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Abstract—Over the past 15 years, researchers have identified an
increasing number of security mechanisms that are so unusable
that the intended users either circumvent them or give up on
a service rather than suffer the security. With hindsight, the
reasons can be identified easily enough: either the security
task itself is too cumbersome and/or time-consuming, or it
creates high friction with the users’ primary task. The aim
of the research presented here is to equip designers who
select and implement security mechanisms with a method for
identifying the “best fit” security mechanism at the design
stage. Since many usability problems have been identified
with authentication, we focus on “best fit” authentication, and
present a framework that allows security designers not only to
model the workload associated with a particular authentication
method, but more importantly to model it in the context of
the user’s primary task. We draw on results from cognitive
psychology to create a method that allows a designer to
understand the impact of a particular authentication method
on user productivity and satisfaction. In a validation study
using a physical mockup of an airline check-in kiosk, we
demonstrate that the model can predict user performance and
satisfaction. Furthermore, design experts as well as novices
suggested personalized order recommendations which were
similar to our model’s predictions. Our model is the first that
supports identification of a holistic fit between the task of
user authentication and the context in which it is performed.
When applied to new systems, we believe it will help designers
understand the usability impact of their security choices and
thus develop solutions that maximize both.

1. Introduction

Over the past 15 years, the security community has
started to acknowledge that security mechanisms are only
effective if they are usable: users frustrated by overzealous
security measures bypass the security if they can, or switch
to a competing system that is easier to use. While an
increased awareness of the damage that lack of usability
can inflict is a first step, in practice security experts and
developers who choose security mechanisms have no way
of gauging what the impact of their choice on users will
be—and most are not able to call on a human usability
expert to do this for them. There are tools for developers
to carry out walkthroughs and assessments of a particular

solution. The time it will take a user to complete a task can
be estimated using the Keystroke Level Modelling (KLM-
GOMS) model [1], and an automated version CogTools [2]
provides such a prediction from screen interaction with the
tool. This approach, however, has limitations:

1) It only supports evaluation and comparison of spec-
ified solutions, rather than discovery of the “best”
one, and

2) it does not take account of the impact that different
mental and physical tasks have on subsequent tasks.

In this paper, we contribute and validate an intellectual
tool—a design and evaluation framework—that will help
designers gain a better understanding of the cost of security,
with specific reference to user authentication. Our frame-
work and methodology assesses security mechanisms not in
isolation but in the context of the so-called primary task
that constitutes the user’s true goal. What users really want
(primary task) is to check in for a flight or pay a bill, not
recall and enter a password or read off and transcribe a one-
time code. From the users’ perspective, these are distractions
imposed in the name of security, often to manage threats
they don’t know exist.

The cost of a given security measure, such as entering
a password, is not absolute: it is instead also a function
of its relationship to the other components of the primary
task. A recent study [3] found that authentication creates
a “wall of disruption” in users’ work. This is not only the
time spent on the security task, but the knock-on effect of
re-starting the primary task after an interruption. Thus, the
cost depends not just on how hard the authentication task is
in itself but also on when it occurs in the users workflow,
on what functions of the brain it loads and on what else the
user was meant to be doing before and after.

We draw on results from cognitive psychology to assess
the cost of task switching between different activities. Our
framework lets designers model the tasks of the intended
scenario and the precedence constraints that describe their
relationships, and then quantitatively compares alternatives
to suggest combinations that minimize the cognitive load
and usability cost to the user.

In addition to providing this novel methodology, we
present a validation study which verifies the tool’s insights.
Using a physical mockup, we test the tool’s optimal (”best”)



suggestion against its pessimal (”worst”) suggestion. More-
over, we surveyed a group of professional designers to
test our tool’s automatic suggestions against the intution of
human experts.

2. Modelling a business process

A business process (or workflow) is a collection of inter-
related tasks that are performed by users in order to achieve
some objective. It is often the case that only authorized
users may perform certain tasks: in such cases the business
process will include one or more tasks requiring explicit
user authentication. Tasks that require authentication impose
ordering constraints on the business process (users shouldn’t
be able to complete a task requiring authorization until
they have been authenticated). More generally, the business
process may have some freedom in the order in which tasks
are performed, that is, the tasks have a partial order. In such
cases, system designers have flexibility to rearrange tasks to
maximise the system’s usability.

