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Abstract. The random-walk method for simulating solute transport in porous media is
typically based on the assumption that the velocity and velocity-dependent dispersion
tensor vary smoothly in space. However, in cases where sharp interfaces separate materials
with contrasting hydraulic properties, these quantities may be discontinuous. Normally,
velocities are interpolated to arbitrary particle locations when finite difference or finite
element methods are used to solve the flow equation. The use of interpolation schemes
that preserve discontinuities in velocity at material contacts can result in a random-walk
model that does not locally conserve mass unless a correction is applied at these contacts.
Test simulations of random-walk particle tracking with and without special treatment of
material contacts demonstrate the problem. Techniques for resolving the problem,
including interpolation schemes and a reflection principle, are reviewed and tested.
Results from simulations of transport in porous media with discontinuities in the
dispersion tensor show which methods satisfy continuity. Simulations of transport in two-
dimensional heterogeneous porous media demonstrate the potentially significant effect of
using a nonconservative model to compute spatial moments and breakthrough of a solute
plume.

Introduction

The random-walk particle method (RWPM) has been used
successfully for years to simulate conservative and reactive
transport in porous media [Ahlstrom et aL, 1977; Prickett et aL,
1981; Uffink, 1985; Tompson et aL, 1987; Tompson, 1993]. This
method is computationally appealing because it is grid inde-
pendent and therefore, given the proper conditions, will re-
quire little computer storage relative to finite element, finite
difference, and method of characteristic models. In addition,
this method does not suffer from numerical dispersion in prob-
lems dominated by advection. Traditional finite element and
finite difference models generally perform poorly under such
conditions unless the computational grid is highly resolved. As
a result, a random walk is often the method of choice for
simulating transport in large, heterogeneous flow systems
[Tompson and Gelhar, 1990; Tompson, 1993; Tompson et aL,
1994].

Global mass conservation is compulsory with the RWPM
because particles cannot disappear. This distinct advantage of
the RWPM, however, is often overstated; accurate solutions
require local as well as global mass conservation.

In practice, the flow problem is often solved numerically,
and velocities are interpolated to arbitrary particle locations.
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Advective particle tracking models can be made mass conser-
vative by using a divergence-free velocity interpolation scheme
[Schafer-Perini and Wilson, 1991]. However, additional criteria
are necessary to formulate a mass conservative random-walk
model. For example, discontinuities in the velocity or effective
porosity may yield a dispersion tensor that is discontinuous in
space. Local mass conservation conditions for the RWPM re-
quire that the dispersion tensor be continuous in space unless
a reflection principle [Feller, 1957] or similar method is ap-
plied. Therefore, neglecting discontinuities in the dispersion
tensor will result in local mass conservation errors. As these
problems only occur when parameters are functions of the
spatial coordinates, model errors will not necessarily be de-
tected during routine verification checks.

In some applications of the RWPM to transport in hetero-
geneous porous media [e.g., Tompson et aL, 1987; Tompson
and Gelhar, 1990], accuracy in local mass conservation has
been traded for computational efficiency by specifying coeffi-
cients in the RWPM as block discrete (constant with a finite
difference grid block). Though we do not believe this trade-off
led to significant errors in the simulation results of Tompson et
aL [1987] and Tompson and Gelhar [1990], results from ran-
dom-walk simulations presented herein demonstrate that this
approach violates local mass conservation and under certain
circumstances can significantly affect solute-transport predic-
tions. This paper reviews the conditions required for local mass
conservation for the RWPM and demonstrates consequences
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of violating these conditions when the dispersion tensor is
discontinuous due to a discontinuous velocity field. We discuss
and demonstrate techniques for applying the RWPM in the
presence of the discontinuities. Random-walk simulations of
solute transport in two-dimensional heterogeneous porous me-
dia are presented that illustrate the potential effect of local
mass conservation errors on simulation of a developing plume.

The Random-Walk Particle Method
The RWPM is commonly used in the field of statistical

physics to model and analyze processes involving diffusion. In
the hydrologic community, the approach has been widely ap-
plied to simulate advective and diffusive mass transport prob-
lems in subsurface systems [e.g., Ahlstrom et al, 1977; Prickett
etal, 1981; Uffink, 1985; Tompson et al, 1987]. Mass concen-
tration of an aqueous solute is represented by a finite system of
Np particles of constant mass mp via

, f) = (1)

where © is the effective porosity, § is a Dirac function, and
X^(^) is the location of particle p at time t. Because (1) is
discontinuous, a modified expression of the form

is typically used to "smooth" the spatial distribution of con-
centration, where f is an interpolation, or projection function
[Bagtzoglou et al., 1992] normalized such that /a f dV = 1,
where fl is the domain of porous medium. The degree of
smoothness obtained is controlled by the shape of £ and the
particle resolution Nr, the number of particles used to represent
an arbitrary unit of mass. Mass in £1 is M = /n ©c dV =
^p^Np ™>p'

Simulation of advective and diffusive mass transport may
proceed by changing particle positions with time via an Ito-
Taylor integration scheme, given as [Gardiner, 1990]

Xp(t + Af) - Xp(t) = A(Xp, B(X,, 0 • Aw(AO

where A is a "drift" vector [ L T ~ l ] , B is a tensor [ L T ~ 1 / 2 ]
defining the strength of diffusion, and Aw, a Wiener process
[ T 1 / 2 ] , is a vector of independent normally distributed random
variables with zero mean and unit variance given as

(Aw) = 0

(AwAw) = Afl

(4a)

(4b)

Here ( } denotes the expected value, and I is the identity
matrix.

