continuous-lag Markov chain model for
a direction ¢ has been establishment of the transition rate matrix R,. Similarly,
the key to interpolating 1-D Markov chain models to arbitrary directions will
be determined through interpolation of the principal-direction transition rate
matrices, R,, R,, and R,. At first glance, it might seem more intuitive to estab-
lish a 3-D Markov chain model by ellipsoidally interpolating the transition prob-
ability matrices T(h,), T(h,), and T(h,). However, examples later will show that
nonellipsoidal transition probability model structures may exist in association
with asymmetric juxtapositional relationships.

Interpolation Scheme

The interpolation scheme for developing a 3-D Markov chain model re-
quires that 1-D Markov chain models for the principal x, y, and z directions be
established, with each model assuming the same stationary proportions. To
interpolate the transition probability matrix T(h,, h,, h,) for an arbitrary direction
¢, one category (3 is selected as ‘‘background,’’ and entries in the transition rate
matrix Ry are interpolated ellipsoidally by
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2 2 2
h 2 /n, h.

7. el = JE_A r:k..r) + (* "jx-._r) + (f' -"_;'k.:)
hy hy hy,

Vi # B, k#+8 (40)

where h, = N hf. + hZ. If any of the lag vector components h,, h,, or h,
are negative, then entries ry_ ., rj, _y. Or ry _. as computed by (17), respec-
tively, are used in (40). Equations (18) and (19) are used to complete the row
and column entries rg , or rg o forj, k =1,..., K.

To compute the Markov chain model of T(h,, h,, h.) by (1), the eigenvalues
of R, are determined, then the spectral components are computed by (34),

and, finally, (35) is applied for h, = Vh: + hj + hZ.

Example

A 3-D Markov chain model was developed from the vertical (z), strike (x),
and dip (y) direction 1-D Markov chain models given in Figures I, 2, and 3,
respectively. The 3-D transition probability matrices are difficult, if not impos-
sible, to display graphically. However, a suite of 2-D slices through the 3-D
models shown in Figures 4, 5, and 6 illustrate the juxtapositional tendencies

Transition Probability
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Figure 4. Slice from strike-vertical (x — z) plane of
a 3-D Markov chain model interpolated from 1-D
Markov chain models developed for the strike, dip,
and vertical directions.
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Transition Probability
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Figure 5. Slice from strike-dip (x — y) plane of a
3-D Markov chain model.

established by the 1-D vertical, strike, and dip models through either purely
quantitative, semiquantitative, and conceptual methods.

Figure 4 shows a slice through the 3-D model at y = 0, which, in effect,
shows a 2-D Markov chain model for the vertical-strike (x — z) plane. The
diagonal transition probabilities (1) are symmetric because (13) reduces to

t(h_g) = ti(hy)

when j = k. However, the off-diagonal transition probabilities 7,(h,) for j # k
are not necessarily ellipsoidally symmetric because of asymmetric juxtaposi-
tional relationships.

The off-diagonal transition probabilities 7,(h,, 0, h.) in the strike-vertical
(x — z) model of Figure 4 are clearly asymmetric with respect to the vertical
(z) direction, especially for the 3 — 4 (levee — channel) and 4 — 3 (channel
— levee) transitions. This asymmetry, indicative of a relatively strong tendency
for levee deposits to occur adjacently above channel deposits, was prescribed
by the vertical transition probability data given shown in Figure 1. The fining-
upward tendency is typical of fluvial deposition (Allen, 1970b) and is consistent
with a Walther’s Law interpretation of levee deposits tending to occur laterally
adjacent to channel deposits (Allen, 1970a). Lesser asymmetries in the 2 — 3,
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Transition Probability
Dip-Vertical (y-z) Plane

debris flow  floodplain levee channel

: 2
? D
.g :I T I

it i
§&

o
=%
+ 8
$3 -

=
L L
\ n* m- a

.4 1 1 1
10040 Dip Lag (m)

ﬂ

0.0 02 04 06 08 1.0

Figure 6. Slice from dip-vertical (y — z) plane of a
3-D Markov chain model.

