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ùOt|iBW|H In many hydrogeological investigations of groundwater flow and contaminant transport, considerable un-
certainty arises from unknown physical heterogeneity of the aquifer system materials. Indicator geostatistics may offer
tools for stochastic simulation of heterogeneity, however, existing methods were not designed with hydrogeological prob-
lems in mind. Typically, hydrogeological characterizations are vastly undersampled in lateral directions. Subsequently,
geostatistical analyses must rely, in part, on geologic interpretation to yield geologically plausible results. Compared to
traditional variogram-based approaches, the transition probability/Markov approach introduced herein more rigorously
considers spatial cross-correlations (juxtapositional tendencies), yet is more conducive to integration of geologic interpre-
tation. Three-dimensional (3-D) Markov chains are introduced as a conceptually simple yet theoretically powerful model
of spatial variability, supported in theory and practice by numerous prior 1-D geologic applications to vertical sedimen-
tary successions. The geostatistical conditional simulation algorithms of sequential indicator simulation and simulated
quenching (zero-temperature annealing) are modified to include consideration for all spatial cross-correlations. ‘‘Non-
stationarities’’ related to anisotropy directions, proportions of depositional units, and commingling depositional systems
also can be considered. Example applications are given for alluvial fan and fluvial depositional systems in California in
portions of the Livermore Valley, Kings River alluvial fan, and Salinas Valley.
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INTRODUCTION

Most researchers agree that realistic modeling of subsur-
face flow and transport processes requires realistic char-
acterization of system heterogeneities. In particular, trans-
port of fluids and solutes depends strongly on heterogeneity
throughout a hierarchy of scales, many of which occur over
distances shorter than typical borehole spacing. Difficulty
in characterizing such unknown heterogeneity has been a
major obstacle to accurate modeling of mass transport in
both groundwater and petroleum systems. This difficulty
is particularly acute in the lateral directions, where the sub-
surface typically is undersampled relative to the vertical.
For this reason, some researchers (e.g. Anderson, 1989;
Fogg, 1989; Phillips and Wilson, 1989; Tetzlaff and Har-
baugh, 1989; Journel and Alabert, 1990; Deutsch and Jour-
nel, 1992; Koltermann and Gorelick, 1992; Davis et al.,
1993; Scheibe and Freyberg, 1995; Webb and Anderson,
1996) have suggested incorporating geologic interpretation
to estimate spatial variability. That is, instead of estimat-
ing the spatial variability of a hydrologic property, such as
hydraulic conductivity (K), one focuses on characterizing
the spatial variability of geologic facies. Then, the spa-
tial distribution of geologic facies is simulated to provide
a ‘‘template’’ for defining the spatial distribution of K. This
approach presumes that a relationship between geologic fa-
cies and K can be estimated and that the spatial distribution
of the geologic facies adequately represents the spatial dis-
tribution of K for purposes of modeling flow and transport
processes.

A geologically sound template provides a scientific ba-
sis for modeling spatial variability of hydraulic properties.
Clearly, subsurface patterns originate from geologic
processes; hence, geology should be integral to subsurface
characterization whether the approach is deterministic or
stochastic. This includes geostatistical approaches, which
should intensify, rather than minimize, the integration of
geologic interpretation. If possible, the categories chosen
for the template should have a geometric context, for ex-
ample, depositional facies (channel bar, splay, flood plain)
as opposed to purely textural descriptors (sand, silt, clay).
Then, the interpretational framework of facies models can
help guide the construction of geologically plausible hydro-
geologic models.

The scale of interest in many hydrogeologic investiga-
tions often spans a large portion of a depositional system,
for example, an alluvial fan or fluvial sedimentary sequence.
At this regional or ‘‘aquifer system’’ scale, geometry and
interconnectivity of, for example, fluvial channel and in-

terchannel facies assemblages typically is more important
to modeling groundwater flow than are smaller scale sed-
imentary structures such as cross-bedding. Thus, a model
of the spatial distribution of larger scale facies with con-
trasting hydraulic properties, or ‘‘hydrofacies architecture,’’
may be extremely useful as a model of hydraulic hetero-
geneity at the aquifer system scale.

Geostatistical methods have been applied to characteri-
zation of aquifer system heterogeneity, particularly for in-
terpreting spatial variability of hydrofacies (e.g., Johnson
and Dreiss, 1989; Wingle and Poeter, 1993; Johnson, 1995;
Ritzi et al., 1995) and for conditionally simulating hydro-
facies architecture (e.g., Wen and Kung, 1993; Ritzi et al.,
1994; Poeter and McKenna, 1995, Bierkens, 1996). These
applications have employed the ‘‘indicator variogram’’ to
define spatial correlation structures (Deutsch and Journel,
1992). Indicator methods are appealing for hydrogeolog-
ical numerical modeling applications because of the grid-
based geometry, the consideration of conditioning data and
the quantitative description of spatial variability. By en-
abling generation of multiple equiprobable ‘‘realizations,’’
conditional simulation provides a means for assessing un-
certainty and performing Monte Carlo analyses constrained
by borehole data.

The geological community has been hesitant to accept
geostatistical simulations of the subsurface, pointing out
what they consider to be key shortcomings, such as the sta-
tionarity assumption and the inability to represent variable
anisotropy directions, for example, radial morphology of
an alluvial fan or meandering (Neton et al., 1994). Fur-
thermore, sedimentary facies exhibit strong spatial cross-
correlations (juxtapositional tendencies); for example, levee
deposits tend to occur vertically and laterally adjacent to
channel deposits. Clearly, a geologically plausible charac-
terization of the subsurface ought to account for such juxta-
positional relationships. Indeed, an essential aspect of ge-
ology is characterization of spatial arrangement of geologic
units. Two questions about these geostatistical simulation
approaches frequently arise:

1. How can one estimate a three-dimensional (3-D) model
of spatial variability given that most geological data sets
do not support direct calculation of the variogram in all
directions?

2. Are indicator variogram statistics capable of adequately
representing the natural configurations of heterogeneity
found in the subsurface so that the ‘‘realizations’’ are, in
fact, realistic?

This paper addresses both questions and provides an alter-
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native geostatistical approach that facilitates development
of models of spatial variability and produces greater geo-
logic realism in conditional simulation results.

NEW GEOSTATISTICAL APPROACH

When a geologic system is modeled by categorizing several
geologic units, some fundamental observable attributes are
considered:

î volume fraction (proportions),
î lengths (e.g., thickness and lateral extent),
î juxtapositional tendencies,
î directions (e.g., orientation of bedding),
î nonstationarity (spatial trends) in the above.

A geostatistical method should attempt to capture these at-
tributes. In addition, the practitioner needs tools to incorpo-
rate this fundamental information into a geostatistical char-
acterization.

The need for a new geostatistical approach emerges in
practical hydrogeological applications because existing geo-
statistical methods do not provide (1) consideration for asym-
metric juxtapositional relationships such as fining-upward
tendencies; (2) a conceptual framework for incorporating
geologic interpretation of proportions, lengths and juxta-
positional tendencies into development of cross-correlated
spatial variability models; or (3) consideration for locally
variable anisotropy directions, for example, radial morphol-
ogy of alluvial fans, meandering of fluvial depositional units
and structure resulting from deformation. Accordingly, these
problems have inspired a new transition probability-based
approach to indicator geostatistics that simplifies model de-
velopment and interpretation (Carle and Fogg, 1996). Spa-
tial variability is posed in terms of conditional probabilities
of occurrence of the actual categories (geologic units, fa-
cies) rather than, for example, variograms of transformed
variables such as cumu-latively-defined ‘‘discretization class-
es’’ (Gomez-Hernan-dez and Srivastava, 1990) or ‘‘princi-
pal components’’ (Suro-Perez and Journel, 1991). The tran-
sition probability approach is conducive to application of
the mathematically simple yet theoretically powerful Markov
chain models. Markov chain models can be developed not
only by empirical curve-fitting approaches traditionally used
in geostatistics but also by conceptual means through inter-
pretation of proportions, mean lengths and juxtapositional
tendencies (Carle and Fogg, 1997).