Our goal in modelling a business process is twofold.
Firstly, we wish to determine the optimal ordering of the
tasks, taking into account the switching costs described in
sections 4.2 and 4.3. Secondly, we wish to explore the
impact of equivalent but alternative tasks for user authenti-
cation. Thus, our model of a business process must include:

• A representation of the set of steps to be performed,
• A set of tasks that can be performed at each step,
• Hard constraints that enforce the partial ordering of

the tasks, and
• Soft constraints that capture the costs of switching

between tasks.

2.1. Example: airport check-in kiosk

Throughout this paper our example will be airport check-
in using a self-service kiosk. We are not modelling the kiosk
of any particular airline or airport but an imaginary one that
combines features we have observed on a variety of real
kiosks. We use this business process as our example because
its tasks, listed in Table 1, use a range of different cognitive
resources, detailed in Table 4. We include cognitive tasks
such as making decisions or selections and carrying out
checks, as well as physical tasks like attaching luggage tags.
The check-in procedure necessarily also includes some form
of authentication, but there are multiple ways of achieving
that. Helping a designer select the most appropriate authen-
tication mechanism for a specific business process is one of
the goals of our framework.

We are also interested in finding the optimal order for
the tasks. The check-in kiosk example exhibits a reasonable
degree of ordering flexibility. Figure 1 shows the dependen-
cies between the check-in tasks.

3. Our framework

The framework we present allows developers to assess
the usability of different security tasks within a workflow
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Figure 1. Dependencies between Airport self-service check-in tasks. An
edge from node u to node v indicates that u must be carried out before v.
For example, users must enter their booking reference (BKRF) sometime
before they confirm their check-in (CFRM).

such as the check-in example described above. Two overar-
ching principles inspired this framework:

1) Assessing the usability of an individual task is
important, but insufficient, and

2) the order in which tasks appear can have an inter-
active, global effect on overall usability.

Specifically, these principles imply that swapping out
one authentication method for another may have carryover
effects on the overall workflow. They also suggest that an
automated optimization procedure could be used to “solve”
for the optimal ordering of tasks—the one that minimises
cognitive interruptions and maximizes usability.

A workflow has some number of “steps” and the user can
carry out exactly one task at each step. We want to find the
optimal assignment of tasks to steps, respecting any ordering
constraints between the tasks—ensuring, for example, that
certain tasks happen after the authentication task. We will
present a method for encoding a workflow as a weighted
constraint satisfaction problem (WCSP) [4], in which there
are a set of variables (the steps), a set of values (the tasks)
and a set of constraints. Further information about constraint
satisfaction problems is given in section 5 and the means of
encoding a workflow is explained in section 5.2. Workflow
environments that are designed to accomplish a specific goal
(e.g., withdrawing cash from an ATM, or checking in at an
airport kiosk) can be conceptualized as a sequence of tasks
completed in a linear fashion. Transitioning from one task
to another will carry an additional transition cost. The total
usability of an overall task is thus a combination of the
costs of the individual tasks and the costs of the pairwise
transitions between the tasks in the linearized sequence.
Task ordering can have a potentially unpredictable impact
on the entire task workflow. Considering the usability of
many different potential orderings is a non-trivial task but a



Task Code Prerequisites Description
Select language LANG User selects their preferred language from the displayed options.
Select airline AIRL LANG User selects their airline from the displayed options.
Booking reference BKRF LANG, AIRL User enters their booking reference using an touchscreen QWERTY keyboard.
Authenticate AUTH User authenticates their identity.
. Passport scan AUPS LANG User authenticates by scanning the photo page of their passport.
. Passport information AUPI LANG User authenticates by manually entering their passport information.
. Insert payment card AUCC LANG User authenticates by inserting their payment card.
. Password AUPW LANG User authenticates by typing a password (assuming the user has an account

with the airline).
Check forbidden items FRBN LANG User presses a button to confirm that their luggage doesn’t contain any of the