The particle number density, / = (^cplmp), obtained
through repeated use of (1) on all particles, satisfies the Ito-
Fokker Planck equation [Risken, 1989]:

(5)

(6)

in the limit as Nr -> °o and A£ —> 0, where

A = lim -r- <[X,(; + AO - X,(f)]>

B • BT= lim -r- <[Xp(f + AO - Xp(*)]2> (7)
Ar->0 ^l

To simulate conservative transport, we wish to specify A and B
in (5) such that the mass density satisfies the familiar advec-
tion-dispersion equation

dt + V • (v®c) - V • (0D • Vc) = 0 (8)

In (8), c is the aqueous concentration [ML 3], v is the average
groundwater velocity vector in the porous medium [LT~l],
and D is the local hydrodynamic dispersion tensor [L2T~l]
[Bear, 1972],

D = (ar|v| + Dm)l +
OLL — OLT

(9)

where a^[L] and ar[L] are the longitudinal and transverse
dispersivities, respectively, and Dm is the molecular diffusivity
of the porous medium [L2T~1]. By choosing A and B as
[Kinzelbach, 1988; Uffink, 1988; Tompson et al, 1987]

2D - B • BT

(10)

(11)

and noting that mpf = ®cp, (5) and (8) become equivalent.
Substituting (10) and (11) into (3) yields the equation for a
particle displacement

Xp(t + Af) - X,(f) =

+ B • Aw (12)

where coefficients in the right-hand side of (12) are evaluated
at Xp(t). Because D is real and symmetric, elements of the
tensor B can be calculated by diagonalizing D, taking the pos-
itive root of the eigenvalues, transforming back, and multiply-
ing by an arbitrary orthogonal matrix R [Risken, 1989] (for
details refer to Tompson et al. [1987]). In the case |v| = 0
(stagnation point with a scalar diffusion function), we use Btj =
(2Dm)l/2 for (/ = ;) and Btj = 0 for (/ =£ ;). This develop-
ment can be extended to treat reactive transport for constitu-
ents that undergo binary reversible equilibrium sorption
[Tompson, 1993] and kinetic decay [Tompson and Dougherty,
1992].

Gradient Terms and Discontinuities in D
In some previous applications of the RWPM, the gradient

terms in (12) have been ignored or overlooked [e.g., Ahlstrom
et al., 1977; Prickett et al., 1981], leaving simply A = v. When D
or © vary spatially, however, these gradients can be quite
significant, as illustrated by applying the RWPM to find a
steady state solution to the purely diffusive system with ® = 1,

dc dc (13)

for 0 < x < 1, where D(x) = 1 + 99*, c(0, t) = 1, and c(l, t) = 0.
Figure 1 shows the steady state analytical solution of this sys-
tem [Crank, 1975] along with two coarse (i.e., noisy) particle
solutions obtained from (12) with and without the gradient
correction quantity in the drift term. Both particle solutions
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were evolved over time to an approximate steady state at t =
0.1, based upon a zero initial condition, and properly main-
tained boundary conditions [Tompson and Dougherty, 1992].
Importance of the correction in the drift term (A) is clearly
evident.

Because of their dependence on gradients of velocity, po-
rosity, and dispersivity, the importance of the correction terms
in hydrologic applications will be most significant near sharp
wetting fronts, stagnation zones, material contacts, and abrupt
changes in the flow field [Uffink, 1988; Tompson et al, 1987].
General incorporation of gradient terms may require careful
interpolation of velocities, porosities, dispersivities, and diffu-
sivities. A problem arises, however, at contacts between mate-
rials with contrasting hydraulic properties. Here, effective po-
rosities, dispersivities, diffusivities, and flow velocities, and
therefore the velocity dependent dispersion tensor, may be
discontinuous in space.

In the case of discontinuities in the dispersion tensor or
effective porosity, the gradient terms in (12) are undefined.
Ignoring the effect of discontinuities in the dispersion tensor
will result in local mass conservation errors even in the limit as
the time step approaches zero. In this paper we consider par-
ticle methods that address discontinuities in dispersion tensor
caused by discontinuities in the velocity field only, and will
consider dispersivities and porosity to be constant. Neverthe-
less, methods similar to those presented here can be applied to
locally conserve mass where dispersivity and porosity have
discontinuities.