Geologists have long used transition probability mea-
surements in conjunction with Markov chain models as tools

for quantitative interpretation of vertical lithologic succes-
sions, starting with the pioneering work of Vistelius (1949)
followed by many others including Carr et al. (1966), Vis-
telius (1967), Krumbein (1968), Krumbein and Dacey (1969),
Schwarzacher (1969), Doveton (1971) and Miall (1973, 1982).
Markov chain models also can be extended to 2-D and 3-
D applications by assuming that 1-D Markov chains model
spatial variability in any direction (Switzer, 1965; Lin and
Harbaugh, 1984; Politis, 1994). A method for developing
2-D or 3-D Markov chains is presented, which enables cre-
ation of multi-category models of spatial variability with
direction-dependencies in length (anisotropy) as well as jux-
tapositional relationships.

Although transition probabilities and Markov chains have
long been applied in geology and statistics, their applica-
tion to modern indicator geostatistical approaches is new.
Markov chain models of spatial variability can be applied
with minor modification to the geostatistical conditional
simulation algorithms of sequential indicator simulation (SIS)
and simulated quenching (zero-temperature annealing) de-
scribed by Deutsch and Journel (1992, p. 123-125, 159-
160). We find that a two-step of approach of initializing the
simulation by SIS and then iteratively improving the simu-
lation by simulated quenching produces better results than
either algorithm applied by itself.

The new geostatistical approach has been developed in
the context of hydrogeological applications, where data of-
ten are sparse yet three-dimensional (3-D) characterizations
are needed. Three main steps are involved:

(a) evaluation of spatial variability of geologic units by
transition probability measurements (if available)
along principal stratigraphic directions of vertical
(upward), dip and strike;

(b) development of Markov chain models of spatial vari-
ability by quantitative or conceptual means; and

(c) conditional simulation by successive application of
the sequential indicator simulation (SIS) and simu-
lated annealing algorithms.

The approach is applied to three Quaternary depositional
systems in California (Fig. 1): (1) alluvial fan deposits at
Lawrence Livermore National Laboratory (LLNL) in the
Livermore Valley of the Coast Range, which contain a large
proportion of fine-grained materials; (2) the Kings River
alluvial fan in the eastern San Joaquin Valley southeast of
Fresno, which contain extensive fluvial deposits; and (3)
commingling alluvial fan and fluvial deposits in the Sali-
nas Valley. In these applications we find that the conditional
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FIG. 1.– Map of California showing locations of Lawrence Liv-
ermore National Laboratory (LLNL), Kings River alluvial fan,
and SalinasValley.

simulation results exhibit geologically plausible stratigraphic
relationships consistent with available lithologic data.

TRANSITION PROBABILITY/MARKOV
FRAMEWORK

In traditional geostatistical applications, the indicator vari-
ogram is incorporated as the measure of spatial variability
for categorical variables, such as geologic units. Indica-
tor variogram modeling procedures usually are empirical,
involving fitting of mathematical functions to variogram
measurements (Deutsch and Journel, 1992, p. 22-25). Al-
ternatively, the transition probability can be used to describe
spatial variability as well, particularly where asymmetries
such as fining-upward tendencies are present (Carle and
Fogg, 1996). Furthermore, the transition probability pos-
sesses interpretative advantages for relating fundamental
properties of proportions, mean lengths and juxtapositional
tendencies to parameters of the spatial variability model.
These interpretive advantages are crucial to ensuring devel-
opment of a geologically plausible model of spatial vari-
ability, particularly when data are too sparse to support a

purely empirical approach.
In geostatistical conditional simulation applications, the

transition probability can be used to formulate cokriging
equations used for estimating local conditional probabili-
ties in SIS and objective functions used in simulated anneal-
ing (Carle and Fogg, 1996; Carle, 1997). Thus, the transi-
tion probability can be used throughout the implementation
of indicator geostatistical approaches, whether describing,
modeling, or simulating the spatial variability of geologic
units.

Definitions

In the application of indicator geostatistics, the indicator
variableL&+{, defines the presence (or absence) of a cate-
goryn (e.g., a geologic unit) at a location{ 5G by

L&+{, @ {
4> if n occurs at{
3> otherwise

n @ 4> ===>N (1)

whereN is the number of categories in a regionG (e.g.,
a stratigraphic sequence). Assuming second-order station-
arity, that is, the heterogeneity can be modeled through-
outG by univariate (e.g., mean, proportions) and bivariate
spatial statistics (e.g., indicator cross-variogram, indicator
cross-covariance, joint probability, transition probability),
themodel of spatial variability will depend only on a sep-
aration vector or ‘‘lag’’k and not on location{. In geosta-
tistics, indicator cross-variogramsðæ&+k, and, more com-
monly, indicator variogramsð&&+k, (for m @ n) as defined
by

5ðæ&+k, @ H i+Læ+{,ý Læ+{. k,, +L&+{,ý L&+{. k,,j
(2)

traditionally are used to describe the spatial variability of
indicator variables. Alternatively, the transition probability
wæ&+k, is simply defined according to a conditional proba-
bility:

wæ&+k, @ Su in occurs at{. k m m occurs at{j

@
Su in occurs at{. k dqg m occurs at{j

Su i m occurs at{j (3)

where

3 é wæ&+k, é 4 (4)

(Ross, 1993, p. 14). Applying (1) to (3),wæ&+k, also can be
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defined in terms of indicator variables as

wæ&+k, @
H iLæ+{,L&+{. k,j

H iLæ+{,j (5)

Under the assumption of stationarity inG, H iLæ+{,j is
equivalent to the volumetric proportionss& of categoryn,

H iL&+{,j @ s& ;n (6)

Applying (5) and (6) to (2),ðæ&+k, relates towæ&+k, by

5ðæ&+k, @ sæ ^5wæ&+3,ý wæ&+k,ý wæ&+ýk,` (7)

(Carle and Fogg, 1996).
Thus, transition probabilities can be converted to indica-

tor cross-variograms, if desired. Although indicator cross-
variograms can be converted into transition probabilities
in a similar manner, any information on asymmetry (e.g.,
a fining-upward tendency) would be lost from the outset
because indicator cross-variograms assume symmetry by
definition in (2). Additionally, existing indicator condi-
tional simulation methods do not directly incorporate cross-
correlation information because modeling of the full matrix
of cross-covariances is considered tedious and impractical
(Deutsch and Journel, 1992, p. 82, 149). Alternatively, in-
dicator cokriging can be implemented with the transition
probability (Carle and Fogg, 1996), inherently pointing to
the Markov chain as a model of spatial variability for cate-
gorical (indicator) variables that fully considers
cross-correlations (Carle and Fogg, 1997).

Continuous-Lag Markov Chains

Markov chain models applied to time series assume, in the-
ory, that future occurrences depend on the present and not
on the past. This simple stochastic model can address spa-
tial applications by replacing the time lag with a spatial lag
kè in a direction!. The resulting mathematical expression
of the continuous-lag formulation of a Markov chain model
is

W +kè, @ h{s ^Uèkè` (8)

(Krumbein, 1968; Agterberg, 1974, p. 457; Ross, 1993, p.
290), whereW+kè, denotes aN ûN matrix of transition

probabilities,

W +kè, @

597 w�� +kè, ü ü ü w�g +kè,
...

...
...

wg� +kè, ü ü ü wgg +kè,

6:8
andUè denotes aN ûN matrix of transition rates,

Uè @

597 u��cè ü ü ü u�gcè
...

...
...

ug�cè ü ü ü uggcè

6:8
with entriesuæ&cè describing a conditional rate of change
from categorym to categoryn per unit length in the direction
!. By differentiation of (8) with respect tokè at kè @ 3,
the transition rates are related to transition probabilities by

uæ&cè @
Cwæ&+3,

Ckè
(9)

(Ross, 1993, p. 290). Despite its theoretical simplicity,
the Markov chain model has shown remarkable applica-
bility to vertical lithological successions (Vistelius, 1949;
Krumbein, 1968; Krumbein and Dacey, 1969; Schwarz-
acher, 1969; Harbaugh and Bonham-Carter, 1970; Dove-
ton, 1994).

