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Transition Probability-Based Indicator Geostatistics’

Steven F. Carle? and Graham E. Fogg””

Traditionally, spatial continuity models for indicator variables are developed by empirical curve-
fitting to the sample indicator (cross-) variogram. However, geologic data may be too sparse to
permit a purely empirical approach, particularly in application to the subsurface. Techniques for
model synthesis that integrate hard data and conceptual models therefore are needed. Interpret-
ability is crucial. Compared with the indicator (cross-) variogram or indicator (cross-) covariance,
the transition probability is more interpretable. Information on proportion, mean length, and jux-
tapositioning direcily relates to the transition probability; asymmetry can be considered. Further-
more, the transition probability elucidates order relation conditions and readily formulates the
indicator (co)kriging equations.
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INTRODUCTION

Indicator geostatistical methods are becoming increasingly popular in the earth
sciences for estimation, mapping, and stochastic simulation because much geo-
logical data is categorical, for example, facies, soil classifications, mineraliza-
tion phases, concentration ranges, etc. Furthermore, geological and geophysical
data of continuous nature may not conform to Gaussian models, and may ne-
cessitate a nonparametric approach (Journel, 1983).

In applying an indicator geostatistical approach, spatial continuity modeling
may be the most crucial and difficult step. Traditionally, sample indicator
(cross-) variograms are fitted empirically with permissible and compatible math-
ematical functions such as the spherical or exponential models (Christakos,
1984; Armstrong, 1992; Deutsch and Journel, 1992, p. 23). In practice, data
may not be sufficiently abundant to support direct computation of the model,
especially in application to the subsurface, requiring some combination of em-
pirical and subjective model fitting. Translation of subjective knowledge into
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spatial continuity modeling may be crucial to successful implementation of in-
dicator geostatistics. According to Deutsch and Journel (1992, p. 58), ... it
is subjective interpretation . . . that makes a good model; the data, by them-
selves, are rarely enough.”’

The subjective aspect of model development could be improved greatly by
an ability to quantitatively translate concepts and observations into the spatial
continuity model. Fundamental characteristics of indicator (categorical) vari-
ables that can be inferred subjectively are proportion, mean length (e.g., mean
thickness in the vertical direction), and juxtapositioning patterns. ‘‘Juxtaposi-
tioning”’ herein refers to how one category locates in space preferentially or
nonpreferentially with respect to another category, including nonrandom and
direction-specific (asymmetric) patterns such as fining-upward cycles (see Allen,
1970). Anisotropy occurs when mean lengths differ with direction. Such con-
ceptual information may be provided by geologic interpretations, for instance,
of facies architecture or mineralization patterns.

Spatial continuity models and (co)kriging estimates for indicator variables
also should obey basic laws of probability, otherwise referred to as ‘‘order
relations’” in geostatistics (Journel and Posa, 1990). Consideration of probability
laws in spatial continuity model building helps avoid the ad hoc order relations
corrections often required in indicator (co)kriging estimates (Deutsch and Jour-
nel, 1992, p. 77-81).

This paper shows how the transition probability, with respect to indicator
(cross-) variograms and indicator (cross-) covariances, facilitates translation of
subjective information and elucidates potential order relation problems. Fur-
thermore, this paper shows that indicator (co)kriging equations can be formu-
lated in terms of the transition probability. Thus, the transition probability can
potentially replace the indicator (cross-) variogram and indicator (cross-) co-
variance throughout the implementation of indicator geostatistics.

DEFINITIONS

The indicator variable I,(x) can be defined, in general, over a region D by

1, if category k occurs at location X
I(x) = : (D
0, otherwise
where x e Dand k = 1, ..., K. The categories may be defined as mutually

exclusive units such as lithofacies or soil types (e.g., Goovaerts, 1994a) or, as
in nonparametric estimation methods, by cutoff values z;

1, if Z(x) < %
Li(x) = : )
0, otherwise
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where Z(x) is a continuous variable (e.g., Journel and Alabert, 1989; Goovaerts,
1994b). The following discussion applies to the general situation [Eq. (1)],
regardless of how the categories are defined.

Spatial Continuity Measures

Indicator (cross-) variograms or indicator (cross-) covariances traditionally
are used in geostatistics to measure spatial continuity of indicator variables (see
Deutsch and Journel, 1992, p. 39-60). As applied to indicator variables, the
cross-variogram 7,,,(h) is defined as

2ym(h) = E{[1,(x) — L,(x + W] [,(x) — L(x + h)]} 3
and the cross-covariance C,,(h) is defined as
Cou(h) = E{I,(0)L(x + h)} — E{I,(0)}E{/«(x + h)} (C))

where h denotes a lag separation vector.
As applied to measuring spatial continuity, the transition probability 7, (h)
denotes the conditional probability

t,.(h) = Pr{category k occurs at x + h|category m occurs at x}

Applying definitions (1) or (2) of an indicator to the definition of a conditional
probability (Ross, 1988, p. 58), the definition of 7,,(h) becomes

tu(h) = Pr{fi(x + h) = 1][,(x) = 1}
= Pr{,(x + h) = 1 and [,,(x) = 1}/Pr{l,(x) = 1} (5)
Relations