In general, the statement expressing local mass conservation
at an interface, denoted here by the surface s, is [Gardiner,
1990]

L-X

lim J~ • n = lim J+ • n
x-»s s<-x

lim c~ = lim c +

x—>s s<^x

where J is mass flux, given as

J - ©Ac - ®D • Vc

(14)

(15)

(16)

and n is the outward normal to s, and the superscript plus and
minus refer to quantities on opposite sides of s. When D is
discontinuous at s (E H, within the simulation domain, (14)

' Coarse particle solution with
correction term (t =0.1)

Coarse particle solution with
no correction term (t = 0.1)

Figure 1. Analytical steady state solution to (13), compared
with two, approximately steady state and coarse particle solu-
tions at t = 0.1 obtained with and without gradient term.

r+x
Figure 2. A two-layer system with a discontinuous diffusion
coefficient across an interface.

may not be satisfied by the RWPM. Below, we review a reflec-
tion technique that has been developed to address this prob-
lem and introduce another approach based on interpolation
of D.

Reflection and Interpolation Techniques
Uffink [1985] treated the problem of a discontinuous disper-

sion tensor through application of a reflection principle based
on the method of images [Feller, 1957]. He applied this method
to transport in stratified porous media with flow parallel to the
bedding plane where the tangential velocity and velocity-
dependent dispersion tensor are discontinuous at interfaces
between strata (Figure 2). Here we present and test the
method of Uffink [1985] and an alternative interpolation tech-
nique.

Reflection Principle
A reflection principle can be developed for one-dimensional

diffusion across an interface with constant (yet different) dif-
fusion coefficients on both sides of this interface and @ = 1
(Figure 2). Here we have

_
dt ~Dl dx2

h-%dJT

x < 0

x>0

(17a)

(17b)

where Dv and D2 are the diffusion coefficients and the sub-
scripts 1 and 2 refer to quantities in ^ll and I12, respectively.
Conservation of mass requires that

dc1 dc2lim Dl ^77 = lim D2 -^fdx

lim GI = lim c2
x-»0 0<—x

dx (18a)

(18b)

For the case of a partially reflecting interface, Dl > D2 > 0,
an instantaneous point source in H3, C(JCQ , 0) = 1, JCQ < 0,
and a system of infinite spatial extent, applying the method of
images yields a solution to (17a) and (17b) in terms of source
and reflected components (superscripts S and R, respectively)
[Carslaw and Jaeger, 1959]:

t, t) = cf(jc, t) + cf(jc, t) < 0 (19a)
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0.08

-40

Figure 3. Component parts (bold lines) of analytical solution
given in (a) equations (19a)-(19d) for point source in ^ll and
(b) equivalent form of (19a)-(19d) for point source in f!2 are
summed to form final solution (bold dashed line) about an
interface.

cf

0 -

, t) =

vi/iexp
(x -

(x

(19b)

(19c)

(19d)

where .Rj is a reflection coefficient and the factor fB1 =
(D2)l/2/(Dl)l/2 accounts for the difference in mean-square
displacements between the two strata by effectively adjusting
the origin of the source in fl^jt < 0) for solution in £l2(x > 0)- In

order to satisfy (18a) and (18b), ̂  - [(DJ1'2 - (D2)1/2]/[(D1)1/2

+ (D2)1/2]. For a source located in £l2(x0 > 0)» replace Rl
with R2 = -Rl and ft with ]32 - (D1)1/2/(D2)1/2. This
solution is illustrated in Figures 3a and 3b.

Development of a reflection principle based on the method
of images for application to the RWPM in one dimension is
easily accomplished by modifying the transition probability
density (TPD) for B • Aw in (12), for a particle that may cross
the interface in the following time step [Uffink, 1985]. The
modification consists of summing the component parts of the
modified density function given by (19a)-(19d). In this context,
Figures 3a and 3b can be interpreted as TPDs for particles
located at x0 in f^ and H2, respectively. Alternatively, when
approximating Aw by a uniformly distributed random variable
in the RWPM [see Tompson etal., 1987], the uniform TPDs for
particles located in nx and 112 may be modified similarly, as
was done by Uffink [1985]. For the more general one-

dimensional problem with multiple interfaces, use of this mod-
ified uniform TPD together with small A/1 can limit necessary
image densities to those arising from a single interface.

Interpolation Technique
Discontinuities in the dispersion tensor can also be ad-

dressed through interpolation. This method, also discussed
below in the context of random-walk particle tracking on a
block-centered finite difference solution, smoothes the disper-
sion tensor in the vicinity of the interface to eliminate discon-
tinuities and define the gradient term in the drift vector. For
convergence to the true solution, this method requires conver-
gence in time step as well as the spatial discretization associ-
ated the interpolation scheme. Below we evaluate interpola-
tion and the reflection technique.