Comparison to Discrete-Lag Markov Chains

Geologic applications more commonly have employed the
discrete-lag Markov chain, which is formulated from a tran-
sition probability matrixW+ükè, obtained from measure-
ments at a discrete lag intervalükè, usually chosen rather
arbitrarily as a sampling interval. For the discrete-lag Markov
chain model,W+qükè, for q @ 3> 4> 5> ===>4 is computed
by successively applying the Chapman- Kolmogorov equa-
tion:

W+3, @ L
W+ükè, @ L W+ükè,

W+5ükè, @ W+ükè, W+ükè,
...

W+qükè, @ W ^+qý 4,ükè` W+ükè,

(10)

whereL denotes the identity matrix (Agterberg, 1974, p.
420-421). However, any discrete-lag Markov chain model
can be formulated as a continuous-lag Markov chain model
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by applying (8) withUè determined by

Uè @
oq ^W +ükè,`

ükè
(11)

Advantages of the continuous approach are threefold. First,
(8) represents the spatial variability model as a continuous
function instead of discrete outputs only at fixed lag inter-
vals as in (10). Second, the continuous-lag formulation of
a Markov chain model is not dependent on issues of data
spacing or sampling intervals because transition rates can
be established by applying (11) to transition probabilities at
any lag interval. Third, the ability to formulate the Markov
chain as a continuous function enables the application to
geostatistical simulation methods of SIS and simulated an-
nealing.

Categorization – Facies Context

The first requirement toward applying the transition proba-
bility/Markov approach described iscategorizationor def-
inition of the hydrofacies. In hydrogeologic applications at
the aquifer system scale, categorization according to depo-
sitional facies is a desirable, if not mandatory, approach be-
cause it provides a scientific (geologic) basis for predicting
geometry and spatial arrangement of hydraulic heterogene-
ity (Anderson, 1989; Anderson and Woessner, 1992, p. 29-
37). At the LLNL site, comparison of well test results with
detailed sedimentological analysis of core (Noyes, 1991)
provide sufficient basis for establishing hydrofacies based
on depositional facies. Admittedly, any facies-based cat-
egorization is only approximate. We would nevertheless
argue that any attempt to place the subsurface characteri-
zation into a depositional facies context is an improvement
over prevailing approaches in subsurface hydrology, such
as the Unified Soil Classification System (Casagrande, 1948;
ASTM, 1996) or Gaussian random fields, because it ini-
tiates and reinforces a geologically-informed characteriza-
tion.

In many hydrogeologic applications, such as the Kings
River fan and Salinas Valley sites, data consist primarily
of descriptions of sediment textures, with little facies inter-
pretation or hydraulic testing information. For the Kings
River fan, facies interpretations were augmented by core
samples, geophysics, soils surveys and analogy with mod-
ern systems. In the Salinas Valley case, the facies cate-
gories are only inferred from textural information. Regard-
less of data quality, the facies interpretation is needed to
develop the three-dimensional geometric interpretive con-

TABLE 1.– BASIS FOR DEFINITION OF HYDROFACIES FROM

LLNL CORE DATA.

# facies texture %
1 debris flow poorly-sorted clay-gravel 7
2 flood plain clay and silt 56
3 levee silty or clayey fine sand 19
4 channel sand and gravel (rounded)18

text that facies models provide (Miall, 1992). Nonetheless,
the categorizations presented should be viewed as ‘‘oper-
ationally defined’’ to various stages of completion. This
paper emphasizes the spatial variability modeling and con-
ditional simulation of such characterizations rather than the
methods used in facies interpretation.

Application to LLNL – Vertical Direction

Groundwater contaminants, primarily volatile organic com-
pounds, are present in alluvial fan deposits underlying LLNL
(Fig. 1) over a regional extent of several km2 to depths
as great as 100 m (Thorpe et al., 1990). The aquifer sys-
tem materials consist of a network of ancient stream chan-
nel and levee (including crevasse-splay) deposits and de-
bris flows embedded in fine-grained flood plain deposits
(Noyes, 1991). The lateral and vertical spatial extent of
contaminants may be exacerbated by natural hydraulic in-
terconnectivity of the subsurface channel/levee network
(Carle, 1996). Working models of the hydrofacies archi-
tecture are needed to realistically assess contaminant fate
and potential effectiveness of remediation efforts.

As summarized in Table 1, four hydrofacies were cate-
gorized asdebris flow, flood plain, leveeandchannel fa-
cies based on detailed interpretations (Noyes, 1991) of por-
tions of 5,500 m of core from vertical boreholes located
near the southwest portion of LLNL and vicinity. The fa-
cies categorization was extended to the remainder of the
core by interpretation of geophysical logs and textural de-
scriptions noted by site geologists (Qualheim, 1988).

Figure 2 shows vertical (})-direction transition proba-
bility measurements for the core data and a continuous-lag
Markov chain model (8) developed by applying (11) to ob-
tain a vertical transition rate matrixU5 for the
W +ük5 @ 3=<m,measurement. The Markov chain model
provides an excellent overall fit to the transition probabil-
ity measurements, including the off-diagonal cross- corre-
lations. As demonstrated by this four-category example,
the Markov chain efficiently generates sixteen model struc-
tureswæ&+k5, from sixteen parametersuæ&c5 for m> n @ 4> ===> 7.
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FIG. 2.– Matrix of vertical-direction transition probabilities for
LLNL core data: measurements (dots) and Markov chain model
(solid lines) obtained by applying equation (17) to the matrix of
transition probability measurements at 0.9 m lag. Intersection of
dashed line (tangent) with lag axis indicates mean length; dotted
line indicates proportions.

Mathematically, the matrix exponential form of the Markov
chain (8) is composed of linear combinations of exponen-
tial functions by (28), as described in the Appendix, where
evaluation of the matrix logarithm (11) also is detailed.
Nonetheless, a Markov chain can produce non-exponential-
looking structures, for example, the ‘‘Gaussian’’-likechan-
nel$flood plain and ‘‘hole-effect’’ channel$levee tran-
sition probability models in Figure 2.

MODEL CONCEPTUALIZATION

In the previous example the LLNL core data were relatively
abundant for characterizing spatial variability of facies in
the vertical direction and, thus, were conducive to appli-
cation of the direct method of (11) to establishU5. How-
ever, spatial variability measurements may contain consid-
erable uncertainty in lateral directions and, thus, may not
be amenable to empirical modeling procedures. Only by

understanding how model parameters relate to spatial vari-
ability can one address the important practical question,
‘‘Does this model make sense, geologically and probabilis-
tically?’’ In practice, the parameters of a transition prob-
ability model can be directly related to fundamental inter-
pretable properties of proportions, mean length, asymme-
try and juxtapositional tendencies (Carle and Fogg, 1996;
1997).

Proportions

Assuming stationarity, the ‘‘sill’’ (asymptotic limit) of the
transition probability is related to proportions by

olp
û!<"

wæ&+kè, @ s& ;m> n (12)

If the proportions of the geologic units are known a pri-
ori, then (12) can be used to establish sills for the transi-
tion probability matrix. Conversely, the sill of the spatial
variability model implies the assumed proportions. Equa-
tion (12) shows that the sills of each entry in the transition
probability matrix will correspond to the proportions of the
column category. For example, in Figure 2, the horizon-
tal dotted lines indicate the sill of the vertical (})-direction
transition probability models for thenth (column) category
in accordance with (12). Ask5 $ 4, the transition prob-
ability models clearly approachs� ä 3=3:, s2 ä 3=89,
sô ä 3=4< andse ä 3=4;, corresponding to the percent-
ages given in Table 1.

The point here is not to evaluate proportions from the
transition probability sills, but rather to emphasize the straight-
forward relationship between proportions and the transition
probability sill, which is useful for both data and model in-
terpretation and, more importantly, for selection of plausi-
ble parameters for the model of spatial variability.

Mean Length

Although the ‘‘range’’ (the lag at which the sill is reached)
commonly is used in geostatistics to describe spatial conti-
nuity and anisotropy, the ‘‘mean length’’ may function in a
similar role. Let an ‘‘embedded occurrence’’ denote a dis-
tinct occurrence of a single category along a line in a par-
ticular direction, for example, a bed of gravel bounded by
silt below and sand above. The mean lengthO&cè of the
categoryn in the direction! is defined as the total length
of categoryn along lines in the direction! divided by the
number of embedded occurrences ofn along lines in the
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direction!. For example, the vertical (})-direction mean
lengthO&c5 would correspond to a ‘‘mean thickness.’’ Thus,
mean length represents a general term for ‘‘mean thickness’’
in any (stratigraphic) direction.