displayed items.
Check liquids LIQH LANG User presses a button to confirm that their hand luggage doesn’t contain any

containers of liquid above a certain volume.
Check luggage size DIMH LANG, AIRL User presses a button to confirm that their hand luggage is below a certain

size.
Select outbound seat STSO LANG, BKRF User selects their outbound seat by clicking on a plan of the available seats in

the airplane.
Select return seat STSR LANG, BKRF User selects their return seat by clicking on a plan of the available seats in the

airplane.
Buy extra bag EXBG LANG, BKRF User optionally pays for additional luggage by clicking a button and swiping

a credit card.
Confirm CFRM LANG, BKRF, AUTH, LIQH,

DIMH, EXBG
User confirms the details entered so far by reading some text and pressing a
button.

Print luggage tag PRLT LANG, EXBG, CFRM User takes a luggage tag from the machine and attaches it to their luggage.
Print boarding pass PRBP LANG, CFRM User takes a boarding pass from the machine.

TABLE 1. AIRPORT SELF-SERVICE CHECK-IN TASKS.

computerized tool that computes optimal ordering solutions
makes it tractable.

The concept that reordering tasks can have an effect
on usability comes from established principles in cognitive
psychology. An established literature exists on the relative
ordering effects of different types of tasks [5]. In section 4
we explain how these effects were operationalized from
available literature. In this section, we give an overview
of how to extend existing assessments of workload by
considering not only the endogenous task demands but also
the additional exogenous demands that emerge from the
transitional costs between tasks.

3.1. Completion times

Various methods have been devised to predict the time
required to complete a given task. A popular technique is
KLM-GOMS [1]. In this technique, the designer breaks
down the task into a variety of individual action compo-
nents (for example: mentally prepare, click button, press a
key), each of which has an associated reaction time. This
technique is useful for estimating how long it would take
a user to complete a given task. Another assessment tech-
nique is CogTool [2], which assesses task completion times
and learning rates based on shifting visual attention and
making motor responses. Both methods use approximations
for mental processes (think in CogTool, mental preparation
in KLM-GOMS). In the present paper, we seek to expand
on these techniques by assessing the differential cognitive
demands of different tasks as well as task transitions.

3.2. Cognitive demands of tasks

While subjective measures of workload are useful tools
in predicting user satisfaction and adoption rates, the oper-
ationalization of workload as a unitary resource does not fit
with modern theories of cognition [6], [7]. Rather, a variety
of dissociable mechanisms underlie cognition and become
active given characteristics of the task at hand [8]. In section
4.2.2 we address the various cognitive mechanisms involved
in an individual task.

3.3. Cognitive demands of transitions

While tasks carry their own demands, there are also cer-
tain performance costs associated with switching from one
task to another. These transitional costs can be asymmetric;
that is, switching from Task A to Task B may be more
costly than switching from Task B to Task A [5]. For this
reason, we have coded principles of task switching costs
from existing literature. In section 4.2 and section 4.3 we
address the various types of switch costs used in the present
modelling procedure.

3.4. Quantifying tasks

The goal of our work is to promote a discipline for
considering both the unary and transitional demands of
tasks on users, and to demonstrate a method for improv-
ing performance by minimizing overall task demand. The
effectiveness of any given instantiation of this methodology
depends directly on the quality of input information about
the workflow being analysed. Thus, it will be crucial to
develop a valid and reliable regimen for quantifying task



characteristics. In this initial paper we are charting a new
path and, for illustrative purposes, we have assigned nu-
merical values based on our judgement. In future work
we would develop instruments such as worksheets and
flowcharts to help independent designers assign consistent
and reproducible numerical values when they assess their
tasks.