Comparison With Theory
We test the interpolation and reflection techniques in a

closed one-dimensional constant-concentration system with re-
flecting boundaries on both ends and a partially reflecting
interface located in the center such that the two equal-volume
portions of the domain, f^ and H2, are delineated by a discrete
contrast in dispersion coefficients [see Semra et aL, 1993].
When there is no drift in f^ and 112 (A = 0), a correct tech-
nique will maintain a uniform particle number density on ei-
ther side of the partially reflecting interface, i.e., N1/N2 = 1.
Figure 4 shows results of a test of the alternative methods
presented above using the RWPM for a one-dimensional sys-
tem with reflecting boundaries at x = -49 and* = 49, A£ =
0.005, 588 particles, Dl = 5.0 (x < 0), and D2 (x > 0)
prescribed such that the ratio DJD2 ranges from 2.5 to 20.0.
For this problem the alternative interpolation technique is
applied by linearly interpolating D through a unit length across
the interface at x = 0. The results for Nl/N2 at an approxi-
mate steady state show that using no correction fails to main-
tain uniform number density. Interpolation and the method of
Uffink [1985] correctly maintain a uniform number density.

To further test these methods, we compare results for a
point source initial condition with the analytical solution given
by (19a)-(19d) and illustrated in Figure 3a. A total of 100,000
particles were used in each simulation, wherein XQ = -5.0,
Dl = 5.0, D2 = 0.25, and A/ = 0.005. Figure 5 compares

1.0-

0.8--

0.6-

0.4--

0.2-

0.0

-»- No correction
-x- Linear interpolation
-x-Uffink [1985]

2.5 5.0 7.5 10.0 12.5

01/02

15.0 17.5 20.0

Figure 4. Comparison in ratios of particle numbers (N1/N2)
on either side of discontinuity in D for different alternative
techniques to conserve mass.
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concentrations approximated at discrete spatial locations by
the normalized number of particles contained in a unit length
along the x axis with the analytical solution at time t = 6.0.
The result labeled "no correction" clearly shows the error
imposed by neglecting to reflect particles or interpolate. Inter-
polation and the method of Uffink [1985] compare well with
the analytical solution.

Note the distinct differences between the two successful
techniques. Uffink's technique simulates the exact TPD. Thus
we consider this approach to converge strongly when the TPD
is simulated using Wiener processes (strong convergence refers
to the approach of a simulated particle path to the exact path
Xp(f) [Kloeden and Platen, 1989]). Interpolation does not sim-
ulate the exact TPD but still balances mass.

Limitation of the Reflection Method
For many problems, Uffink's [1985] reflection method may

become computationally infeasible because of the need for
multiple images (or reflections) around two- or three-
dimensional discontinuities in the D field. A comparable situ-
ation arises with solutions to the flow problem through image
well theory (e.g., no-flow boundaries intersecting at a right
angle [Ferris et al., 1962]). Although the number of images
required for reasonably accurate solutions is finite (due to the
normally small time steps used with the RWPM), this problem
quickly becomes intractable for heterogeneous multidimen-
sional systems. Interpolation, easily implemented in three di-
mensions, appears to provide a reasonable alternative to the
method of images. Convergence, however, requires conver-
gence in the spatial discretization associated with the interpo-
lation as well as a simultaneous convergence with decreasing
time-step size. In the following section, we address the appli-
cation of velocity interpolation and a reflection principle to
random walks on a block-centered finite difference flow solu-
tion and introduce a new algorithm based on a modified hybrid
velocity interpolation scheme.

Interpolation Methods for Implementing
The RWPM

Application of the RWPM requires knowledge of the
groundwater velocity and velocity gradient at particle loca-

0.15-

o1
Analytical solution

----- No correction
- Linear interpolation
---Uffink [1985]

0.05--

Figure 5. Comparison of concentrations from simulations
using the different alternative techniques and the analytical
solution given in (19a)-(19d) at t = 6.0 for Jt0 - -5.0, Dl =
5.0, and D2 = 0.25. The method of Uffink [1985] produces
results virtually identical to the analytical solution. The linear
interpolation method yields a close approximation.

Figure 6. Velocity interpolation from a block-centered finite
difference flow scheme.

tions, which are typically determined by numerical solution of
the relevant flow problem. As an example, consider the solu-
tion of a two-dimensional flow problem with no sources or
sinks, as defined by

dh
= 0 (20)

where h is hydraulic head [L ] and Kx and Ky are the principal
components of hydraulic conductivity in the x and y directions
[ L T ~ 1 ] . In terms of the RWPM, application of a block-
centered finite difference scheme for the solution of (20) is
particularly attractive because particles are easily located with
respect to volumetric blocks in an orthogonal grid. Here, hy-
draulic conductivities are specified on a regular grid of nodes
with coordinates (/Ax, jAy), and nodal values of the hydraulic
head are determined from a finite difference approximation of
(20):

haj) ~ ha-
AJC

Ay" -

(21)

where Ax and Ay are the constant nodal spacings [L] (Figure
6). Intermediate (midnode) values of the conductivity are usu-
ally based on a harmonic average of the adjacent nodal values
along a segment between two nodes.