Mathematically, mean lengthO&cè relates to a diagonal
transition probabilityw&&+kè, by

ý Cw&&+3,
Ckè

@
4

O&cè
(13)

(Carle and Fogg, 1996). Application of (9) to (13) shows
that a diagonal transition rateu&&cè directly relates to mean
length by

u&&cè @ ý 4

O&cè
(14)

According to (13), the mean length will be indicated on
a plot of the autotransition probability by the intersection
of the tangent at the origin with the ordinate axis, as de-
picted by the dashed lines in the diagonal entries of Figure
2. Equation (13) can be used during model development ei-
ther to establish the slope at the origin given knowledge or
interpretations of mean length or, conversely, to interpret
mean length implied by a diagonal transition probability
model. Furthermore, (14 ) implies that knowledge or es-
timation of mean length can be used to establish diagonal
transition rates for Markov chain models.

In the two-category (N @ 5) case of a Markov chain, the
mean lengthO&cè in a direction! relates to the correspond-
ing ‘‘effective range’’ parameter of ‘‘6dè’’ traditionally used
in geostatistics for an exponential structure (Deutsch and
Journel, 1992, p. 23) by

O&cè @
dè

4ý s& n @ 4> 5

In situations of three or more categories (N è 6), how-
ever, each entry of the Markov chain becomes a sum of two
or more exponential structures, which may have complex
coefficients. Thus, mean length provides a more direct pa-
rameter than the ‘‘range’’ for development of Markov chain
models with three or more categories.

Asymmetry

The term ‘‘asymmetry’’ is used here to denote dependence
of the bivariate statistics on whether the lag is positive or
negative. An important distinction betweenðæ&+k, and
wæ&+k, evident in (7) is thatðæ&+k, is intrinsically sym-

metric becauseðæ&+k, @ ðæ&+ýk,, whereas (3) allows
for asymmetry or the possibility thatwæ&+k, 9@ wæ&+ýk,
or, equivalently,sæwæ&+k, 9@ s&w&æ+k, for m 9@ n. This is
an important consideration for modeling spatial variability
of stratigraphic units in fluvial deposits, where vertically
asymmetric juxtapositional relationships occur as a result
of fining-upward tendencies (e.g., Allen, 1970). In Figure
2, achannel$levee (7 $ 6) fining-upward tendency is
indicated becauseseweô+k5, sôwôe+k5, for smallk5.

If juxtapositional relationships are indeed symmetric be-
tween two categoriesm andn in a direction!, then the re-
lation

wæ&+kè, @

ë
s&
sæ

ê
w&æ+kè, (15)

holds, wherekè is a lag in a direction!. Differentiation
of (15) with respect tokè atkè @ 3 and application of (9)
yields the relation

uæ&cè @

ë
s&
sæ

ê
u&æcè (16)

for symmetric juxtapositional relationships between cate-
goriesm andn in a direction!= Equations (15) and (16) are
useful during interpretation for determining whether juxta-
positional relationships are symmetric and in model devel-
opment for establishing symmetrical juxtapositional ten-
dencies in the transition probability or transition rate ma-
trices, if desired.

Juxtapositional Tendencies

When developing either a geological or a geostatistical in-
terpretation, one might want to evaluate the extent to which
measured or modeled transition probabilities indicate pref-
erential juxtapositional tendencies (e.g., levee deposits lat-
erally or vertically adjacent to channel deposits) versus rel-
atively disordered facies successions. Indeed, the main ap-
plication of transition probability/Markov models by ge-
ologists has been to quantitatively analyze how juxtaposi-
tional tendencies compare relative to various states of dis-
order, either relative to conditional probabilities of embed-
ded occurrences (Miall, 1973, 1982), entropy of transition
frequencies (Hattori, 1976), independence of transition fre-
quencies (Turk, 1979, 1982) and transition probabilities with
respect to proportions (Carle and Fogg, 1996). These quan-
titative interpretational frameworks also can be posed with
respect to transition rates for continuous-lag Markov chains
(Carle, 1996; Carle and Fogg, 1997).
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In practice, the interpretation of transition rates with re-
spect to proportions may be the simplest to implement be-
cause it requires the fewest assumptions. In this interpre-
tive framework, one considers occurrences of facies suc-
cessions relative to volumetric proportionss&, that is, whether
an occurrence ofn adjacent tom occurs greater or lesser
than indicated by the proportionss&. Consider thatwææ+kè,
is the conditional probability of a unitm ‘‘transitioning’’ to
itself over a lagkè, so that the conditional probability of
transitioning to any other unit9@ m is ^4ý wææ+kè,`. If the
transition probabilityewæ&+kè, for n 9@ m depends on propor-
tionss&, then

ewæ&+kè, @ ^4ý wææ+kè,` s&
4ý sæ for n 9@ m (17)

Differentiating (17) bykè at kè @ 3 and applying (14)
yields a corresponding transition rateeuæ&cè referenced with
respect to category proportions:

euæ&cè @ s&

Oæcè+4ý sæ,
for n 9@ m (18)

Thus, a measured or modeled transition rateuæ&cè can be
compared toeuæ&cè to judge whethern occurs adjacent tom
in the direction! to a lesser or greater degree relative to the
proportion ofn.

Application to LLNL – Strike Direction

Borehole data usually are insufficient to quantify spatial
variability in lateral directions, not only because of typi-
cally sparse lateral spacing but also unknown variations in
depositional dip and strike. Thus, the development of spa-
tial variability models can obviously benefit from integra-
tion of geologic interpretation. Recognizing that a Markov
chain analysis can be used as an interpretive tool then, con-
versely, geologic interpretation can be used to help establish
geologically plausible transition rates.

For example, the transition rate matrix developed for
the vertical (})-direction model of the LLNL data (Fig. 2)
viewed in strictly quantitative terms is:

U5 @

5997
ý3=;:8 3=:39 3=437 3=397
3=3;; ý3=77: 3=483 3=53<
3=357 4=3;3 ý4=55: 3=456
3=373 3=333 3=:99 ý3=;39

6::8m3�

Alternatively, one could apply the concepts of mean length
(to the diagonal entries) and juxtapositional tendencies rel-

ative to proportions (to the off-diagonal entries) to obtain
an equivalent, but more conceptual, expression of the tran-
sition rate matrix:

U5 @

59997
ý �
u'�é�e

4=67eu 3=8;eu 3=6;eu
4=57eu ý �

u'2é2e
3=::eu 4=47eu

3=56eu 4=5:eu ý �
u'féH2

3=76eu
3=8;eu 3=33eu 7=4eu ý �

u'�é2e

6:::8m3�

(19)
where, for simplicity, subscript notation is dropped such
thatO denotes the mean length as defined in (14), andeu de-
notes a transition rate dependent on proportions by (18). In-
sights into mean length and juxtapositional tendencies ob-
tained from outcrops, geophysical interpretation, or facies
models could be used to establish geologically plausible di-
agonal and off-diagonal transition rates.

Some additional tools from the laws of probability can
simplify the conceptual development of a transition rate
matrix. The row sums ofUè must obey

g[
&'�

uæ&cè @ 3 ;m (20)

and the column sums must obey

g[
æ'�

sæuæ&cè @ 3 ;n (21)

(Ross, 1993, p. 273). Application of (20) and (21) elim-
inates the need to specify row and column entries inUè
involving one categoryñ, herein referred to as the ‘‘back-
ground category.’’ Conceptually the background may be
viewed as the category that ‘‘fills in the space’’ not occupied
by the other categories. Thus, for a four-category system,
only 6 û 6 @ < of the7 û 7 @ 49 entries in the transition
rate matrix need direct specification; the remaining entries
can be determined by (20) and (21) according to the laws of
probability. In any application, however, the entries in the
transition rate matrix, including row and column entries in-
volving the background category, should obey

uææcè ? 3 ;m

3 é uæ&cè é ýuææcè ;m> n 9@ m
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FIG. 3.– Matrix of strike-direction transition probabilities for
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(solid lines) based on conceptual interpretation of proportions,
mean lengths, and juxtapositional tendencies.

and

3 é uæ&cè é ý
ë
s&
sæ

ê
u&&cè ;m> n 9@ m

in order to satisfy (4).
In this example,flood plain (category 2) was chosen as

background because, in general, it occupies space not occu-
pied by other facies deposited by higher energy depositional
processes. Mathematically, however, any category can be
chosen as background. If symmetry of juxtapositional ten-
dencies between two categoriesm andn in the direction!
is assumed, then relation (16) can be applied. For example,
in the four-category case, if all juxtapositional relationships
are assumed symmetric, then onlythree off-diagonal tran-
sition rates need to be specified once mean lengths, propor-
tions and the background category are selected.