The indicator (cross-) variogram, indicator (cross-) covariance, and tran-
sition probability are related to each other as different combinations of one-
location marginal probabilities p,(x) defined as

px) = Pr{li(x) = 1} = E{I(x)}
and two-location joint probabilities p,,.(x, h) defined as
Pmk(X, h) = Pr{l,(x) = 1 and I,(x + h) = 1} = E{I,(X)[,(x + h)}

Typically in practice, the assumption of a stationary model removes dependence
on location x so that

E{pix)} =p vxeD (6)
where p, denotes a constant, and
E{pu(x, W)} = p,u(h) vxeD )

where p,(h) denotes a joint probability depending only on lag h.
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By applying (6) and (7), the indicator cross-variogram definition (3) be-
comes

Yuk() = Ppi(0) — [Ppu(B) + pu(—W)1/2 (®)

the indicator cross-covariance definition (4) becomes
Cou(h) = ppu(h) = prpyc ®

and the transition probability definition (5) becomes
tu(0) = P (h)/p,, (10)

Substitution of (10) into (8) yields the relationship of the indicator cross-
variogram with the transition probability

'Ymk(h) = pm{tmk(o) ) [tmk(h) i tmk(_h)]/2} (1 1)

and substitution of (10) into (9) yields the relationship of the indicator cross-
covariance with the transition probability

ka(h) = pm[tmk(h) Fd pk] (12)
as shown by Ross (1988, p. 281).

INTERPRETABILITY

Interpretability of spatial continuity measures is important to a practitioner
concerned with:

e evaluating spatial continuity data features in a geometric, probabilistic,
or geologic context;

e incorporating geometric, probabilistic, or geologic concepts into spatial
continuity model development;

e maintaining adherence to probability law (order relation conditions).

The spatial continuity measures C,,(h), v, (h), and t,.(h) applied to indicator
variables can be estimated with similar ease (or difficulty) from the same dataset.
If abundant measurements clearly constrain the spatial continuity model, then
interpretability does not matter necessarily, and an empirical implementation of
indicator geostatistics can proceed successfully. Otherwise, subjectivity must
enter into model fitting, and interpretability becomes important for ensuring
geologic plausibility.

Proportions, mean length, and spatial juxtapositioning patterns are general
attributes that may be observed or inferred from geologic systems or models.
Spatial juxtapositioning can be defined quantitatively in terms of asymmetry of
spatial arrangement (e.g., fining or coarsening-upward cycles) and randomness
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of transitions from one category to another (see Miall, 1973). Rigorous proce-
dures for infusing subjective information into spatial continuity modeling are
needed to maintain consistency with conceptual models. These procedures, how-
ever, are not complete without means for avoiding order relation problems by
maintaining adherence to probability law.

Proportions

Proportions, which typically can be inferred directly from the indicator data
and conceptual models, can guide fitting of the sill of a spatial continuity model,
whether expressed as C,,(h), v,(h), or 7,,(h). Conversely, the sill of a spatial
continuity model implies the assumed proportions. Thus, the relationship be-
tween proportions and the sill is integral to subjective development and concep-
tual understanding of the spatial continuity model.

Consider the problem of evaluating the proportions implied by models of
either C,,(h), 7,x(h), or f,,(h). This problem arises during model building or
interpretation, in order to verify that model sills are consistent with proportions
known a priori. The sill of t,,(h) approaches p,, the proportion of category &,
whether m = k or m # k. In contrast, the sills of vy(h) and C;,(0) approach
p(1 = p,), which requires solving for “‘p’’ in a quadratic equation sill = p(1
— p); but does p, equal p or 1 — p? The sill of ,,(h) and C,(0) for m # k
approaches —p,,p,, an even more ambiguous situation.

For example, Figure 1 shows lithofacies interpretations for vertical
(z-direction) boreholes drilled into an alluvial fan underlying the Lawrence Liv-
ermore National Laboratory, Livermore, California. In actuality, continuous
data are available along each borehole; however, for this example, 80% of the
data has been removed randomly to mimic a sparsely sampled geologic dataset.
Horizontal location in Figure 1 is arbitrary. Proportions from the data shown in
Figure 1 are debris flow (13%), floodplain (42 %), overbank (27 %), and channel
(18%).