Given a nodal solution for the heads, the most obvious way
to estimate velocity components is to first compute midnode
components along segments between two nodes, i.e.,

!_
e Ax

(22)
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Table 1. Velocity Interpolation Schemes

Interpolation
Scheme vx v

Linear*

Bilinearf

Block discrete

(1 - f x ) v x , a - i / 2 j ) +
(1 - F y ) [ ( l - Fx)vx

+ Fy[(l - Fx)vXt(i

fy)Vy,(iJ-l/2) + fyvy,(ij+l/2)

1/2,7)

*Here,/x = (x - *;_1/2)/A* and fy = (y - yj-l/2)/ky.
tValues apply over a block of dimension A*/ 2 by Ay/ 2 centered on (/ + 1/4, j + 1/4); T7,, = 2(x - x
velocity terms are defined as v^(ij) = l-(vl^ + 1/2,j) + ^i , ( / - i /2, /)) ' ui,(i + i/2,;+i/2) = \ (u i ,(/ + i/2,7 + i) +

and T7^ = 2(y
)0- + 1/2J)), and v l j

As shown in Figure 6, this will yield normal components of
velocity on the volumetric "block" surrounding node (/, j).
However, information on all velocity components at one loca-
tion is not provided in this way, nor is the velocity at any other
point in the domain. Velocities at particle locations must be
interpolated from these basic midnode values. Several ap-
proaches can be used to do this, as reviewed below.

Linear Interpolation
In the linear interpolation (LI) approach, one approximates

velocity components linearly and independently within each
block based on the available midnode values (Table 1). As
such, there is no variation of vx in the y direction, nor any
variation of vy in the x direction. Although derivatives of spe-
cific velocity components, as required to evaluate the diver-
gence of the dispersion tensor, may not be fully defined, the
interpolated velocity field within each block, VLI(X), satisfies
the fluid mass balance V • v = 0 exactly. The LI scheme may
yield discontinuities in tangential velocities and therefore the
velocity-dependent dispersion tensor, at block interfaces. Mass
conservation therefore requires a reflection principle or alter-
native technique be applied at these interfaces. The LI scheme
has been used in the context of advective particle tracking by
Pollock [1988], Goode [1990], Schafer-Perini and Wilson [1991],
and Cordes and Kinzelbach [1992].

Bilinear Interpolation
In the bilinear interpolation (BLI) approach, midnode ve-

locity components surrounding a node are first averaged to
provide estimates of velocity at the node (Table 1). In this way,
both components are available at each location. The interpo-
lated velocity may then be estimated in a bilinear fashion
within cell volumes, or quarter segments of these volumes, as
shown in Table 1 and Figure 6. Here, the interpolated velocity
field, VBLI(X), does not satisfy fluid mass balance; however, it
allows all first-order derivatives of velocity components to be
estimated. An important advantage of BLI is that the disper-
sion tensor is continuous in this case; a reflection principle is
therefore not required. Konikow and Bredehoeft [1978] applied
BLI in a method of characteristics model, and Goode [1990]
used it for advective particle tracking.

Block-Discrete Interpolation
In the block-discrete interpolation (BDI) approach, mid-

node velocity components are averaged to obtain values con-
sidered constant within specific finite difference blocks. Thomp-
son et al. [1987] and Tompson and Gelhar [1990] focus on the
cell volumes created by neighboring nodes to (1) average the
midnode fluxes on each cell edge and obtain constant cell

velocities, VBDI, and (2) to form central difference approxima-
tions for estimating velocity gradients; these are also uniform
within each grid block. This approach supports easy implemen-
tation of the RWPM because direct interpolation onto each
particle is not required, but is otherwise very approximate.
Nevertheless, if spatial variation of velocity is small with re-
spect to the grid resolution, errors might still be acceptably
small.

Hybrid Schemes
For purely advective particle tracking, the LI scheme is mass

conservative and clearly an appropriate choice. However, for
the dispersive component of the random walk, the LI scheme
may be impractical because of the need for reflection correc-
tions. This raises the possibility of applying LI for the advective
component and BLI for velocities in the dispersive component.
Below, we compare hybrid schemes that use bilinear interpo-
lation to estimate velocities in the dispersion tensor, and either
linear or block-discrete methods to approximate advective
terms; we will refer to these hybrid schemes as BLI/LI and
BLI/BDI, respectively. These hybrid schemes yield a continu-
ous dispersion tensor, so a reflection principle is not required
to satisfy mass balance at block interfaces.

