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Abstract. Typical hydrogeologic data sets consisting of information from boreholes
provide excellent information on vertical variability of sedimentary deposits but very
limited information on lateral distribution and variability. In cases where surface
geomorphic features reflect processes similar to those responsible for past deposition, the
soil survey offers a resource for assessing the lateral sediment variability. Facies mean
length and transition probability measurements of C horizon textures from the soil maps
on the Kings River alluvial fan, California, provide a basis for Markov chain models of
spatial variability in the principal lateral directions and facies orientation information for
the horizontal plane. Incorporation with a Markov chain model of vertical-direction
transitions based on well data yields a three-dimensional Markov chain model of sediment
variability which includes cross correlation between sediment types and representation of
asymmetry (e.g., fining upward tendencies). Use of the model in geostatistical conditional
simulation and simulated annealing produces a detailed, geologically plausible image of
the subsurface hydrofacies distribution.

1. Introduction

The difficulty of characterizing subsurface heterogeneity
with commonly sparse data sets severely limits the accuracy
and realism of transport models. A typical hydrogeologic or
petroleum data set consists of wire line logs, driller’s lithologic
logs, and limited core from widely spaced wells. These data
may provide excellent information on the vertical variability of
the sediments but only limited information about the lateral
distribution and variability of the deposits.

Numerous characterization methods have been proposed for
modeling the spatial distribution of hydrostratigraphic material
in light of this limited lateral variability information. Kolter-
mann and Gorelick [1996] classified these methods as either
descriptive, process imitating, or structure imitating. The de-
scriptive methods use site specific information, such as well
logs and geophysical data, along with a conceptual geologic
model to divide the aquifer into characteristic hydrogeologic
zones; however, the conversion of descriptive models to a
quantitative hydrostratigraphic model is often difficult and un-
clear, as is quantification of uncertainty [Koltermann and
Gorelick, 1996]. Surface geophysical methods [e.g., Bashore et
al., 1994] such as seismic reflection surveys and ground-
penetrating radar show great promise, but relating geophysical
attributes to hydraulic properties remains difficult.

Process-imitating models attempt to mimic the complex dis-
tribution of facies by simulating the accumulation of sediments
in depositional sequences. However, these methods do not
honor actual data at well locations and may not contain suffi-

cient site specific information [North, 1996; Koltermann and
Gorelick, 1996]. Additionally, the process models are compu-
tationally demanding and highly sensitive to initial conditions,
boundary conditions, and calibration to tectonic and climatic
histories for which appropriate data and interpretation are
subjective and difficult to obtain [Koltermann and Gorelick,
1996].

Structure-imitating methods, commonly based on geostatis-
tics, honor known data points and patterns of spatial variability
[Deutsch and Journel, 1992; Carle, 1996]. However, the devel-
opment of a model of lateral spatial variability (e.g., vario-
gram) tends to be problematic and uncertain because lateral
continuity of geologic facies is usually significantly smaller than
spacing between wells in heterogeneous porous media. Fusion
of geophysical, geostatistical, and hydrologic data can greatly
improve the variogram model and resulting characterization
[McKenna and Poeter, 1995; Hyndman and Gorelick, 1996], but
knowledge of lateral variability usually remains substantially
more uncertain than the knowledge of vertical variability.

The use of previously recorded C horizon (approximately
1.5 m depth) soil data may provide considerable insight for
deriving geostatistical correlation structure in undersampled,
lateral directions, assuming that the modern geomorphologic
processes are similar to those responsible for formation of the
aquifer system. In these cases the soil survey may be used as a
“training image” [Deutsch and Journel, 1992; Koltermann and
Gorelick, 1996] for understanding the spatial distribution of
facies in lateral directions. We present a new application of soil
survey data in conjunction with subsurface data (e.g., well logs
and core) and a structure-imitating method that employs a
transition probability and Markov chain geostatistical ap-
proach to create geologically plausible, three-dimensional
characterizations of a heterogeneous, fluvial aquifer system.
The example application shows how the geostatistical tech-
nique facilitates joint incorporation of soil data, well log data,
and geologic interpretation into development of a three-
dimensional model of hydrofacies architecture.
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2. Geologic Framework and Data
The Kings River alluvial fan aquifer system provides an

excellent location for integration of soil survey data into a
three-dimensional model of subsurface heterogeneity. The
aquifer system consists of unconsolidated sediments deposited
on a stream-dominated alluvial fan that developed where the
Kings River exits the Sierra Nevada mountains into the San
Joaquin Valley (Figure 1). The alluvial fan deposits consist of
channel gravels and sands embedded within finer-grained
floodplain and levee deposits.