Strike ({)- and dip (|)-direction transition rate matrices
U% andU+ can be developed conceptually by applying es-
timates of mean length and proportions in conjunction with
interpretation of lateral juxtapositional tendencies implied

by Walther’s Law, that a vertical facies succession corre-
sponds to a lateral sequence of depositional environments
(Leeder, 1982, p. 140). The mean lengthsO&c% for the
strike direction can be established for the uncertain data in
Figure 3 by considering plausible strike:vertical length ra-
tios. Obviously, what constitutes a ‘‘plausible’’ mean length
or elongation ratio is an interpretive matter that depends
on the depositional system. Empirical geomorphic models
of fluvial channel width:depth ratios (e.g., Etheridge and
Schumm, 1978) could be used to guide the interpretation.
In this example, assumed strike ({)-direction mean lengths
of 8 m, 6 m and 10 m correspond to strike:vertical elonga-
tions ratios of 7.0:1, 7.4:1 and 8.1:1 fordebris flow, levee
andchannel, respectively. The mean length forflood plain,
the assumed background category, need not be specified. If
the strike ({)-direction juxtapositional tendencies forchan-
nel$levee, channel$ debris flowandlevee$debris flow
are assumed similar with respect to proportions as those for
the vertical direction (19) in accordance with Walther’s Law,
the full strike- direction transition rate matrixU% could be
estimated by

U% @

5997
ý �
u'H

f� v v

f2 f2 f2 f2
3=56eu f� ý �

u'S
v

3=8;eu f� 7=4eu ý �
u'�f

6::8m3�

wheref� andf2 denote successive application of (20) and
(21) to respective row and column sums ofU%, andv de-
notes an imposition of symmetric juxtapositional tenden-
cies by applying (16). Note that only six of the sixteen en-
tries inU% need direct specification once proportions, sym-
metry and a background category are assumed. The solid
lines in Figure 3 show the resulting strike-direction Markov
chain model. A dip (y)-direction model could be developed
in a similar manner.

Clearly, other interpretations could be made to estimate
strike-direction transition rates for this model of facies ar-
chitecture. These could be accomplished, for example, by
tuning the off-diagonal transition rates to accommodate dif-
ferent preservation potentials for facies successions in dif-
ferent directions. Trial-and-error procedures also can be
applied by generating stochastic simulations with an ini-
tial rate matrix, then adjusting the transition rates to ob-
tain desired juxtapositional tendencies. The Markov chain
framework, although simple in theory, provides consider-
able flexibility and versatility for modeling 1-D spatial vari-
ability.
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MULTIDIMENSIONAL MARKOV CHAINS

2-D or 3-D Markov chain models can be developed by as-
suming that spatial variability in any direction can be char-
acterized by a 1-D Markov chain (Switzer, 1965; Lin and
Harbaugh, 1984; Politis, 1994). Although this may seem
like a tenuous theoretical leap, the assumption here is merely
that Markov chains might characterize spatial variability
not only in the vertical but in other stratigraphic directions
such as dip or strike. In a typical hydrogeological applica-
tion, data coverage usually is inadequate to directly develop
a 1-D Markov chain model for each of the infinity of direc-
tions. Alternatively, model development can focus on the
principal directions, say the strike ({), dip (|) and vertical
(}). Then 1-D Markov chain models for any direction can
be interpolated from the principal direction models.

Considering that the transition probability matrixW+kè,
for an arbitrary direction! depends entirely onUè, the in-
terpolation of Markov chain models can be accomplished
by ellipsoidally interpolating entries in the transition rate
matrices for the principal{> | and} directions by

muæ&>è m @
vë

k%
kè
uæ&c%

ê2
.

ë
k+
kè
uæ&c+

ê2
.

ë
k5
kè
uæ&c5

ê2
(22)

for all m andn 9@ ñ, wherek%> k+ andk5 are the{> | and

} direction components ofkè @
t
k2% . k

2
+ . k

2
5. The re-

maining entries inUè involving m or n @ ñ can be deter-
mined by applying (20) and (21). For the negative lag vec-
tor components, sayk3%, entries from the rate matrixU3%
corresponding to the opposite directioný{ are defined by

uæ&c3% @
ë
s&
sæ

ê
u&æc%

and used in (22) in place of entries forU%, in accordance
with the backward Kolmogorov differential equation (Agter-
berg, 1974, p. 455-456). Figure 4 shows a two-dimensional
transition probability model for the strike-vertical ({ ý })
plane as interpolated from the vertical (})- and strike ({)-
direction models previously developed and shown in Fig-
ures 2 and 3. The prescribed strike-direction symmetry is
evident in thatwæ&+k%> k5, @ wæ&+ýk%> k5, for every en-
try. However, asymmetries are evident in the vertical direc-
tion, particularly forwôe+k%> k5, andweô+k%> k5, because of
a strong fining-upward tendency ofchannel$levee.
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FIG. 4.– Two-dimensional Markov chain model for strike-vertical
plane established by interpolating strike and vertical-direction
1-D Markov chain models.

CONDITIONAL SIMULATION

Considering that true subsurface heterogeneity or ‘‘the truth’’
cannot be exactly determined, conditional simulation al-
gorithms attempt to produce multiple images that possess
patterns of heterogeneity or ‘‘spatial variability’’ charac-
teristic of the truth while honoring available data. The so-
called ‘‘realizations’’ may be useful for implementing real-
istic models of groundwater flow and contaminant trans-
port, uncertainty analyses, or Monte Carlo inversions.

The conditional simulation technique applied in this pa-
per involves two steps: (1) establishment of an ‘‘initial con-
figuration’’ by the sequential indicator simulation (SIS) al-
gorithm (Deutsch and Journel, 1992, p. 123-125), and (2)
iterative improvement of the SIS-generated initial config-
uration by the simulated quenching (zero-temperature an-
nealing) algorithm (Deutsch and Journel, 1992, p. 159-
160). The two steps are mutually dependent because SIS
alone will not yield stochastic simulations that adequately
honor the model of spatial variability, and quenching will
not succeed without a rudimentary initial configuration (Carle,
1997). Both the SIS and quenching steps may rely on the
same Markov chain model of spatial variability and, conse-
quently, are conducive to implementation in succession.
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Sequential Indicator Simulation

The initialization step follows the sequential indicator sim-
ulation (SIS) algorithm described by Deutsch and Journel
(1992, p. 123-125, 148), except that a transition probability-
based indicator cokriging estimate^l&+{f,`

W
SJg is used to

approximate the local conditional probabilities from data
atQ locations by

Su in occurs at{f m læ+{k,> ò @ 4> ===>Q > m @ 4> ===>Nj

ä ^l&+{f,`WSJg @
ù[
ð'�

g[
æ'�

læ+{k,zæ&ck (23)

wherelæ+{k, represents the value of an indicator variable
at a location{k as defined in (1). The weighting coef-
ficientszæ&ck are computed from a transition probability-
based cokriging system of equations:597 W+{� ý {�, ü ü ü W+{ù ý {�,

...
...

...
W+{� ý {ù, ü ü ü W+{ù ý {ù,

6:8
597 Z�

...
Zù

6:8

@

597 W+{f ý {�,
...

W+{f ý {ù,

6:8 (24)

where

Zð @

597 z��cð ü ü ü z�gcð
...