Test Cases
Two problems are considered: (1) transport in highly per-

meable stratum bounded by low-permeability material in
which transport occurs only by diffusion and (2) transport in
two-dimensional heterogeneous porous media. The first prob-
lem assesses the relative accuracy, with respect to balancing
mass at material contacts, of the three interpolation schemes
and a reflection principle presented above by comparing re-
sults from numerical experiments with a known analytical so-
lution. This problem serves as a surrogate for the general case,
where due to the nature of the block-centered finite difference
scheme, tangential velocities, and therefore the velocity-
dependent dispersion tensor, are often discontinuous at block
interfaces. Furthermore, this problem represents the "worst
case scenario" of a discontinuous dispersion tensor that might
be encountered in more general two- and three-dimensional
simulations. The second problem demonstrates the potentially
significant effects of neglecting discontinuities in the dispersion
tensor in random-walk simulations of transport in complex
heterogeneous porous media. In this case, results from hybrid
interpolation schemes, BLI/LI and BLI/BDI, which locally bal-
ance mass by bilinearly interpolating velocities in the disper-
sion tensor, are compared with the BDI scheme of Tompson et
al. [1987] and Tompson and Gelhar [1990], which tries to cor-
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rect for these discontinuities by including approximations for
gradient terms.

Solute Transport in a Stratified System
Problem description. The stratified saturated system

shown in Figure 7 contains a thin horizontal high-permeability
layer of thickness 2b and length 1.0 m. This layer is bounded by
low-permeability porous layers considered to be of infinite
thickness in the vertical. A conservative constituent is intro-
duced at constant concentration, c0, at the upstream end of the
high-permeability layer during a time period tp. As the con-
stituent progresses along the high-permeability layer, diffusive
transport between this layer and the adjacent low-permeability
layers accentuates the overall dispersion of solutes in the sys-
tem. Obtaining an accurate solution to this problem is highly
dependent on a correct simulation of mass transfer across the
interfaces between high- and low-permeability layers.

Initial and boundary conditions for the problem are speci-
fied as

c(x,y, 0) = 0

c ( Q , y , t ) = c0 Q<t<tp -b

c(0, y, t) = 0 otherwise

cKy, 0 = 0

c(x, ±°o, 0 = 0

(23a)

(23b)

(23c)

(23d)

For tp = 1 days, these conditions represent a 7-day input of a
conservative constituent at the upstream end of the high-
permeability layer as was addressed in the laboratory study of
Sudicky et al [1985]. For this problem, the pore-scale longitu-
dinal dispersivity has been shown to contribute little to the
development of the solute plume, and neglecting it will intro-
duce little error in predictions. For simplicity, the porosity was
specified as a constant of 1.0 throughout the system. Superpo-
sition in time of the analytical solution presented by Gillham et
al. [1984], which assumes that solute in the high-permeability
layer is well mixed, is used to obtain an analytical solution to
(23a)-(23d).

For the numerical experiments, the various interpolation
schemes were incorporated into the SLIM1 random-walk code
[Tompson et al., 1987]. In all numerical simulations, the do-
main was discretized in a manner consistent with a velocity
field computed by a block-centered finite difference flow
model.

1.2

j l .O -

I
j 0.8 --

-Analytical solution

-LI with reflection principle

6 8
Time (days)

Figure 8. Comparison of analytical solution with solute
breakthrough curve predicted using LI with and without a
reflection principle (Ay = 0.03 m). There is no solute break-
through for LI without a reflection principle. Simulations using
Ay = 0.01 m and 0.006 m produce identical results for this test
case.

The average concentration, CS
H, across the entire high-

permeability layer at a point x may be discretely estimated
from the particle mass contained within a narrow area cen-
tered at x of length Ax and width 2b, divided by the area,
Aa = 2b Ax. In terms of (2), with 0 = 1,̂  can be expressed by

CS
H(X) = mn (24)

Figure 7. A stratified system with a thin high-permeability
layer bounded by a low-permeability porous matrix.

Transport in this stratified system may be modeled with the
particle approach by releasing particles along the upstream
edge of the high-permeability layer and allowing them to ad-
vect downstream and disperse into the adjacent low-
permeability zones. To simulate the Dirichlet boundary condi-
tion at the upstream end of the system, the concentration, CS

H,
in the leftmost column cells is maintained at a value of 1.0 for
7 days using a total of 5000 particles and properly maintained
boundary conditions [Tompson and Dougherty, 1992], after
which it is turned off.

Simulations were performed for three levels of discretiza-
tion, Ay = 0.03 m, Ay = 0.01, and Ay = 0.006 correspond-
ing to 1, 3, and 5 grid blocks, respectively, for the entire width
of the high-permeability layer. Discretization in the* direction,
used to calculate concentration, is specified as 0.001 m. The
following parameter values were used in all simulations: b =
0.015 m, Dm = 1.0454 X 10~4 m2/d, aT = 0.01 m, vv =
0.5 m/d, and Ar - 0.001 days.