A high-quality soil survey for this study area, produced by
the U.S. Department of Agriculture [Huntington, 1971], shows
the lateral spatial distributions of geologic facies on the fan
surface. As the last of a series of soil surveys in the region, this
survey represents a culmination of geomorphic understanding
about this alluvial fan system, where soil profiles were interpreted
and matched to geomorphic characteristics of the alluvial fan
depositional environments [Huntington, 1980]. The compilation
of the soil survey included soil profiles to depths of up to 2 m
and field data records from over 40,000 surface and shallow
subsurface borings, special excavations, road cuts, and natural

exposures in the eastern Fresno County study area [Huntington,
1980]. Consequently, these soil maps contain detailed, regional
descriptions of the spatial patterns in recent depositional facies.

Subsurface data from the study area include approximately
150 m of core from three wells and wire line logs from seven
wells to depths up to 82 m collected by the U.S. Geological
Survey (USGS) [Burrow et al., 1997] and approximately 150 m
of continuous core obtained from 22 shallow test holes drilled
along transects to depths of approximately 10 m. These
transects enabled comparison of the soil survey data to deeper
intervals with regard to subsurface lateral variability.

On the basis of core data, sediments were categorized into
four hydrofacies: gravel, sand, muddy sand, and mud, where
“mud” refers to undifferentiated silt and clay (Table 1). The
volumetric proportions listed in Table 1 represent the fraction
of each hydrofacies encountered in the USGS core. The gravel
and sand facies form the aquifer, while the muddy sand and
mud form aquitard bodies.

The gravel facies consists of small cobbles and pebbles in a
matrix of coarse to very coarse sand attributed to channel lag
deposits of the ancestral Kings River. The gravel facies tends
to occur below the sand facies and, lacking in silt and clay,
likely possesses the highest hydraulic conductivity in the sedi-
mentary sequence. The sand facies consists of medium- to
coarse-grained sand that was deposited primarily in channels
of the Kings River or secondary distributary channels on the
alluvial fan. The muddy sand facies consists of finer-grained
sand that may include a matrix of clay and silt. This hydrofacies
includes bar top sediments within the upper portions of chan-
nel deposits and levee or proximal floodplain deposits. Orange
to reddish coloration, root traces, and evidence of translocated
clays in some of these deposits indicate slight to moderate
pedogenic alteration due to relatively short-duration surface
exposure. The mud facies corresponds to distal floodplain de-
posits consisting of massive to laminated silt and mud with
occasional fine sand laminae. Some mud facies show evidence
of relatively intense pedogenic alteration, as indicated by red
coloration, root traces, and thick coats of translocated clay on
grains and ped (soil structures) faces. These buried soils are
attributed to extended periods of landscape stability on the
alluvial fan surface [Lettis, 1988]. These facies are consistent
with stream-dominated alluvial fan deposition.

Identification and correlation of these subsurface facies to C
horizon textures recorded in the soil survey provide indications
of the lateral distribution of these facies in the deeper subsur-
face. The soil survey lists type profile descriptions for each soil
series (e.g., soil types). Subtle variations in soil series textures
are described in the survey as “mappable units.” The C horizon
texture described for each mappable unit were categorized into
the appropriate subsurface hydrofacies based on textures, as
shown in Table 1. For example, soil textures dominated by

Figure 1. Map of California showing the location of the
Kings River alluvial fan study area.

Table 1. Hydrostratigraphic Facies Defined for the Kings River Alluvial Fan Aquifer
System From Core and Soil Survey Interpretations

Hydrofacies Geologic Interpretation C Horizon Texture
Volumetric
Proportions

gravel channel lag gravel z z z 0.03
sand channel bar sand sand, loamy sand 0.46
muddy sand bar top, levee, proximal overbank (fine) sandy loam 0.26
mud overbank fines, paleosols clay, silt, clay loam, hardpan 0.25

Ellipsis indicates this texture was not present on the soil survey.
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sand (e.g., sand or loamy sand) were included in the sand
facies. By replotting the soil survey based on these categories,
a map of the surface distribution of hydrofacies was produced
(Figure 2). The C horizon textures are used because these most
closely reflect the unaltered textures of sediment deposited on
the alluvial fan. Additionally, since the C horizon occurs at
depths of 1.5 to 2 m, the map represents textures that are not
influenced by plowing or other anthropogenic effects.

This map shows the characteristic alluvial fan radial pattern
of coarse-grained channels which are surrounded by finer-
grained floodplain deposits, where channel cross sections or
lengths are longer in the depositional dip direction (parallel to
channel axis orientation) and shorter in the depositional strike
direction (perpendicular to the channel axis). Because the pro-
cesses that deposited the sediments reflected by the soil survey
are the same as those responsible for aquifer deposition [Lettis,
1988], similar lateral facies distribution patterns are expected
in the subsurface.