...
...

zg�cð ü ü ü zggcð

6:8
(Carle and Fogg, 1996). Using transition probability-based
indicator cokriging instead of the traditional indicator krig-
ing approach improves consideration of spatial cross- cor-
relations in estimating local conditional probabilities for
SIS. Figure 5 (top) shows the initial configuration state of
a conditional simulation of strike-vertical architecture af-
ter applying the SIS algorithm using (23) and (24) with the
strike-vertical 2-D Markov chain model shown in Figure 4.
In Figure 6, vertical transition probabilities measured from
this initial configuration seriously depart from the transi-
tion probability model, indicating that the SIS algorithm,
by itself, does not generate a pattern of spatial variability
consistent with the 2-D Markov chain model.
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FIG. 5.– At top, SIS-based initial configuration of a 2-D con-
ditional simulation of strike section hydrofacies architecture at
LLNL. At bottom, final version of conditional simulation af-
ter implementing simulated quenching on initial configuration.
Shaded center locations indicate conditioning data.

Simulated Quenching

The simulated quenching step is implemented to improve
agreement between measured and modeled transition prob-
abilities, starting from a SIS-generated initial configura-
tion. The quenching step attempts to solve the optimization
problem of

plq

;?=R @
�[
,'�

g[
æ'�

g[
&'�

+wæ&+k,,�.ø7 ý wæ&+k,,�ï(,2
<@>

(25)
whereRdenotes an objective function,k, denoteo @ 4> ===>P
specified lag vectors, and ‘‘PHDV’’ and ‘‘PRG’’ distin-
guish measured and modeled transition probabilities, re-
spectively (Deutsch and Journel, 1992, p. 159-160). The
simulated quenching algorithm is implemented by repeat-
edly cycling through each nodal location of the conditional
simulation and inquiring whether a change to another cat-
egory will reduceR; if so, the change is accepted. This
iterative improvement procedure continues untilR is min-
imized, or a limit on the number of iterations is reached.
Conditioning is maintained by not allowing changes of cat-
egories at conditioning locations. ‘‘Artifact discontinuity’’
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FIG. 6.– Comparison of the Markov chain model (solid
lines) with vertical transition probabilities computed from
SIS-generated initial configuration (crosses) and final condi-
tional simulation in Figure 5 after applying simulated quenching
(dots).

problems (Deutsch and Cockerham, 1994), where simu-
lated patterns do not jibe with conditioning data, can be
avoided by initializing the simulation with a SIS step in-
stead of random values, choosing a minimal number of the
closest lag vectorsk, for (25) and positioning the lag vec-
tors in a configuration that considers the anisotropy of the
spatial variability (Carle, 1997). Figure 5 (bottom) shows
the result of applying simulated quenching to the
SIS-generated initial configuration. After quenching, mea-
sured and modeled transition probabilities show excellent
agreement (Fig. 6).

Note in Figure 5 that asymmetries of the fining-upward
tendencies ofchannel$leveeare clearly apparent in the
quenched conditional simulation. Such asymmetric juxta-
positional relationships, which are strongly evident in the
vertical transition probability measurements, cannot be sim-
ulated by traditional indicator variogram-based geostatisti-
cal methods.

Stationarity– Limitations and Possibilities

The stochastic methods described in this paper rely on an
assumption of stationarity in the models of spatial variabil-
ity. From the standpoint of geologic interpretation of allu-
vial fans, Neton et al. (1994) have criticized stochastic ap-
proaches for not considering directional variations, trends
in lithofacies proportions and fan commingling. Granted,
stationarity assumptions can constrain applicability of sto-
chastic methods to limited regions. Nevertheless, it is pos-
sible to project nonstationary characteristics into the sto-
chastic simulations, even though a stationary model of spa-
tial variability is assumed. In the SIS step, conditioning
data can enforce a nonstationarity in proportions, such as
the coarsening-upward or fining-outward of an alluvial fan,
through the ‘‘unbiasedness’’ property (consideration oflo-
cal proportions) intrinsic to the transition probability-based
indicator cokriging estimate. The quenching step generally
preserves major features of the initial configuration, so that
trends in proportions may persist to the end result of the
conditional simulation (Carle, 1996). Nonstationarities in
direction can be included in the conditional simulation if an
a priori model of local directional variations is conceived,
as shown in Figure 7 for the LLNL site, where seven parase-
quences associated with episodes of Quaternary alluvial fan
deposition have been mapped (Blake et al., 1995). In this
example, stratigraphic dip directions radiate from different
source areas, such that anisotropy directions vary laterally
and with depth corresponding to each depositional package.

If several depositional systems occur within a study re-
gion, different models of spatial variability can be ascribed
to each depositional system. An example of this is given
later in application to commingling braided-river and al-
luvial fan deposits in the Salinas River Valley. It also is
possible to develop location-dependent spatial variability
models.

KINGS RIVER ALLUVIAL FAN

The Kings River alluvial fan is located southeast of Fresno,
where the Kings River enters the San Joaquin Valley at the
western base of the Sierra Nevada (Fig. 1). Agricultural
use of herbicides, pesticides and fertilizer has led to exten-
sive non-point source contamination of the aquifer system
(Nightingale, 1970; Kloos, 1983; Domagalski and Dubrovsky,
1991). Realistic models of hydrofacies architecture of the
Kings River alluvial fan are needed to assess contaminant
fate over a large regional extent.
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TABLE 2.– BASIS FOR DEFINITION OF HYDROFACIES FROM

KINGS RIVER ALLUVIAL FAN CORE DATA.

# facies c-horizon texture %
1 channel laggravel - 3
2 channel barsand sand, loamy sand 46
3 levee/barfine sand (fine) sandy loam 26
4 overbankfines clay, silt, clay loam 25

In an effort to quantitatively characterize aquifer system
heterogeneity, a detailed study area was established on a
medial portion of the fan. Data available include 1:24,000-
scale soil survey maps of c-horizon textures (U.S. Depart-
ment of Agriculture, 1971), geophysical logs for seven test
wells ranging in depth from 36 to 81 m, approximately 150
m of continuous core from three of the test wells, and 3.9
km of shallow seismic reflection and ground-penetrating
radar (GPR) data. The core, logs and GPR and seismic data
were obtained by the U.S Geological Survey in 1994 and
1995.

Geology

The Kings River alluvial fan deposits consist primarily of
fluvially derived elongate gravel and sand bodies surrounded
by overbank fine-grained material. Deposition primarily
occurred during glacial episodes of the Sierra Nevada, with
periods of nondeposition or erosion during the interglacials
(Huntington, 1980). The fan sediments observed in the
core and c-horizon (2 m depth) soil mapping were catego-
rized into four hydrofacies based on sedimentalogical in-
terpretations for the Kings River fluvial system (Table 2).
Proportions of the hydrofacies are given according to the
core data. Vertical juxtapositional relationships indicative
of the fluvial setting, such as fining-upward tendencies (e.g.,
wheregravel is overlain bysand, andsand is overlain by
fine sand) were observed in the well data.

Sedimentologic categories similar to those seen in the
core were recognized on the soil survey maps, as given by
the c-horizon (2 m depth) textures shown in Table 2. No-
tably,gravel tends to be buried deeper than the 2-m depth
of the soil samples; thus, corresponding soils generally are
not evident on the map. The c-horizon map indicates rel-
atively straight channel bodies, as well as lateral fining-
outward (relative to channel axes) tendencies ofsand$fine
sand$fines. Compared to the core data, the proportions
of fine-grained deposits are much greater in the c-horizon.
Much of this difference probably relates to preservation po-
tentials of the sediment types, where coarse-grained sedi-
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FIG. 8.– Matrix of vertical-direction transition probabilities for
Kings River alluvial fan core data: measurements (dots) and
Markov chain model (solid lines).

ment tends to be preferentially preserved, and fine-grained
material tends to be eroded and transported to distal por-
tions of the fan.

Markov Chain Modeling

Vertical (})-direction transition probability measurements
obtained from the core data, shown in Figure 8, were mod-
eled by a Markov chain with a transition rate matrix of

U5 @
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where the symbols are analogous to those in (19),O de-
noting mean lengths by (14) andeu denoting a transition
rate relative to proportions by (18). Transition rates for
the last row and column involving the background category
(fines) were calculated by applying (20) and (21). Fining-
upward tendencies are indicated by the transition rates of
2.10eu and 1.44eu for gravel$sand andsand$fine sand,
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FIG. 9.– Matrix of dip-direction transition probabilities based on
Kings River core data: measurements (dots) and Markov chain
model (solid lines).

versus 0.57eu and 0.68eu for the opposingsand$gravel and
fine sand$sand transitions. A tendency forgravel to oc-
cur as channel lag deposits beneathsand is strongly evident
in the zero vertical transition rates forgravel$fine sand
andgravel$fines. The relatively high transition rates of
1.53eu for fines$silty sandand 1.51eu for silty sand$fines
indicate thatfinesandsilty sandtend to be associated with
each other. The relatively high transition rates of 1.64eu for
silty sand$gravel and 1.69eu for fines$gravel indicate a
tendency of the fluvial cycles to initialize in finer grained
deposits.