Results and discussion. Simulations were performed for
the LI scheme with and without a reflection principle. The
results for CS

H at x = 1.0 m are compared with the analytical
solution in Figure 8. Predictions using LI with a reflection
principle agree well with the analytical solution. Predictions
using LI alone yield little or no solute breakthrough; mass in
the high-permeability layer is lost to the low-permeability ma-
trix. The discretization in they direction does not affect results
from either LI with a reflection principle or LI alone; hence the
cases Ay = 0.01 m and Ay - 0.006 m are not shown.

The LI scheme without a reflection principle preserves dis-
continuities in velocity at material contacts and fails to address
them. This is similar to the "no correction" case considered in
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Figure 9. Comparison of analytical solution with solute
breakthrough curves predicted using BDI.

the tests of the various reflection principles. Without special
treatment of random walks at these contacts, mass flux from
high- to low-dispersion layers is overestimated, and mass flux
from low- to high-dispersion layers is underestimated.

Predictions using BDI are compared with predictions from
the analytical solution in Figure 9. As expected, results from
BDI compare poorly to the analytical solution because discon-
tinuities in the velocity-dependent dispersion tensor are not
addressed. The gradient terms in BDI seek to offset mass-
conservation errors due to discontinuities. However, the mag-
nitudes of these terms arid the areas over which they apply
change with discretization in the y direction, whereas the im-
pulse in drift due to the discontinuity in the transverse disper-
sion is independent of this discretization.

Results from the BLI/LI and BLI/BDI hybrid schemes are
compared with the analytical solution in Figure 10. Note that
simulations using the BLI/LI and BLI/BDI hybrid schemes
yield the same results for this test case. As expected, results
indicate convergence of these schemes to the analytical solu-
tion as the grid is refined. As the grid becomes more coarse,
breakthrough is shifted to later times; however, the main fea-
tures of the breakthrough curves, in particular, peak concen-
trations, are maintained. The extent to which this BLI/LI and
BLI/BDI can approximate discontinuous tangential velocities
will depend on the resolution of the grid.

Ideally, one would also hope to test the BLI/LI hybrid
scheme in cases with more complex heterogeneity in two- and
three-dimensions. However, we know of no analytical solutions
to represent a "ground truth" for such conditions. Further-
more, comparing with other numerical solutions would be cir-
cular. Nevertheless, we believe the above two-dimensional test
is sufficient to conclude that the BLI/LI hybrid scheme is ca-
pable of producing reliable results, provided the discretization
is adequately refined.

Transport in Heterogeneous Porous Media
Problem description. The transport of a conservative con-

stituent in a heterogeneous system is considered here. This
problem is of interest because the RWPM has been proposed
[Tompson et al., 1987] to verify stochastic transport theories
[e.g., Matheron and de Marsily, 1980; GelharandAxness, 1983]
and to investigate the effects of porous media heterogeneity on
solute transport [Tompson et al., 1994]. In these cases, random-
walk model solutions are considered true representations of

transport. Accuracy in these random-walk simulations is there-
fore critical.

The two-dimensional conductivity field illustrated in Figure
11 was generated on a grid with dimensions 85 (Az = 1) in the
vertical and 1400 (A* = 100) in the horizontal using a Gaus-
sian conditional simulation technique [Fogg et al., 1991] with a
spherical variogram model having vertical and horizontal var-
iogram ranges of 10 and 400, respectively. For flow simula-
tions, the numerical grid is refined in the x direction, so that
AJC = 10, while still preserving the geometry of the simulated
conductivity field. A steady state hydraulic-head distribution
was simulated using the MODFLOW block-centered finite
difference flow program [McDonald and Harbaugh, 1988]. No-
flux boundary conditions are specified at z = 0 and z = 85.
Constant-head boundary conditions at x = 5 and x = 1395
are specified as h = 37 and h = 0, respectively, for all z.

Transport is simulated for an instantaneous injection of a
contaminant in a fully penetrating line source at location x =
10. Boundary conditions for transport simulations are speci-
fied as reflecting no-flux conditions at z = 0 and z = 85 and
open boundaries at x = 10 and x = 1390. Initially, 50,000
particles are distributed uniformly over the vertical in the col-
umn of grid blocks from* = 0 to x — 10. These particles are
allowed to advect and disperse into the domain over a single
time step. After this time step, particles at locations* < 10 are
eliminated in order to approximate an instantaneous injection
of mass. The following parameter values are used in all simu-
lations: B - 0.33, Dm = 1.1 X 10"3, and OLL = aT = 0.03.