3. Geostatistics and Geology
In the water resources literature, geostatistical modeling of

subsurface spatial structure has been performed using ap-
proaches based on continuous random functions [e.g., Gelhar
and Axness, 1983; Dagan, 1989; Neuman and Zhang, 1996] and
indicator-based methods for categorical variables [e.g., John-
son and Driess, 1989; Desbarats, 1993; Ritzi et al., 1995; McK-
enna and Poeter, 1994, 1995]. In both approaches a variogram
or covariance function is used as the model of spatial variabil-
ity. Estimation of spatial structure models of continuous ran-
dom functions, such as hydraulic conductivity (K) for subsur-
face systems, is problematic because of the typically sparse
measurements of K . Indicator methods have been attractive as
a means of addressing the categorical nature of geologic data
and for incorporating the geometric context of geologic facies.
Nevertheless, geologic information tends to be too sparse in
the lateral directions to support direct inference of horizontal

Figure 2. A map of the geomorphic distribution of hydrofacies based upon a classification of the C horizon
textures as listed in Table 1 [modified from Huntington, 1971]. This map clearly shows the orientation and
distribution of various facies on the Kings River alluvial fan.
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indicator variograms, and significant questions remain about
the ability of indicator variograms to represent basic charac-
teristics of geologic facies assemblages [Fogg et al., 1998]. For
example, geologic facies inherently exhibit different geome-
tries and cross correlation and have proven difficult to repre-
sent and model with past indicator approaches, especially when
the number of categories or facies exceeds two [Deutsch and
Journel, 1992]. Furthermore, if data are too sparse to directly
determine indicator variogram models, one must use geologic
principles and concepts to synthesize appropriate models.
Practical means of accomplishing this with traditional indicator
methods, such that the relevant geologic features are pre-
served, have been little explored or demonstrated.

The use of a “training image,” such as a geologist’s concep-
tual drawing representing the general style of heterogeneity,
can be useful for synthesizing an appropriate variogram model.
Often, however, one may wish to estimate the spatial correla-
tion function using outcrop descriptions or soil maps as ana-
logs for the actual system of interest. Inevitably, the resulting
function must be adjusted to represent the differing character-
istics occurring in the subsurface system relative to the analog,
such as differing volumetric proportions, mean lengths, and
juxtapositional tendencies of the facies. Recognizing and ad-
justing the quantitative manifestations of these features in
(cross) variograms or (cross) covariances is difficult. Further-
more, cross variograms cannot represent the asymmetrical cor-
relation structures commonly observed in geologic systems
(e.g., fining upward sequences) [Carle and Fogg, 1996; Fogg et
al., 1998], and practical, proven techniques for modeling cross
covariances in a geologic system containing more than two
categories (facies) have not been developed.

Below, we briefly describe an approach based on transition
probability geostatistics using the vertical data to illustrate

model development and geologic inputs into the model. De-
tails of this technique are given by Carle [1996, 1997a, 1997b],
Carle and Fogg [1996, 1997], and Carle et al. [1998]. Herein we
present a new variation on the technique that involves use of
embedded transition probabilities to develop the Markov chain
model. We then show how the soil map is used to develop a
three-dimensional model of spatial variability. This geostatis-
tical approach provides the theoretical and practical frame-
work for both representing the coregionalization structure of
complex, cross-correlated hydrofacies assemblages and esti-
mating this structure from a combination of hard data, analog
models, and geologic concepts and principles.

4. Transition Probability/Markov Geostatistical
Approach: Theory and Application

The transition probability/Markov chain approach to mod-
eling spatial variability facilitates integration of geologic con-
cepts and reduces reliance on the traditional empirical curve-
fitting approach. Readily observable geologic attributes,
including volumetric proportions, mean facies lengths (e.g.,
thickness and width), and juxtapositional tendencies, can be
incorporated directly into development of a three-dimensional
Markov chain model through a combination of fitting transi-
tion probability measurements and inference from geologic
concepts and principles. The Markov chain model, in turn, is
used in a cokriging procedure during conditional sequential
indicator simulation and simulated quenching (zero-tempera-
ture annealing) [Deutsch and Journel, 1992] to generate “real-
izations” of subsurface facies distributions.

The transition probability t jk(h) is defined as

t jk~h! 5 Pr $k occurs at x 1 h uj occurs at x% (1)

where k and j refer to categories or geologic facies, x is a
spatial location vector, and h is a separation vector. Once
vertical borehole data are categorized into facies, measure-
ments of t jk(hz) reflect the spatial continuity and juxtaposi-
tional tendencies of the facies. This is illustrated in Figure 3
where measurements of t jk(hz) values from the core descrip-
tion show vertical ( z) direction spatial relationships of the
Kings River alluvial fan hydrofacies.