The test wells were aligned in the general dip direc-
tion, which enabled an estimation of dip (|)-direction tran-
sition probabilities (Fig. 9), although considerable uncer-
tainty results from the limited data and large well spacing.
Markov chain modeling for the dip direction was facilitated
by assuming the proportions given in Table 2, the overbank
fines as the background category and symmetrical lateral
juxtapositional relationships, as indicated by the soil sur-
vey. As a result, only six parameters needed to be speci-
fied for the dip-direction: mean lengths of thegravel, sand
andfine sandcategories and juxtapositional tendencies for

gravel$sand, sand$fine sand andgravel $fine sand.
Mean lengths of 400 m forgravel, 1,200 m forsand and
600 m forfine sandwere assumed, which appeared consis-
tent with spatial continuity indicated by the c-horizon maps
and seismic and GPR surveys. The off-diagonal transition
rates were tuned by trial-and-error to fit the data after first
trying values measured from the soil survey and analogous
to those applied to the vertical transition rates (a Walther’s
Law-style interpretation). The resulting dip (|)-direction
transition rate matrix was prescribed by
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wherev, f� andf2 are prescribed by (16), (20) and (21),
respectively.

Seismic and GPR data also indicated lateral continuity
of fine-grained units for the strike ({) direction. Assumed
mean lengths of 325 m forsand and 215 m forfine sand
were checked for consistency with the soil map. A strike
({)-direction transition rate matrix was developed in a man-
ner similar to the dip (|)-direction rate matrix by
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The resulting transition dip (|)- and strike ({)-direction tran-
sition rate matrices yielded fining-outward tendencies that
are, in general, less strict than the fining-upward tendencies
of the vertical transition rates. This interpretation allows for
the possibility thatgravel may occur laterally adjacent to
all categories, although primarily adjacent tosand.

Conditional Simulation

The conditional simulation of a portion of the Kings River
alluvial fan shown in Figure 10 was generated on a84 û
84û 634-node grid with a discretization of 50 mû 100 m
û 0.3048 m ({û | û }). Conditioning was maintained by
treating both the core data and facies interpretations of the
geophysical logs as hard data. The simulation shows jux-
tapositional relationships that are consistent with a concep-
tual geologic model of the Kings River system. Thegravel
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andsand categories tend to be strongly associated as elon-
gate channel deposits with strong fining-upward tendencies
of gravel$sand andsand$fine sand, as expected for a
fluvial depositional system. Thefine sandandfines cat-
egories tend to be associated with each other, as would be
expected for upper channel, levee and overbank facies.

SALINAS VALLEY

In the Salinas Valley, elevated levels of nitrate in ground
water are the result of historical land uses, which include
irrigated agriculture, feed lots and on-site sewage disposal.
Determining the impacts of such land-use practices on ground-
water quality requires careful analysis of nitrate transport
from land surface to water table. In turn, the impact of
physical heterogeneity in the vadose zone is crucial to de-
velopment of realistic nitrate transport models. A detailed
study area was established at Wing Ranch, about 15 km
southeast of Salinas (Fig. 1), in an effort to stochastically
characterize three-dimensional vadose zone heterogeneity
using the geostatistical methods described herein. Interest-
ingly, the vadose zone at Wing Ranch consists of alluvial
deposits from two depositional systems. This section de-
scribes an approach to including such a ‘‘nonstationarity’’
into geostatistical simulation.

Geology

The vadose zone at the Wing Ranch study area consists of
fluvial deposits of the Salinas River and alluvial fan de-
posits originating from granitic Salinian basement terrains
in the Gabilan Range to the northeast (Durham, 1974; Tins-
ley, 1975). Coarse-grained material from the Salinas River
deposits can be distinguished from the alluvial fan deposits
by the presence of Tertiary marine shale and chert derived
from Monterey Formation rocks in the Sierra de Salinas
southwest of Salinas Valley.

Seven boreholes were drilled to a depth of approximately
30 m. Cores were obtained continuously and categorized
according to provenance and texture (Maserjian, 1993) as:

Salinas River deposits: alluvial fan deposits:
1. sand (53%) 1.sand (43%)
2. silty sand (47%) 2.silty sand (46%)

3. fines (11%)

where the percentages indicate the proportions of the tex-
tures observed in each depositional system. Based on lith-
ologies observed in the study area, the alluvial fan deposits
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FIG. 11.– Matrix of vertical-direction transition probabilities
based on core data for Salinas River deposits at Wing Ranch study
area: measurements (dots) and Markov chain model (solid lines).

generally overlap the Salinas River deposits, although some
interfingering of the depositional systems occurs.

Markov Chain Modeling

The local patterns of heterogeneity in the Salinas River and
alluvial fan deposits were assumed to be independent of
each other. Vertical (})-direction transition rate matrices
for the two depositional systems were developed by fitting
the vertical-direction transition probability measurements
(Figs. 11 and 12) obtained from the core data, yielding

U5cSALINAS @

é ý �
u'2ébD

f�
f2 f2

è
m3�

and

U5cALLUVIAL @

57 ý �
u'�é�D

4=37eu f�
3=96eu ý �

u'fébH
f�

f2 f2 f2

68 m3�

where background categories were assumed assilty sand
for the Salinas River system andfines for the alluvial fan
system; diagonal transition rates are defined according to
the mean lengthO as in (14);f� andf2 denote application
of (20) and (21), respectively; andeu denotes a transition
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FIG. 12.– Matrix of vertical transition probability measurements
based on core data for alluvial fan deposits at Wing Ranch study
area: measurements (dots) and Markov chain model (solid lines).

rate dependent on proportions by (18). Note that no off-
diagonal transition rates need to be specified in the two-
category Salinas River case.

The lateral spacing of the boreholes is too large to es-
tablish a 3-D model of spatial variability directly from the
data. Alternatively, transition rate matrices for the strike ({)
and dip (|) directions were established interpretatively by
assuming:

1. proportions, as given previously,
2. mean lengths corresponding to geologically plausible

elongation ratios,
3. similar juxtapositional tendencies ofsand$silty sand

(1$2) as observed in the vertical, and
4. symmetric juxtapositional relationships in the strike ({)

and (|) directions.

As a result, strike ({)- and dip (|)-direction transition rate
matrices were obtained by

U%cSALINAS @

é ý �
u'Df

f�
f2 f2

è
m3�

U+cSALINAS @

é ý �
u'2ff

f�
f2 f2

è
m3�

U%cALLUVIAL @

57 ý �
u'�f

4=37eu f�
v ý �

u'H
f�

f2 f2 f2

68 m3�

U+cALLUVIAL @

57 ý �
u'ef

4=37eu f�
v ý �

u'ôf
f�

f2 f2 f2

68 m3�

wherev denotes application of (16), andf� andf2 denote
application of (20) and (21).

Conditional Simulation

A conditional simulation of hydrostratigraphy underlying
the Wing Ranch study area (Fig. 13) was generated on a
434 û 434 û 434-node grid with a discretization of 15 m
û 15 mû 0.3 m ({ û | û }). The simulation was pro-
duced in a similar manner as given in previous examples,
except that another simulation step was added to distinguish
the two depositional systems. First, conditional simulations
of each depositional system were generated independently,
as if only one depositional system existed in the vadose
zone. Then, an additional conditional simulation was gen-
erated having two categories representing the two deposi-
tional systems. Using the proportions of the two systems,
conditioning data and large assumed mean lengths, a geo-
logically reasonable interface between the fluvial and allu-
vial fan systems was produced by a conditional simulation,
which was then used to splice together the two independent
conditional simulations of the Salinas River and alluvial fan
hydrofacies architecture.