The ambiguity inherent to evaluating the proportions implied by a matrix
of indicator cross-variogram (or cross-covariance) models is apparent especially
in the most simple situation, a system with only two categories. Figures 2 and
3 show t,,(h,) and ¥,,(h.) models fitted to measurements computed along the
vertical (z) direction for a binary categorization as channel and not-channel
facies. The ,,(h,) model sills (dashed lines) clearly indicate an approximate 0.2
proportion of channel facies, and, correspondingly, a 0.8 proportion of not-
channel facies. However, the v,,(h.) models and measurements for each tran-
sition mk in this binary system appear identical, except that the autovariograms
are positive and the cross-variogram is negative. Ambiguity would arise in
evaluating the proportions of channel facies implied by the v,,(k,) model sills
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Figure 1. Vertical boreholes logged (where data are present) as four litho-
facies: debris flow, floodplain, overbank, and channel. Note that horizontal

location is arbitrary.

(dashed lines) from the indeterminate quadratic equation 0.15 = p(1 — p),
which yields p = 18% orp = 82%.

Difficulties intensify when evaluating the proportions implied by a matrix
of indicator cross-variogram models for K = 3. Figures 4 and 5 show 7,,(h,)
and 7,(h,) models and measurements for all four facies, debris flows, flood-
plain, overbank, and channel. The proportions p; of each facies directly relate
to the model sills (dashed lines) in each column of the 7,,(k,) matrix. Evaluating
the proportions implied by v,,(h,) [or C,,(h,)] models requires solving systems
of quadratic equations involving sill = p,(8,x — pw)-
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Figure 2. Vertical transition probability measurements
(circles), proportions (dashed lines), and estimated slope
lines (dotted lines) for data shown in Figure 1, cate-
gorized by channel and not-channel facies.
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We are stressing the relationship between proportions and model sills not
for the purpose of determining proportions from bivariate data, but rather to
check for consistency of the spatial continuity model with proportions estab-
lished by univariate data and conceptual information. Prior information on pro-
portions (usually available) should guide subjective model fitting of the sill for
either C,.(h), v,,(h), and ,,(h). Of these measures, 7,,(h) provides the most
direct relationship between the model sill and proportions.
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Figure 3. Vertical indicator cross-variogram measure-
ments (circles), sills (dashed lines), and estimated slope
lines (dotted lines) for data shown in Figure 1, cate-
gorized by channel and not-channel facies.
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Figure 4. Corresponding to all four lithofacies shown in Figure 1: ver-
tical transition probability measurements (circles), proportions (dashed
lines), and estimated slope lines (dotted lines): autotransition probability
models (solid curves, on diagonal) fitted by sum of proportions and
spherical and exponential models and, corresponding to (16), random
cross-transition probability models (solid curves, on off-diagonal).

Mean Length

Let h, denote a lag for an arbitrary direction ¢. Intuitively it may seem
that the range of y(hy), Culhy), tiu(h,) should relate directly to mean length
(mean thickness) of the category k in the direction ¢. However, it is the slope
at the origin that is directly related. Assuming stationary proportions, the mean
length of the category k in a direction ¢, denoted by Zk_ »» relates to the slope at
the origin of v,(h,) by

Ivulhy, — 0) comiligs (13)
ah¢ l’\’.¢'
to Ckk(hdJ) by

_aCkk(h¢ - 0) . _P_k
oh, he.o
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Figure 5. Corresponding to all four lithofacies shown in Figure 1: ver-
tical indicator cross-variogram measurements (circles), sills (dashed
lines), and estimated slope lines (dotted lines); autovariogram models
(solid curves, on diagonal) fitted by sum of spherical and exponential
models and, corresponding to (16), random cross-variogram models (solid
curves, on off-diagonal).

(Dagan, 1989, p. 21-24), and to #,(hy) by

_Otg(hy > 0) 1

= 14
oh, .o i

(see derivation in Appendix A).

For example, the dotted lines in Figures 2 and 4 represent estimations of
slope at the origin for 7, (h, = 0) in the ‘‘z”” or vertical direction. We will refer
to these dotted lines as the ‘‘slope lines.’” The abscissa value for the projection
of a t,(h, = 0) slope line to the intersection of the lag axis corresponds to an
estimate of Zk'z by (14). For example, from Figure 2, mean vertical lengths of
approximately 5.5 and 27.5 ft are inferred for channel and not-channel facies,
respectively, by projecting the 7, (h, — 0) slope lines to the lag axis. From
Figure 4, the mean vertical lengths of approximately 6, 8, and 6 ft are inferred
for debris flow, floodplain, and overbank facies.
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Obviously, mean lengths can be computed directly from continuous data,
but not from discontinuous data. Mean lengths of 6.4, 26.3, 5.7, 7.9, and 6.1
ft for channel, not-channel, debris flow, floodplain, and overbank facies, re-
spectively, were computed directly from the actual continuous dataset (not
shown). Note that mean length estimates inferred from the highly discontinuous
data compare favorably with mean lengths directly calculated from continuous
data.