The bold solid line in Figure 3 represents a vertical Markov
chain model calculated by the matrix exponential

T~hz! 5 exp @R zhz# (2)

where T(hz) denotes an N 3 N matrix of transition probabil-
ities (N 5 4 in Figure 3) and Rz is a matrix of transition rates
for the vertical direction

R z 5 3
r11, z · · · r1N, z

···
· · ·

···
rN1, z · · · rNN, z

4 (3)

with entries rjk ,z describing the rate of change from category j
to category k per unit length in the direction z . Differentiating
(2) at hz 5 0, the transition rates are related to transition
probabilities by

r jk,z 5 t jk~0!/~hz! (4)

[Ross, 1993; Carle and Fogg, 1997].
An eigenvalue analysis must be carried out in order to eval-

uate exp(Rzhz) because the matrix exponential is not com-

Figure 3. Matrix of vertical-direction transition probabilities
showing U.S. Geological Survey core data measurements (cir-
cles) and the Markov chain model (solid lines) for the Kings
River alluvial fan. The fine solid horizontal lines indicate the
sills which show the volumetric proportions of facies in each
column. Intersection of the long-dashed line (tangent) with lag
axes indicate mean lengths of each facies. The short-dashed
lines show the maximum disorder transition probability, as
described in the text.
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puted merely by computing the exponential of the matrix en-
tries, that is, t jk ,z(hz) Þ exp(rjk ,zhz). Letting h 5 hz and R 5
Rz for notational simplification, exp(Rh) is exactly determined
by

exp ~Rh! 5 O
i51

N

exp ~l i h!S i (5)

where l i and Si denote the eigenvalues and spectral compo-
nent matrices, respectively, of R. The mathematical details are
given by Agterberg [1974], Carle and Fogg [1997], and Carle et al.
[1998]. One eigenvalue, say l i, is inherently zero and is asso-
ciated with a spectral component matrix having the propor-
tions along each column. Thus, for a four-category system the
continuous lag Markov chain model written out completely
consists of

exp ~Rh! 5 ~1.0!3
p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

4
1 exp ~l2 h!3

s11,2 s12,2 s13,2 s14,2

s21,2 s22,2 s23,2 s24,2

s31,2 s32,2 s33,2 s34,2

s41,2 s42,2 s43,2 s44,2

4
1 exp ~l3 h!3

s11,3 s12,3 s13,3 s14,3

s21,3 s22,3 s23,3 s24,3

s31,3 s32,3 s33,3 s34,3

s41,3 s42,3 s43,3 s44,3

4
1 exp ~l4 h!3

s11,4 s12,4 s13,4 s14,4

s21,4 s22,4 s23,4 s24,4

s31,4 s32,4 s33,4 s34,4

s41,4 s42,4 s43,4 s44,4

4 (6)

where the sab ,i are coefficients of the spectral component
matrices Si determined in the eigensystem analysis. Thus the
Markov chain model for each entry t jk(h) in T(h) consists of
a linear combination of N 2 1 exponential structures added to
the column category proportion. For example, in the four-
category case given in (6)

t jk~h! 5 pk 1 sjk,2 exp ~l2 h! 1 sjk,3 exp ~l3 h!

1 sjk,4 exp ~l4 h! (7)

In the case of the vertical direction transition probability
matrix shown in Figure 3, the Markov chain model was fit to
transition probability values measured in the USGS core based
on observations at a 0.3 m spacing. Plots located in the main
diagonal of Figure 3 represent autotransitions from a category
to itself, and plots located off the main diagonal represent
cross transitions from one category to another. The parameters
of the Markov chain (e.g., the transition rates) reflect observ-
able spatial attributes, including volumetric proportions, mean
lengths (e.g., thicknesses), and facies juxtapositional tenden-
cies. The ability to relate fundamental, observable attributes of
the geologic system to parameters of the coregionalization
model is vital to the application of a geostatistical method
whether data are abundant or sparse. Below we describe the
manifestations of volumetric proportions, mean lengths, and
juxtaposition tendencies in the Markov chain model.

4.1. Volumetric Proportions

The “sills” of transition probability plots (i.e., values the
transition probabilities tend toward with increasing lag), shown
by the horizontal thin line in Figure 3, reflect volumetric pro-
portions of the column categories and are thus related to the
transition probabilities by

lim
hf3`

t jk~hf! 5 pk ; j , k (8)

assuming stationarity [Carle and Fogg, 1996]. For example,
hydrofacies proportions established by the vertical core data
(Table 1) can be used to establish the sills for Markov chain
models in nonvertical directions. In development of the tran-
sition rate matrix, row sums of unity are enforced and sills of
the transition probabilities converge on the given proportions
pj for j 5 1, z z z , N by maintaining

O
k51

N

rjk,f 5 0 ; j (9)

O
j51

N

pjr jk,f 5 0 ; k (10)

[Ross, 1993, p. 273; Carle and Fogg, 1997].