Results and discussion* In this example, we use BDI, BLI,
and the two hybrid schemes, BLI/LI and BLI/BDI, and com-
pare results for mass-breakthrough curves and first and second
spatial moments of the mass distribution [Tompson et al.,
1987]. Results for mass breakthrough at* = 1390 versus time
from simulations using the various interpolation schemes are
compared in Figure 12. Results for the first- and second-order
moments are presented in Figures 13 and 14, respectively. For
this problem, results from the three schemes that bilinearly
interpolate velocities in the dispersion tensor are virtually
identical, indicating little effect of change in advective-
component interpolation method on predicted average trans-
port behavior. In contrast, BDI model predictions differ con-
siderably from the three BLI schemes, showing that average

1.0

° 0.8 -

0.0

Analytical ——-Ay = 0.03 ——Ay = 0.01 ——Ay = 0.006

6 8
Time (days)

Figure 10. Comparison of analytical solution with solute
breakthrough curves predicted using BLI/LI and BLI/BDI
schemes. The BLI/LI and BLI/BDI schemes produce identical
results for this test case.
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Figure 11. Gaussian conditional simulation of hydraulic-conductivity field with log K mean and standard
deviation of 1.69 X 10~3 and 2.75 X 10~3, respectively, and vertical and horizontal variogram ranges of 10 and
400, respectively (modified from Fogg et al [1991]).

transport behavior predicted by the RWPM is sensitive to the
way in which D is treated for this case.

Considerable effort has been devoted to accurate interpola-
tion of velocities for the case of pure solute advection (A = v,
B = 0) [Reddell and Sunada, 1970; Konikow and Bredehoeft,
1978; Pollock, 1988; Goode, 1990; Schafer-Perini and Wilson,
1991; Cordes and Kinzelbach, 1992]. It is well known that by
maintaining aquifer geometry at a given scale and refining the
computational grid, in the limit, interpolation errors in advec-
tive components will vanish [Goode, 1990]. However, as dem-
onstrated in the transport experiment in stratified media (Fig-
ures 8, 9, and 10), discontinuities in the dispersion tensor and
the consequent mass-conservation errors will remain unless
interpolation, reflection, or similar alternative method is ap-
plied. Agreement between schemes that bilinearly interpolate
velocities in the dispersion tensor and disagreement between
these schemes and BDI (Figures 12-14) suggest that when
transport is dispersive (D ^ 0), the choice of interpolation
scheme for advective components has relatively little effect on
overall transport compared to the choice of how one handles
discontinuities in dispersion tensor.

Conclusions
In this paper we have reviewed conditions required for local

mass conservation by the RWPM and discussed consequences

of violating these conditions. A problem occurs in cases where
interfaces separate materials with contrasting hydraulic prop-
erties; dispersivities, effective porosities, and velocities, and
therefore the velocity-dependent dispersion tensor, may be
discontinuous. We find that when the dispersion tensor is dis-
continuous, due to a discontinuous velocity field, mass flux can
be conserved in the RWPM through the use of a carefully
chosen interpolation scheme or a reflection principle. Similar
methods may be applied when dispersivities or effective poros-
ities are discontinuous.

A reflection principle based on the method of images yields
a mass-conservative random walk near interfaces representing
discontinuities in the dispersion tensor. However, application
of this method to general three-dimensional problems in which
multiple interfaces intersect appears problematic; numerous
images (reflections) must be superimposed to obtain the tran-
sition probability density. Velocity interpolation provides a
mass-conservative approximation that does not require super-
position of multiple images. Velocity interpolation is easily
implemented, and simulation results indicate convergence as
the spatial and temporal discretizations are refined.

When a block-centered finite difference scheme is used to
solve the flow equation, linear interpolation in the direction of
the velocity component, although consistent with the governing
flow equations, may yield discontinuities in tangential veloci-
ties, even when the effective porosity is continuous in space.

1000 2000 3000 4000
Time (days)

5000 6000 100 200 300 400 500 600 700 800 900 1000
Time (days)

Figure 12.
dieted using

Comparison of solute breakthrough curves pre- Figure 13. Comparison of first-order moments predicted us-
BDI, BLI/BDI, BLI/LI, and BLI. ing BDI, BLI/BDI, BLI/LI and BLI.
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Figure 14. Comparison of second-order moments predicted
using BDI, BLI/BDI, BLI/LI, and BLI.

These discontinuities are not a problem in advective particle-
tracking models. However, with the RWPM, velocities tangent
to an interface also contribute to the dispersive flux across that
interface. Discontinuities in this flux violate local mass conser-
vation. Bilinear (or trilinear) interpolation of velocities in the
dispersion tensor or a reflection principle provide methods for
conserving mass in these cases. The results presented herein
show that, unless one of these methods (or a similar method)
is applied, discontinuities in tangential velocities may lead to
severe local mass-conservation errors in the random walk
which can significantly affect transport predictions. Simulation
results suggest local mass-conservation errors, due to incor-
rectly handling discontinuities in dispersive components of the
random walk, outweigh mass-conservation errors due to inac-
curate interpolation of advective components.

Last, we find that additional development of the theory
behind the RWPM for the advection-dispersion equation with
discontinuous coefficients is needed. While the interpolation
approach has been applied with some success here, it appears
that a more accurate, efficient method without the need for
grid refinement might arise from such an effort.
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