To obtain mean vertical length estimates by (13) from v, (h,) as shown in
Figures 3 and 5, the yu(h. — 0) slope lines must be projected to an ordinate
of p, . Interpretation of Z,\,': straight from 7y, (h,) or Cy,(h.) becomes more difficult
than from #,,(h,) because inference of p; is prerequisite. Considering the practical
limits of 0 < y,,(h) < ~0.25, the projection of the yu(h, — 0) slope line
proceeds awkwardly outside these limits if p, > 0.25, as apparent for the not-
channel indicator autovariogram in Figure 3 and for the floodplain and overbank
indicator autovariograms in Figure 5. This problem does not arise for 7;(h.)
because the #,(h, = 0) slope line projects from the ordinates of one to zero.

We suggest that any available information on mean length, such as geo-
logical or geophysical interpretation, should help guide subjective model fitting
of the slope of Cylhy = 0), yulhy — 0), or f(h, = 0); of these spatial
continuity measures, #;,(h, = 0) provides the most direct link with mean length.
Important consequences of mean length interpretation are as follows:

o if ]M, is interpreted as greater than zero for a mutually exclusively defined
category k, then the nugget for a C(h,), yu(hy), or t(h,) model should
be zero;

o if 7,“ » cannot be computed directly (because of discontinuous data sam-
pling), it can be interpreted from the Cy(hy = 0), yi(hy, = 0), or 1y (hg
— 0) slope line of the fitted model; and

e if data are too sparse to interpret ?M,, for example, in nonvertical direc-
tions for most subsurface investigations, the fitting of the slope for a
Culhy = 0), vi(hy = 0), or t4(h, — 0) model can be guided by
reasonable estimates of mean length obtained from conceptual or other
indirect information.

Thus, given information on proportions and mean lengths, the practitioner
has most of the information needed to synthesize plausible models of either
Cu(h), yu(h), or t;,(h). The slope line and proportion will dictate the sill and
(effective) range if specific model structures such as spherical or exponential
functions are assumed. In Figures 4 and 5, sums of spherical and exponential
functions that agree with the proportions and inferred average lengths as noted
were fitted to the sample #;,(h.) and y(h.), as represented by the solid curves.
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Asymmetry
Asymmetry implies that
Pou) # pu(—h) (15a)
or
Puk(®) # ppu(h) (15b)

By applying (15a) or (15b) to (9) and (10), it is apparent that indicator cross-
covariances and transition probabilities can consider asymmetry. When m # k
it is possible that C,,.(h) # C,(—h) or C,,(h) # C,(h), and 7,,(h) # 7,,(—h)
or pt(h) # puy,(h). However, for indicator cross-variograms the averaging
of p,«(h) and p,.(—h) evident in (8) or (11) requires that v,,(h) = v, (h) or
Youh) = 7, (—h). Thus, indicator cross-variograms cannot reveal asymmetry.

Figures 3 and 5 need only show the lower (or upper) triangle of the indicator
cross-variogram matrix because of the symmetry assumption implicit to vy,,.(h).
This should not be taken necessarily as a practical advantage. Before employing
v.x(h) as a spatial continuity measure, the practitioner should consider the de-
sirability or justifiability of an assumption of symmetry. Obviously, asymmetrics
do exist in geologic systems, for example, upward-fining/coarsening cycles of
depositional units in fluvial environments (seec Allen, 1970). If indicator geo-
statistical estimation and simulation methods are to be taken seriously as geo-
logic modeling tools, asymmetry should be addressed.

Randomness

One of the main uses of transition probability measures by geologists has
been to analyze how transitions from one geologic unit to another deviate, if at
all, from randomness (Miall, 1973). Assuming a stationary model of #,,(h), [1
— 1,,,(W)] is the probability of transitioning to any category k # m at x + h
given category m at X. The relative proportions for the categories k # m are
pi/[1 = p,.). If 1,.(h) for k # m is assumed to depend randomly only on the
relative proportions of categories k # m, then such a random transition prob-
ability model, denoted by #,:(h), is

i) = [1 — 1, (MIp /11 — p,]  fork #m (16)

In Figure 4, the solid curves in the off-diagonal plots represent 7,,(h.) as cal-

culated by (16).

Note in Figure 4 that 1{')(h.) fits the sample ,,.(h.) fairly well, except for
noticeably below random transitions for debris flow — channel, channel —
debris flow, and channel — floodplain, and a well above random transition for

channel — overbank. These nonrandom transitions can be interpreted in a
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stratigraphic context. The debris flow deposits tend not to be deposited or pre-
served (or recognized?) near channel deposits, perhaps because of erosion in
channel areas and increased preservation potential in floodplain areas. The ten-
dency for overbank deposits to overlic channel deposits is consistent with an
application of Walther’s Law (see Leeder, 1982, p. 122) to fluvial depositional
models that show overbank deposits (such as levees and crevasse splays) oc-
curring laterally proximal to channel deposits (see Allen, 1970). Conversely,
stratigraphic interpretations of juxtapositioning patterns for depositional units
could help guide fitting of the off-diagonal cross-transition probability models,
especially to judge whether a model should fall below, at, or above randomness.