4.2. Mean Lengths

Mean lengths L# k ,f of a category k are readily calculated
from continuous data as the total length of k in the direction f
divided by the total number of embedded occurrences of k
along lines in the direction f. Mathematically, the mean length
L# k ,f relates to a diagonal transition probability tkk(hf) by

tkk~0!

hf

5 2
1

L# k,f
(11)

[Carle and Fogg, 1996]. Therefore the mean length will be
indicated on the autotransition probability plot by the inter-
section of the tangent at the origin with the ordinate axis, as
shown by the long-dashed lines in Figure 3. Application of (4)
to (11) shows that a diagonal transition rate rkk ,f directly
relates to mean length by

rkk,f 5 2~1/L# k,f! (12)

Estimates of mean length can be incorporated directly into (3)
to establish the diagonal transition rates of a Markov chain
model. Therefore knowledge of proportions and mean lengths
of facies can be used to create geologically tenable models of
t jj in directions for which data are sparse. The length distribu-
tions generated by the Markov chain model will tend toward
geometric [Krumbein and Dacey, 1969].

4.3. Juxtapositional Tendencies

Juxtapositional tendencies (e.g., the tendency for facies to
occur adjacent to other facies) are evident in the off-diagonal
transition probability plots by comparing the measured transi-
tion rates rjk ,f to a theoretical transition rate r̂ jk ,f, which
exhibits statistically independent juxtapositional tendencies
[Carle, 1997b]. A resulting maximum disorder Markov chain
model t̂ jk ,f(hz) is indicated on Figure 3 by the short-dashed
lines. Facies that tend to lie adjacent to each other moving
from k to j in the upward direction z show measured transition
probabilities greater than t̂ jk ,z; conversely, those that tend not
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to lie adjacent to each other show measured transition proba-
bilities less than t̂ jk ,z.

These juxtapositional tendencies are also reflected in the
rate matrix of the Markov chain model and can be viewed
relative to the mean lengths and off-diagonal independent
juxtapositional tendencies as follows

R z 5

gr

s

ms

m

gr s ms m

3
2

1
L# 5 2.00

5.01r̂ 0.02r̂ 0.03r̂

1.53r̂ 2
1

L# 5 3.26
1.48r̂ 0.16r̂

0.49r̂ 0.46r̂ 2
1

L# 5 1.44
1.39r̂

1.48r̂ 1.43r̂ 0.80r̂ 2
1

L# 5 2.21

4
(13)

The fining upward tendency, typical of fluvial deposits, is ap-
parent from the transition rate of 5.01 r̂ for gravel (gr) to sand
(s) and the transition rate of 0.02 r̂ and 0.03 r̂ for gravel up-
ward to muddy sand and mud, respectively, indicating that
gravel was observed to transition upward primarily to sand and
rarely to muddy sand or mud in the cores. The transition rate
of 1.48 r̂ for sand up to muddy sand (ms) and the transition
rate of 0.16 r̂ for the transition from sand up to mud ( f ) shows
additional evidence of this fining upward tendency, where sand
tends to transition upward to muddy sand more often than to
mud.

The off-diagonal transition rates can also be interpreted in
the embedded Markov chain framework, in which the transi-
tion probability from one embedded (discrete) occurrence of a
facies to another is analyzed. For example, an embedded tran-
sition probability for the vertical direction would be defined as

p jk,z 5 Pr $k occurs above j uj% (14)

where k and j denote embedded occurrences. Most Markov
analyses of geologic successions have been conducted in the
embedded framework [e.g., Doveton, 1971; Miall, 1973; Ethier,
1975]. The off-diagonal transition rates of a spatial Markov
chain can be related to the embedded transition probabilities
by

r jk,f 5
p jk,f

L# j,f
; j Þ k (15)

[Carle, 1997b]. As such, the vertical transition rate matrix could
be viewed in terms of an embedded transition probability ma-
trix as

P jk,z 5

gr

s

ms

m

gr s ms m

3
0.98 0.01 0.01

0.06 0.88 0.06

0.03 0.17 0.80

0.07 0.39 0.54
4 (16)

by applying (15) and (12) for the assumed mean lengths. Since
embedded transition probabilities represent transitions be-
tween discrete occurrences of facies, the diagonal terms of

P jk ,z are considered unobservable and thus left blank. Again,
the fining upward tendencies in these fluvial deposits are
shown by the high probability of transitioning upward from
gravel to sand (0.98) rather than from gravel to muddy sand or
mud (0.01 for each) and for sand up to muddy sand (0.88)
rather than from muddy sand up to mud (0.06).