Nonstationarities in anisotropy directions also were con-
sidered. Meandering features were assimilated into the Sali-
nas River deposits by assuming that anisotropy directions
vary in the horizontal plane according to a Gaussian ran-
dom field (Deutsch and Journel, 1992, p. 136-137). Strati-
graphic dip directions of the alluvial fan deposits were fixed
according to a radial morphology. The simulation illus-
trates two ‘‘nonstationarities’’ that can be incorporated in
the geostatistical simulation of hydrostratigraphy: (1) non-
stationarity attributed to different patterns of heterogeneity
in each of two interfingering depositional systems, and (2)
nonstationarity in anisotropy directions attributed to mor-
phological features, such as meandering or radial alluvial
fan morphology. These nonstationarities obviously would
impact field-scale transport of nitrates. Conditional simu-
lations such as this have been used for field-scale models
of flow and transport to estimate contaminant arrival times
from the land surface to the water table (Fogg et al., 1995).
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SUMMARY AND CONCLUSIONS

A new transition probability-based geostatistical approach
to conditional simulation has been presented with exam-
ple applications to alluvial and fluvial hydrofacies archi-
tecture. The approach improves the ability to incorporate
geologic interpretation into geostatistical methods of condi-
tional simulation, which is crucial for hydrogeological ap-
plications. Hydrogeological data typically are too sparse
in lateral directions to apply the traditional geostatistical
approach of empirical curve-fitting to variogram measure-
ments. Furthermore, existing geostatistical approaches do
not fully account for all spatial cross- correlations and, thus,
cannot account for certain juxtapositional relationships such
as fining-upward tendencies, which commonly occur in al-
luvial depositional systems.

The foundation of the approach is quantitative descrip-
tion of spatial variability of categorical variables (hydro-
facies) in terms of the transition probability. The transi-
tion probability offers advantages over the more prevalent
‘‘indicator variogram’’ where integration of indirect, sub-
jective, or conceptual information is desired. By simple
graphical observation, features of the transition probabil-
ity can be related precisely to geological attributes of pro-
portions, mean length and juxtapositional tendencies. Such
interpretability not only improves understanding of spatial
variability measurements, but facilitates construction of ge-
ologically plausible spatial variability models.

The adoption of the transition probability as a measure
of spatial variability points to employment of the Markov
chain as a mathematically and conceptually simple yet the-
oretically powerful model of spatial variability. Markov
chains have a long-standing track record in geology for quan-
titative analysis of vertical stratigraphic sequences. In the
examples given, Markov chains consistently provide excel-
lent models for measured vertical-direction transition prob-
abilities of hydrofacies categories at three sites of alluvial
and fluvial deposits in California.

Markov chain models can be extended to 3-D applica-
tions by modeling spatial variability in principal stratigraphic
directions of vertical, strike and dip using either quanti-
tative or conceptual means, then interpolating those 1-D
models to all directions. Traditional geostatistical approaches
rely on abundant data or an exhaustive ‘‘reference image’’
to empirically obtain a model of spatial variability. Alter-
natively, the Markov chain approach provides a concep-
tual framework for developing models of spatial variabil-
ity through integration of fundamental information on pro-
portions, mean length and juxtapositional tendencies. This

approach is particularly useful in lateral directions, where
data are typically sparse relative to the vertical. Sylvester’s
theorem (see Appendix) provides the mathematical founda-
tions for calculating transition rate matrices and transition
probabilities of 3-D, continuous-lag Markov chain models.

The 3-D Markov chain models of spatial variability then
can be applied to both sequential indicator simulation (SIS)
and simulated annealing geostatistical conditional simula-
tion algorithms. In our experience, excellent conditional
simulation results can be obtained by first applying SIS to
generate an ‘‘initial configuration,’’ then iteratively improv-
ing the SIS result by simulated quenching (zero-temperature
annealing). As applied to fluvial deposits, the conditional
simulations display geologically plausible juxtapositional
tendencies. For example, at Lawrence Livermore National
Laboratory, levee deposits tend to occur above and later-
ally adjacent to channel deposits; in channel bodies of the
Kings River alluvial fan, gravel lag deposits tend to occur at
the base of sand deposits. These fining-upward tendencies
are strongly supported by core data but could not be prop-
erly simulated by prevalent indicator kriging-based SIS ap-
proaches. It is also possible to incorporate ‘‘nonstationar-
ities’’ into the stochastic simulation results, even though
models of spatial variability fundamentally assume station-
arity. Nonstationarities in direction, such as meandering or
the radial morphology of an alluvial fan, can be incorpo-
rated in the SIS and simulated quenching algorithms with
an a priori map (deterministic or stochastic) of anisotropy
directions.

In the techniques and examples given, we have empha-
sized integration of geologic interpretation into geostatis-
tical methods. Granted, any geostatistical approach can be
applied from a purely quantitative standpoint, such that cat-
egories defined according to ‘‘levee’’ or ‘‘channel lag’’ or
‘‘overbank fines’’ would assume no geologic significance.
However, such geologic facies have geometric and loca-
tional significance in geologic interpretation, providing in-
sight to characterizing true hydraulic heterogeneity patterns
that otherwise would be difficult to characterize solely by
statistics derived from typical hydrogeological data sets.
Thus, we have attempted to present a geostatistical mod-
eling approach that not only maximally utilizes univariate
(proportions) and bivariate (transition probability) spatial
statistics, but also brings out the ‘‘geo’’ aspect of ‘‘geosta-
tistics.’’

APPENDIX: MATHEMATICAL FOUNDATIONS

In order to develop continuous-lag Markov chains as geo-
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statistical models of spatial variability, one must be able to
perform the following:

î evaluate thematrix exponentialform of Markov chain
given by (8),

î evaluate thematrix logarithmof a transition probability
matrix given by (11), and

î convert a discrete-lag Markov chain to a continuous-lag
Markov chain by combining (8) and (11).

However, (8) and (11) cannot be computed directly from
the matrix entries. In either case, the key step is to find the
eigenvalues ofUè orW+kè,, which can be computed using
codes for real general matrices given by Smith et al. (1976)
or Press et al. (1992).

For notational simplicity, let the lagk @ kè andU @
Uè. A square (N ûN) matrix such asU can be expressed
in diagonal form with respect to its eigenvalues by

U @
g[
,'�

è,], (26)

where theè, for o @ 4> ===>N denote the eigenvalues ofU,
and], denotes a spectral component matrix associated with
each eigenvalueè,. The spectral component matrices],
can be determined directly from the eigenvalues and matrix
U by

], @

T
6õ',

+è6LýU,T
6 õ',

+è6 ý è,, o @ 4> ===>N (27)

whereL denotes the identity matrix. The continuous-lag
Markov chain (8) then can be computed from

W +k, @
g[
,'�

h{s +è,k,], (28)

through application of Sylvester’s theorem (Agterberg, 1974,
p. 406-412). Recognizing that (28) represents a canonical
form ofW +k,, two useful conclusions can be drawn for the
Markov chain model:

1. The eigenvaluesë,+k, ofW+k, relate to the eigenvalues
è, ofU by

ë,+k, @ h{s +è,k, or è, @
oq ë,+k,

k
;o @ 4> ===>N

(29)

2. BothU andW+k, have identical spectral component
matrices],.

As a result, if a Markov chain model is assumed, a transition
probability matrixW+ük, for a discrete lagük can be used
to computeU by applying (29) to (26) to obtain

U @
g[
,'�

oq ë,+ük,

ük
], (30)

whereë,+ük, and], are the eigenvalues and spectral com-
ponent matrices, respectively, corresponding toW+ük,. Ap-
plication of (30) to (8) yields

W+k, @
g[
,'�

ë,+ük,
û*{û], (31)

which represents a continuous-lag version of the more com-
monly used discrete-lag Markov chain model (10). We em-
phasize that the advantage of (31) over (10) is the continu-
ous functional representation of the model, that is, the abil-
ity to calculateW+k, at anyk, not just integer multiples of
ük. Expression (28) shows that a Markov chain model cor-
responds to a linear combination of exponential functions.
Nonetheless, rather nonexponential looking structures can
be obtained from a Markov chain model, as evident in some
of the off-diagonal transition probabilities for the examples
given.
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