Applying (11) to (16) transforms 73 (h.) to yy(h.), a corresponding random
indicator cross-variogram, also represented in Figure 5 by the solid curves. The
v (h.) model fits the sample v,,.(h.) well overall. Judging from v,,(h.) alone,
one might interpret these data as representative of random vertical juxtaposi-
tioning relationships. However, the sample v,,(h.) ignores evidence for asym-
metric structure in the data by averaging data pairs for opposing lag directions.
Thus, the implicit assumption of symmetry in indicator cross-variograms could
lead to misleading interpretations that spatial cross-relations generally are ran-
dom when, in fact, considerably nonrandom, asymmetric juxtapositioning pat-
terns may actually exist.

Order Relation Conditions

“‘Order relation’’ conditions in indicator geostatistics are imposed to assure
that indicator (co)kriging estimates and indicator (cross-)variogram/covariance
models conform with basic laws of probability theory.

Mutually Exclusive Categories. Let i, (x) denote an indicator data value
prescribing /,(x) = i(x) at a location x. For indicator variables defined by
mutually exclusive categories, such as geologic units, the indicator (co)kriging
estimates [ik(x)](”‘c(,,,< constitute conditional probability estimates (Journel, 1983;
Solow, 1986)

[i,(X)] ok = Pr{li(x) = l|surrounding data}

that should obey

=}
IA

X))ok < 1 vk

and
K
l = kgl [ik(x)](*cn)l(

according to probability laws (Ross, 1988, p. 29, p. 85). Similarly, transition
probability models should obey
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0 == 1 vm, k (17a)

and
K
1= 21, vm (17b)
k1

Corresponding order relation conditions for +,,(h) and C,,(h) can be derived
by applying (11) and (12) to (17a,b).

Cumulatively Defined Categories. For cumulatively defined indicator vari-
ables, such as categories defined by cutoffs of continuous variables as in (2),
indicator (co)kriging estimates should obey

0= [il\~l(x)](*cn)l( = [ik(x)mnm = [ik+l(x)](*cu)l( =1 vk (18)

and joint probabilities should obey

0 = pm(l\f I)(h) = pml\(h) = pm(/\+ I)(h) = pm va k (lga)
and

O = p(m— l)k(h) = pmk(h) = P(m+ I)k(h) X< pA Vm, ,‘ (lgb)
Applying (10) to (19a, 19b), transition probabilities models should obey

0= f”,(,\,”(h) = rmk(h) = [m(k+l)(h) =il vm, k (203)

and
0= p("l* I)t(m l),((h) = pmt/nk(h) = p(m+ l)t(m+ I)k(h) = Pk vm, k (20b)

Journel and Posa (1990) warn that some of the order relation conditions
for 7,«(h) and C,,(h) are ‘‘cumbersome and not practical to use’” and “‘tedious
and little informative.”’ Instead of deriving the order relation conditions for
v,(h) and C,,(h) pertaining to cumulatively defined categories, we suggest
maintaining order relation conditions with p,.(h) by (19a, 19b) or with 7,,(h)
by (20a, 20b); v,(h) and C,,(h) functions that satisfy order relation conditions
then can be obtained by applying (8) and (9) or (11) and (12).

REFORMULATION OF INDICATOR (CO)KRIGING SYSTEMS

Traditionally, the indicator (co)kriging equations are formulated in terms
of C,.(h). Given the interpretive advantages of transition probabilities, one
might desire to reformulate the indicator (co)kriging systems of equations in
terms of 7,,(h), and, thus, bypass the transformation step (12). Next we show
this to be possible because C,,(h) and t,,(h) are linearly related by (12).
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Indicator Kriging

Let x denote an estimation location in the region D. The indicator kriging
estimates assume that Pr{/,(x) = 1|surrounding data} depends on a weighted
sum of indicator data values i,(x,) for category k only at « = 1, ... , N nearby
locations. The simple indicator kriging estimate [i(%)] & assumes

N
N = P+ 2 (k%) = Pilha @1

where each \, , is a weighting coefficient pertaining to the category k and at
the location x,, (Solow, 1986; Deutsch and Journel, 1992, p. 73). The ordinary
indicator kriging estimate assumes

N

15k = 2 XN (22)
subject to the ‘‘unbiasedness constraint’’
N
2 Mo =1 (23)
a=1

(Deutsch and Journel, 1992, p. 74).