4.4. Markov Chain Model Development

In the vertical direction, abundant data enabled develop-
ment of the model by fit to measured transition probability
values; however, a Markov chain may also be readily developed
from semiquantitative information on volumetric facies pro-
portions, mean facies lengths, and estimates of juxtapositional
tendencies. Application of (9) and (10) eliminates the need to
specify row and column entries for one of the categories in the
rate matrix. This category is referred to as the “background”
category. Conceptually, the background category may be
viewed as the category that “fills in the space” not occupied by
other categories (e.g., fine-grained floodplain sediments). This,
together with a symmetry assumption, can reduce the number
of entries needed for model development to (N2 2 N)/ 2. For
example, in a four-category system, only six entries in Rf may
need to be established rather than 16.

Importantly, a Markov chain model produced as described
above honors basic probability laws. In contrast, previous in-
dicator coregionalization models that neglect cross correla-
tions or rely only on empirical curve fitting can lead to signif-
icant “order relation violations” (i.e., cumulative probability
distribution functions that are not monotonically increasing or
are outside the interval [0, 1]) [Journel and Posa, 1990] and
problems maintaining consistency with prescribed proportions
when applied in (co)kriging or simulation [e.g., Goovaerts,
1996].

5. Lateral Model Development: Soil Map Analysis
The soil survey, when mappable units are characterized as

previously described (Figure 2), provides the basis for devel-
opment of models of subsurface lateral spatial variability.
However, during this model development, key differences be-
tween the surface and subsurface facies distributions must be
considered. First, gravel exists in the subsurface but is not seen
on the soil map over most of the alluvial fan since gravel exists
below the sand facies as channel lag deposits. Therefore pa-
rameters related to gravel distribution must be estimated from
geologic inference based on distributions of the other facies.

Second, the subsurface facies proportions differ from the
surface facies proportions because of varying preservation po-
tential of the different facies. Preservation potential refers to
the probability that a deposit remains intact during subsequent
erosion and burial. In the case of the Kings River alluvial fan,
channel migration across the fan removed fine-grained bar top
and floodplain sediments and replaced them with coarse-
grained channel deposits. This resulted in higher sand propor-
tions and lower mud proportions in the subsurface than those
measured on the soil survey. Therefore volumetric proportions
from the USGS core data were used in lateral model develop-
ment. Climatic change, causing source area changes, could be
interpreted as a cause for this change in proportions; however,
sedimentologic and geomorphic evidence suggests that both
the surface and subsurface sediments were deposited on the
alluvial fan during past glacial episodes [Huntington, 1980; Let-
tis, 1988].
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Finally, measurements from the soil survey used in the anal-
ysis were made only in younger portions of the fan where
eolian reworking and pedogenic alteration of facies were min-
imal. By focusing transition probability measurements on areas
that were deposited within a relatively limited time span (e.g.,
during the most recent glacial cycle), incorrect cross correla-
tions over major unconformity boundaries were avoided. Ad-
ditionally, by limiting measurements where effects of subse-
quent sediment modification are minimal, the soil survey
measurements most closely reflect the lateral facies distribu-
tion from fan deposition.

Models of lateral facies distributions developed in other
studies have been derived by Walther’s law concepts [e.g.,
Carle and Fogg, 1997; Carle et al., 1998] or through covariance
measurements made between widely spaced wells. However,
the soil survey provides a strong advantage over either of these
approaches because the lateral facies distributions observed on
the soil survey reflect expected subsurface distributions more
directly. Direct application of Walther’s law may be problem-
atic in a fluvial setting, where vertical distributions may not
adequately reflect lateral relationships because of erosion and
truncation of facies higher in a sequence. When using well
data, the spacing between wells is often greater than the cor-
relation range; therefore measured data tend to be scattered,
and the model fit is prone to error. The soil survey provides a
clearer image of lateral facies distributions prior to burial and
therefore a reasonable “training image” of lateral variability in
the subsurface.

6. Lateral Direction Models and Parameter
Estimation

In the interpreted soil survey (Figure 2), facies appear to be
symmetrically distributed (e.g., one facies does not appear to
be preferentially distributed on one side or the other of a
different facies); therefore an assumption of facies symmetry in
lateral directions is reasonable. Given this assumption, use of
mud as the background category, and application of (9) and
(10), only six parameters are required to develop the Markov
chain model in each lateral direction (depositional dip and
strike): mean lengths for gravel, sand, and muddy sand and
juxtapositional tendency parameters for gravel3 sand, gravel
3 muddy sand, and sand 3 muddy sand. Of these six param-
eters, mean lengths for sand and muddy sand and the transi-
tion rates for sand 3 muddy sand were derived directly from
measurements of the soil survey data. The remaining three
parameters were estimated from geologic inference based on
the observed soil survey and subsurface facies distributions.
Volumetric proportions used to set the sills of the transition
rate matrices were taken from core measurements. The sec-
tions 6.1–6.3 describe how these parameters were determined.