3 + 2,2 — 4, and 4 — 2 transitions suggest a continuation of the fining-
upward cycle to 4 — 3 — 2, or channel — levee — floodplain, also evident
by a conjugate pair of slightly complex eigenvalues in the vertical (z) direction
rate matrix.

The off-diagonal transition probabilities r,,(h,. 0. h.) and #;,(h,, 0, h.) as-
sociated with transitions to and from debris flows (category 1) show some asym-
metry. However, no halo-like transition probability highs occur as in the 3 —
4 and 4 — 3 transitions in Figure 4, indicating relatively random juxtapositional
relationships for debris flows. Note that in all entries of the transition matrix in
Figure 4, the strike (x)-direction symmetry of z;(h,, 0, h)) = ry(h_. 0, h))
persists, a condition that was enforced by (21) in the development of the strike
(x)-direction model of Figure 2.

A slice through the strike-dip (x — y) plane at h. = 0 shown in Figure 5
displays in ty(h,. h,, 0) and t,3(h,, h,, 0) a tendency for levee deposits (category
3) to occur adjacent in the +strike (+x) direction next to channel deposits
(category 4), as expected according to a Walther’s Law interpretation of a
vertical fining-upward tendency. A slight tendency for debris flows to occur
adjacent in the dip direction to floodplain deposits is evident in the
t15(hy, hy, 0) model, which could be attributed to better preservation potential
for debris flows deposited in floodplain areas.
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A slice through the dip-vertical (y — 2) plane at i, = 0 shown in Figure
6 again displays the strong vertical asymmetry evident in the 3 — 4 and 4 —
3 transitions because the levee deposits tend to occur adjacently above channel
deposits. The tendency for debris flows to occur adjacently in the dip direction
to floodplain deposits also is evident in the 1 — 2 model. The model is sym-
metric in the y direction as enforced by (21) during conceptual development of
the dip (y)-direction model shown in Figure 3.

Overall, the 3-D model displays some structures that appear ellipsoidal and
others that are clearly nonellipsoidal when strongly asymmetric transition rates
occur. The nonellipsoidal, vertically asymmetric characteristics of transition
probability structures in Figures 4 and 6 are supported strongly by the data in
Figure 1. It is difficult to conceive how the linear coregionalization approach
typically used in geostatistics (e.g., Journel and Huijbregts, 1978, p. 171; Gou-
lard and Voltz, 1992; Goovaerts, 1994) could be used to build such three-
dimensional, asymmetric, and nonellipsoidal structures into a coregionalization
model. Yet, nonellipsoidal structures surely are needed to model asymmetric
juxtapositional patterns in geology.

CONCLUSIONS

A basic mathematical and conceptual understanding of the transition rate
matrix is crucial to quantitative or subjective development of continuous-lag
Markov chain models. Sylvester’s theorem eases establishment of transition rate
matrices, as well as calculation of transition probabilities for Markov chain
models. Three-dimensional continuous-lag Markov chain models can be devel-
oped by interpolating transition rate matrices for 1-D continuous-lag Markov
chain models established for three principal directions.

Given that 1-D Markov chain models have shown a long-standing applic-
ability to geologic problems, 3-D continuous-lag Markov chain models also
should prove useful to modern 3-D applications. Markov chain models can be
developed either directly from exhaustive data, semiquantitatively through fitting
of transition rates, or conceptually from geologic interpretations of proportions,
mean lengths, elongation ratios, and juxtapositional tendencies. The conducive-
ness to conceptual development is important when faced with sparse or no data
for quantifying spatial variability in certain directions, which often occurs in
practical 2- and 3-D geologic applications.

Given that transition probabilities can formulate (co)kriging estimates (Carle
and Fogg, 1996) and objective functions in simulated annealing (Deutsch and
Journel, 1992, p. 159), Markov chain models also may be applied to geosta-
tistical estimation and simulation techniques. Two- and 3-D continuous Markov
chain models can address asymmetric heterogeneity patterns such as fitting-
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upward tendencies that traditional geostatistical variogram models cannot. The
emergence of 2- and 3-D continuous Markov chain models should encourage
geostatistical approaches to tap into an extensive body of research and literature
on geological applications of Markov chains.
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