The kriging estimates for the weights A\, are formulated to minimize the
estimation error variance, subject to (23) for the ordinary kriging case (see
Journel and Huijbregts, 1978, p. 304-306, 561-562). The resulting simple in-
dicator kriging system of equations is

Cux; — x1) =+ Cuxy — Xxy) Ne.t Cu(x — xy)
: : ' ' , ¥ i
Cux; — Xy) ° Cuxy — Xp)J L\ew Cux — Xy)
and the ordinary indicator kriging system of equations is
Gl =90,y Mot Cpaiioimy Ne.t
Cux; — Xy) -+ Cuxy — xy) 1 Ne.n
1 Ld3gs 1 0 m
Cu(x — X))
— E 2
Cu(X — Xy) 23)

1
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where Cy(h) is an indicator covariance model defined by (4) for m = k, and p
denotes a Lagrange parameter.

If the indicator covariance model assumes stationary proportions, then the
simple indicator cokriging system of equations can be reformulated as

Xy — X)) — Pt (X = Xy) < P M

(X) — Xy) — Pt Xy — Xy) — Ped Lw

(X — X;) — P
= ; (26)

(X — Xy) — Pk

by applying (12) for m = k and dividing each row by p, . Under the unbiasedness
constraint (23), the relation

N
2 PN = P @7

holds, so that the ordinary indicator kriging system of equations can be refor-
mulated as

(X — X)) 0 Xy — X)) 1 Nt La(X — Xy)
Xy — Xy) - Xy — Xy) 1 NN Lu(X — Xy)
1 g 1 0 I 1
(28)

by applying (12) for m = k, dividing each row by p,, and applying (27) to
cancel terms. The systems of equations (26) and (28) are algebraically equivalent
to (24) and (25), respectively, demonstrating that indicator kriging is formulated
readily with transition probabilities.

Indicator Cokriging

Indicator cokriging estimates assume that Pr{/,(x) = 1|surrounding data}
depends on a weighted sum of indicator data values i,(x,) for all categories m
=1,...,Kata =1, ..., N nearby data locations. The simple indicator
cokriging estimate [i,(x)]% sk assumes

N K
[®Wosk = Px + 2 5 [in¥a) = Pd Mk

=1 m=
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where each )\, is a weighting coefficient pertaining to data for category m at
location x,,. The ordinary indicator cokriging estimate [[:(X)]% ok assumes

N K
OVox = 20 2 in(Xa) Mk (29)

m=1

subject to the ‘‘unbiasedness constraint’’

N
Z‘ TR (30)
where 1, denotes the identity matrix (Goovaerts, 1994a, 1994b).

Cokriging estimates for the weights X\, , are formulated by minimizing
the expected error variance in the cokriging estimates subject to the unbiasedness
constraint (30) for the ordinary cokriging estimate (see Myers, 1982). The re-
sulting simple indicator cokriging system of equations is

Cou(x; — X)) - GCuxy — Xy) N1 Coulx — X))
. . . ; . X, 61)
Cof%) — Xy) *** CulXy — Xy) N v Co(x — Xy)
where
Cri . 32 Ck(h)
Cm[(h)7 ka(h) = : . . E
CKI(h) 5 CKK(h)
The resulting ordinary cokriging system of equations is
CofX; — X)) ++* Culxy— %) by Nk, 1
le(xl i xN) i le(xN - XN) lml )\Ik.N
Ly e Ly 0 ik
Cu(x — X))
| Cux = xy) (32)
Imk

where p, denotes a K X K matrix of Lagrange parameters.
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If the indicator cross-covariance models assume stationary proportions, then
the simple cokriging system of equations for indicator variables can be trans-
formed to

L KX X R O9k 50 g R sslog YRS Nik, 1

Xy — Xy) = P10 ta(Xy — Xy) — prd Lgw

tmk(x g1 Xl) — Pk

= : (33)
Im(X = Xy) = Py
by applying (12) and dividing each row by p,,, where
t(h) - tg(h)
tml(h)9 tmk(h) == A :
tgi(th) -+ tgg(h)
Under the unbiasedness constraint (30), the relation
N K
2 §1 PNik.o = Pk (34)

a=11

holds, so that the ordinary indicator cokriging system of equations can be re-
formulated as

Xy — Xq) c 0 iy — X)) Ly N1 Lu(X — Xi)
(X — Xy)  c 0 Lu(Xy — Xy) Ly NN Lu(X — Xy)
L S L 0 ik Ly
(35)

by applying (12), dividing each row by p,,, and applying (34) to cancel terms.
The systems of Equations (33) and (35) are algebraically equivalent to (31) and
(32), respectively, demonstrating that indicator cokriging can be formulated
easily with transition probabilities. In Appendix B, the ordinary indicator co-
kriging equations are derived in terms of transition probabilities directly from
the indicator cokriging estimate.
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Nonnegative Definiteness and Singularity

Nonnegative definite (cross-) covariance models are required to ensure the
existence and uniqueness of solutions to the (co)kriging systems of equations,
as well as the nonnegative variance of the (co)kriging estimates (Christakos,
1984). Recall from the previous section that the transition probability-based
indicator (co)kriging formulations replace C,,(h) with t,,(h) — p, = C,(h)/p,
in comparison to the traditional formulations. Considering that the p, are positive
constants, a (co)kriging matrix formulated with C,,(h)/p,, will be nonnegative
definite if a (co)kriging matrix formulated with C,,(h) also is nonnegative def-
inite (Horn and Johnson, 1991, p. 309). Thus, nonnegative definiteness require-
ments for solving transition probability-based indicator (co)kriging system of
equations (26), (28), (33), and (35) will be satisfied if ,,,(h) is modeled by the
sum of p, and the same nonnegative definite functions traditionally used to model
C,(h).