6.1. Mean Lengths

Mean lengths for the sand and muddy sand were measured
directly from the soil survey. The trend of channel axes tends
to be variable, but, generally, axes radiate outward from an
apex. Consequently, mean lengths were measured manually
along multiple transects made parallel to the apparent channel
trends for the depositional dip direction and perpendicular to
channel axes for the depositional strike direction. Measure-
ments from 340 transects on the soil map show that sand facies
lengths, measured along straight lines, are approximately
1500 m and 625 m for depositional dip and strike, respectively,

and muddy sand lengths are approximately 800 m and 400 m,
for depositional dip and strike, respectively. Experience has
shown that these lengths produce channels in the conditional
simulations which appear as connected as those seen in the soil
survey map.

Since gravel occurs below the sand as lag deposits and is not
observed on the soil survey map, the mean length values for
gravel cannot be interpreted directly from the soil survey.
However, because gravel is found primarily within the sand
facies, the mean length of gravel must be less than that of sand.
Channel lag gravels also tend to be oriented in a similar man-
ner to that of the channel trend, as indicated by the sand facies.
These observations are supported by facies models developed
for fluvial settings [Miall, 1992, 1996]. Therefore a reasonable
estimate of gravel length would be less than sand lengths, with
anisotropy similar to the sand facies. Gravel mean lengths of
650 m and 200 m were chosen for depositional dip and strike,
respectively, in the Markov chain model since these lengths
represent the maximum gravel lengths along the principle di-
rections that produced a reasonable Markov chain model (e.g.,
positive transition probabilities and appropriate juxtaposi-
tional tendency values for the background category discussed
in section 6.2).

6.2. Juxtapositional Tendency Parameters

In order to determine the transition rates for sand3muddy
sand, transition probability measurements from a 30.5 m grid
over an 18 km2 area of the fan were made directly from the soil
survey map along depositional dip and strike. The 18 km2 area
was chosen because depositional strike and dip trends were
consistent throughout the area, soils within the area represent
deposits of a single glacial period, and minimal eolian modifi-
cation is present. A Markov chain model fit to these measure-
ments provided embedded transition probability values for the
sand 3 muddy sand transition ranging from 0.31 to 0.48. The
higher value of 0.48 was used because this resulted in embed-
ded transition probability values for the sand 3 mud and
muddy sand3 mud transitions that reasonably matched those
measured in the soil survey. Modeled probability values for
transitions to mud were lower than those measured on the soil
survey because less mud is preserved in the subsurface.

Because the gravel facies was not present on the soil map,
the related transition rates were developed by geologic infer-
ence. Gravel occurs in strong association with the sand facies,
as shown by its position in the core and through its interpre-
tation as a channel lag deposit. Therefore high probability of
occurrence should be reflected in the embedded transition
probability for the gravel 3 sand transition. Likewise, facies
models indicate that lag gravel only occurs adjacent to muddy
sand and mud on the channel margins at locations where the
channel eroded into these fine-grained facies. Therefore the
embedded transition probabilities for gravel 3 muddy sand
and gravel 3 mud should be relatively low. Thus embedded
transition probability values of 0.70 and 0.15 were chosen for
the gravel 3 sand and gravel 3 muddy sand transitions, re-
spectively (making the embedded transition probability for
gravel3 mud also equal to 0.15). Though these specific values
for the gravel transitions contain some uncertainty, they pro-
duce a reasonable model that is consistent with fluvial facies
models [e.g., Miall, 1992, 1996] where sand and gravel facies
are strongly associated and gravel transitions laterally to the
finer-grained facies only in relatively rare instances.
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6.3. Final Lateral Models

The Markov chain models developed for lateral variability in
the Kings River alluvial fan deposits based on these six param-
eters in terms of embedded transition probabilities are

P jk,DIP 5

gr

s

ms

m

gr s ms m

3
L# 5 650 0.70 0.15 b

s L# 5 1500 0.48 b

s s L# 5 800 b

b b b b
4 (17)

P jk,STRIKE 5

gr

s

ms

m

gr s ms m

3
L# 5 200 0.70 0.15 b

s L# 5 625 0.48 b

s s L# 5 400 b

b b b b
4 (18)

where b indicates background category entry and s indicates an
entry symmetrical to the opposite entry (e.g., gravel3 sand is
symmetrical to sand 3 gravel, etc.). Symmetrical entries were
calculated through application of

r jk,f 5 ~ pk/pj!rkj,f (19)

and background category entries were determined through
application of (9) and (10).

7. Three-Dimensional Modeling and Simulation
A complete three-dimensional Markov chain model is de-

veloped by ellipsoidal interpolation of the models for the three
principal directions: strike, dip, and vertical [Carle and Fogg,
1997]. This three-dimensional Markov chain model is then
used in sequential indicator simulation (SIS) followed by sim-

ulated quenching or “zero temperature” annealing [Carle,
1996, 1997a] to generate a geostatistical realization of subsur-
face facies distribution in the northern portion of the Kings
River alluvial fan (Figure 4). This realization was conditioned
on core, well log, and C horizon texture data. Importantly, the
soil survey provided directional information used to align the
principal model directions along depositional strike and dip
during simulation; thus the realization shown in Figure 4 has
facies oriented along directions consistent with the local geology.

The conditional SIS algorithm is identical to the algorithm
described by Deutsch and Journel [1992], except that kriging
based on indicator covariances is replaced with cokriging based
on transition probabilities. SIS alone does not adequately pre-
serve the cross correlations contained in the coregionalization
model, but it does provide an excellent starting point for the
simulated quenching step. The simulated quenching produces
realizations that honor the coregionalization model without
adding much computational burden [Carle, 1997a].

A close inspection of the realization from a portion of the
Kings River alluvial fan (Figure 4) reveals that observed geo-
logic tendencies, including fining upward tendencies and elon-
gate channels, are evident in the realization.

8. Closing Remarks
Typical hydrogeologic data sets consisting of widely spaced

boreholes usually provide only sketchy information on the lat-
eral distribution of hydrofacies. However, soil surveys may
provide, in effect, an outcrop map indicative of the lateral
heterogeneity patterns in alluvial aquifer systems. Channel ori-
entations and geometries, as well as channel, levee, and flood-
plain juxtapositional tendencies are recorded by the soil sur-
vey. Through collective analysis of surface and subsurface data
and knowledge of the geologic processes, a representative sub-
surface coregionalization model was constructed using the
transition probability geostatistical method. Models developed

Figure 4. A geostatistical realization of a portion of the Kings River alluvial fan produced by conditional
sequential indicator simulation and simulated quenching based on the three-dimensional Markov chain
model.
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for use in the geostatistical simulation contain plausible geo-
metric factors consistent with all the data and geologic con-
cepts. Without the soil mapping, one would have only a vague
notion of the lateral heterogeneity present in the subsurface
for model development.

In the example application to the Kings River alluvial fan,
transition probability measurements from the soil survey could
not be blindly related to parameters used to develop a three-
dimensional subsurface Markov chain model. Adjustments for
subsurface preservation of facies must be incorporated into the
models. Additionally, lengths and juxtapositional tendencies
related to the gravel facies could not be directly estimated from
the soil survey, leaving some level of uncertainty. However,
geometries and associations of the gravel facies to other facies,
as indicated by published facies models [e.g., Miall, 1992, 1996]
along with channel geometries estimated from the soil survey
provide a reasonable estimate of these parameters. Minor vari-
ation of gravel lengths or juxtaposition parameters have little
effect on the overall simulated structure. Additionally, these
uncertainties can help provide focus for additional data collec-
tion efforts.

Soil survey data may provide additional utility beyond
geostatistical model development. Information about facies
distributions and geometry from the soil survey may also help
direct data collection by giving indications of ideal locations for
future well drilling or geophysical survey sites. Additionally,
the soil surveys can provide a qualitative check for other geo-
metrical or process-imitating model results.

The high quality of the soil survey for eastern Fresno County
[Huntington, 1971] helped ensure successful application of
these data to the geostatistical analysis. Increased application
of soil maps in hydrogeologic characterizations, as well as in-
creased efforts to map C horizon textures overlying alluvial
aquifers, is clearly warranted. The potential for hydrogeologic
application well below the root zone provides compelling mo-
tivation for focusing greater resources and effort on soil map-
ping, with particular attention paid to parent material lithology
as reflected by the C horizon.

Through use of a transition probability/Markov approach
[Carle, 1996, 1997b; Carle and Fogg, 1996, 1997; Carle et al.,
1998] the geological features observed in the soil survey and
well data are preserved in the geostatistical realizations of the
aquifer. In particular, geologically plausible juxtapositional re-
lationships, such as fining upward tendencies, are readily mod-
eled using either raw data or semiquantitative information.
The resulting realizations provide much improved, geologically
tenable models of subsurface hydraulic heterogeneity for use
in groundwater flow and contaminant transport modeling.

Notation
h separation lag vector.

k , j categories or facies.
K hydraulic conductivity.
L# mean category (facies) length.
N number of categories.
p category (facies) proportions.
r transition rate values.

R transition rate matrix.
t transition probability.

T transition probability matrix.
p jk ,f embedded transition probability.
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