Constant sum requirements may be inherent to the definition of indicator
variables; for example, Lf_, [(x) = 1 is required for indicator variables of
mutually exclusive, exhaustively defined categories such as geologic units. Con-
stant sum requirements will lead to singularities in the indicator cokriging ma-
trix, whether formulated by C,,(h) or t,,(h) — p,. Such singularity problems
fall under the general case of cokriging variables of a constant sum, referred to
as a ‘‘regionalized composition’” by Pawlowsky (1989) and Pawlowsky, Olea,
and Davis (1995). To avoid spurious estimates of the weighting coefficients
because of singularities, the indicator cokriging systems of equations can be
solved by singular value decomposition techniques (Press and others, 1992, p.
51-63) rather than Gaussian elimination, Gauss-Jordan elimination, Cholesky
decomposition, or LU decomposition techniques usually employed in geostatis-
tics (see Deutsch and Journel, 1992, p. 217-219).

An Order Relation Problem

In indicator kriging of cumulatively defined categories, violations of the
order relation conditions (18) can occur because of the implicit approximation
that the estimate depends on indicator data for category k only (not categories
m # k). The indicator kriging estimate [i:(X)]¥ denotes the conditional prob-
ability

1% = Pr{l(x) = 1|[(xy) = i(x); @ = 1, ..., N}

Now consider the N = 1 (one datum) indicator kriging estimation case with
i(x;) = 1 as examined by Solow (1986) and Journel (1993)

@1 = PriL(x) = 1|L(x) = 1} (36a)
Applying the definition of the transition probability (5) to (36a) yields
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[OIK = te(x = X;) (36b)

for the one-datum indicator kriging estimate with i, (x,) = 1.
Applying (36b) to (18), order relation conditions for the one-datum indi-
cator kriging estimate (36a) are

0 < t4—pu-nh) = ) < 14, heenth) =1 (37)

Applying (20a) and (20b) in sequence, order relation conditions for the auto-
transition probability models are

0 < pu—-vtu-nu-n = ptu) < pey ptasne+nh) <1 (38)

Obviously, the order relation conditions inherent to the one-datum indicator
kriging estimate (37) are not consistent with the order relation conditions re-
quired of the indicator kriging autotransition probability models (38). Thus, even
if the spatial continuity models obey order relation conditions, order relation
violations can occur in the indicator kriging estimates.

For example, Deutsch and Journel (1992, p. 262-265) present a suite of
standardized (normalized by the variance), omnidirectional v, (h) models fit to
140 data at nine cutoffs based on cumulative probabilities with multiples of 0.1,
shown in Figure 6. We transformed these indicator variogram models to the
corresponding #,,(h) models, shown in Figure 7. These spatial continuity models
do not violate order relation conditions as specified by Journel and Posa (1990)
for . (h) and, correspondingly, by (38) for #,(h). However, these models are
not consistent with the order relation conditions in (37) inherent to the one-
datum indicator kriging estimates. As apparent from the crossovers that occur
in the #,,(h) models in Figure 7, the order relation conditions in (37) would be
violated for indicator kriging estimates involving data from the 0.1, 0.8, and

Standardized indicator Variogram
1.2

1.0 3/&9 e
0.8
0.6

0.4

0.2

Figure 6. Suite of standardized indicator vari- 0
ogram models described in Deutsch and Jour- ¢ 10 20 30
nel (1992, p. 262-265). Lag
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Transition Probability

1.0
] 0.9
o_s_' 0.8
] 0.7
0.6 0.6
] 0.5
0.4 04
] 0.3
0.2 0.2
] STy
0.0 i Figure 7. Suite of autotransition probability
i 1‘0 PERPLREM '2'0‘ ) 30 models corresponding to variogram models in
Lag Figure 6.

0.9 cutoffs at h < 17.66, h < 2.40, and h < 3.35, respectively. Such cross-
overs do not appear in the v,(h) models in Figure 6. It is important to realize
that such order relation problems arise not from variogram data quality, but from
the indicator kriging approximation that estimates depend only on data for the
same category.

Note that the median indicator kriging estimate, which uses the same stan-
dardized indicator variogram for each cutoff, would not violate (37) or (38).
Not surprisingly, *‘. . . median indicator kriging drastically reduces the number
of order relation deviations . . .”” (Deutsch and Journel, 1992, p. 80).

CONCLUSIONS

Indicator geostatistics can be implemented entirely in terms of the transition
probability instead of the indicator (cross-) variogram or covariance. The tran-
sition probability offers advantages where integration of indirect, subjective, or
conceptual information is desired. By simple graphical observation, features of
the transition probability can be related precisely to geological attributes such
as proportion, mean length, and juxtapositioning patterns. Such interpretability
not only improves understanding of spatial continuity measurements, but facil-
itates construction of geologically plausible spatial continuity models.

Moreover, the transition probability readily infuses order relation condi-
tions required by probability law. Corresponding indicator (cross-) variogram
or cross-covariance models can be transformed from transition probability models
consistent with order relation requirements. Conversely, it is possible to for-
mulate the (co-) kriging systems of equations in terms of the transition prob-
ability.
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APPENDIX A. DERIVATION OF THE RELATIONSHIP BETWEEN
MEAN LENGTH AND THE TRANSITION PROBABILITY

Figure A.l shows a hypothetical one-dimensional ‘‘column’’ of data for
two categories, say k = black and k' = white. (For the general situation of m
=1, ..., K = 3 mutually exclusive categories, k' could represent the union
of several categories m # k). Assume the column is oriented in the direction ¢
and sampled on a regular interval h, at locations ih, for i = 0, ..., N(hy).
Let Ty(h,) and Ty (h,) denote ““transition counts,”” i.e., the number of transi-
tions from k to k and k to k', respectively, for the lag h,.

Obviously, the mean length 7,‘..,,, of an embedded occurrence of k in the
direction ¢, could be calculated from these continuous data by

- total length of k in direction ¢

bo =

number of embedded occurrences of k

For the example given in Figure A.1, the number of embedded occurrences
(layers) of k = black is six. If h, is made sufficiently small (in theory, smaller
than the smallest lengths of the embedded occurrences of k and k"), then

piN(hy)h, = total length of k in direction ¢

6
5
4

SRbence
N(hy) h,

3
2
1
h¢
e Figure A.l. Diagram showing hypothetical ‘‘column’ of
categorical data.
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and

T« (hy) = number of embedded occurrences of k
so that 7“5 becomes

7 - PieN(hy)h,

! Al
i Ty (hy) ol

where p, is the proportion of k in the column.
The joint probability p,,(hs) is computed by

U]
) = e
Pu(hg) N(h,)
and consequently by (10) the transition probability 7, (k) is computed by
T (hy)
tulhy) = ——= (A2)
T (k)
Because k and k' are mutually exclusive and exhaustively defined
1u(0) =1 (A3)
and
tuidhg) = 1 = tu(hy) (A4)
Applying (A3) to (A4) and dividing by h,, (A2) becomes
1:(0) — 1(h Tuh
u0) — tulhy)  Tulhy) (AS)

hy PiN(hy)hg

Letting &y, — 0 and applying the reciprocal of (A1) to (AS), the slope of tiu(hy
— 0) relates to /; 4, the mean length of category k in the direction ¢, by

_Otylhy > 0) 1

Ohy iy

APPENDIX B. DERIVATION OF THE ORDINARY INDICATOR
COKRIGING EQUATIONS IN TERMS OF TRANSITION
PROBABILITIES

Applying (29), the error variance e;(x) of the ordinary indicator cokriging
estimate is

N K 2
eEx) = E{[ b3 Z] i)k — ik(x)} } (B1)

a=1 m=
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Expanding (B1) becomes

N K N K
G = E{[ik(x)lz + B0 2D i) Ml N

a=1m=

N K
-22 % im(xa)xmk,amx)} (B2)
Applying (7), dividing by p,,, and applying (10) and (34), (B2) becomes

N K N K
ex(x) = 1(0) + ZJI Z=:1 5§1 E:l ti(Xg — Xo) Nt Mg

N K
2 Z Zl tmk(x b xa) )\mk.a (BB)

a=1m=

Differentiating (B3) with respect to each N, . and setting each resulting
equation equal to zero yields a system of equations for obtaining the weighting
coefficients that minimize e;(x)

N K
0= ﬁgl /;I tml(xB e xa))\lk.a " [mk(x 23 xa)

formak=1,. = Kt 1, ... , N (B4)
also represented in matrix form as
La(Xp — X)) - Ga(Xy = X)) Nik. 1 Lak(X = Xy)
' T : o : (BS)
ta(X) — Xy) c 0 tXy — XN)J L Imi(X — Xy)

The unbiasedness constraint (30) can be imposed using Lagrangian tech-
niques to obtain (35), the ordinary indicator cokriging system of equations for-
mulated in terms of transition probabilities. Equation (33), the simple indicator
cokriging system of equations formulated in terms of transition probabilities,
can be derived in a similar manner.