4. Cognitive psychology

4.1. Task switching

When a person switches from one task to another task,
the brain must reorganize and reallocate cognitive resources
to ensure an efficient transition [5]. Transitioning from a
task that primarily uses resource A to a task that primarily
uses resource B (instead of continuing to use resource A)
results in performance deficits, or switch costs. Experimental
psychology has uncovered certain principles that govern
these transitions. These so-called switch cost asymmetries
have been shown to occur, or not, depending on other
characteristics of the tasks involved. We have codified these
task asymmetries (expressed as Cohens d effect sizes, which
are a commonly used metric in psychology for comparing
the mean of one sample to that of another [9]) into a
collection of rules that may be encoded as constraints in
a weighted constraint satisfaction problem (see section 5).
Below, we describe how we constructed these rules from
available literature on switch cost asymmetries. The rules
fall into two categories: cognitive resource transitions and
task property transitions.

4.2. Cognitive resource transitions

One reason that task switching results in a performance
deficit is the requirement for the individual to disengage
active cognitive mechanisms and then engage other cogni-
tive mechanisms in order to match task demands [5]. For
example, switching from a visual task to an auditory task
is more costly than vice versa [10]. In a practical example,
if a person were performing a hypothetical two-factor au-
thentication procedure that involved recognizing an image
among several on a large screen and also recognizing a voice
over a phone line, it could be more efficient to place the
audio identification subtask before the visual authentication
subtask. This demonstrates that task ordering can impact
user efficiency due to asymmetries in cognitive switch costs.

4.2.1. Cognitive resources demands of individual sub-
tasks. The cognitive mechanisms included in the present
implementation are visual working memory (VWM; respon-
sible for holding, processing, and operating on information
of immediate importance), procedural memory (PM; respon-
sible for storing and preparing motor action sequences),
declarative recall (DR; responsible for generating and pre-
senting stored information on demand), semantic recognition
(SR; responsible for determining whether factual informa-
tion has been stored in memory), and episodic recognition

(ER, responsible for determining whether information about
experienced events have been stored in memory). Note that
while the categories represented here have an empirical
basis, the taxonomy of mental processes is a fluid research
topic [11].

Table 2 reports the costs of switching between tasks
utilising different cognitive mechanisms. The values are
Cohens d effect sizes and were calculated from published
studies [9] involving empirical measurements of reaction
time in various task switch contexts, which assessed the
efficiency with which individuals were able to transition
between different cognitive systems.

4.2.2. Operationalizing the check-in task. In order to
utilise these principles of task switch cost asymmetry, we
operationalised identified the cognitive resources most likely
to be engaged by the subtasks involved in the Airline Self-
Service Machine Task. While this is a first approximation,
in the future empirical methods could be used to verify these
predictions. In real-world tasks, many different cognitive
mechanisms are likely to be engaged simultaneously. For
our purposes, we have selected the dominant resource which
is predicted to have the highest relative engagement level.
Table 4 reports the major cognitive resource assigned to each
subtask, as well as the physical response modality, volun-
tary/involuntary nature, task familiarity, and task complexity.

It is impractical to determine the specific brain networks
activated for a specific real task, so we characterize each task
by assessing its similarity to documented cognitive tasks.
For example, determining whether a piece of hand luggage
exceeds certain dimensions is similar to documented tasks
involving assessing geometric attributes of three dimensional
shapes, a task known to activate visual working memory
[12]. This is a tractable simplification of the reality of
cognitive functioning for two reasons:

1) Real-world tasks likely engage many different cog-
nitive mechanisms at once, with varying degrees of
demand. For our purposes we consider the cognitive
mechanisms deemed to be most relied upon in order
to complete the task.

2) Many other cognitive mechanisms exist than were
included in Table 2. For simplicity, we only in-
cluded the primary mechanisms involved for each
task. Future implementations could include other
systems such as auditory working memory.

4.3. Task property transitions

An important source of task switch costs is the impact
of the interference or inertia carried over from one to
another. One counterintuitive finding is that switching from
a less familiar task to a more familiar task is actually more
disruptive than vice versa [13]. The prevailing reasoning
behind this effect is that when engaged in a less familiar
task, the individual must suppress commonly used mental
processes in lieu of less frequently used processes [14]. This
suppression has a carry-over effect on the new task, resulting



To
VWM PWM DR SR ER

Fr
om

Visual working memory (VWM) 0 0.495 0.495 0.495 0.157
Procedural memory (PM) 0.495 0 0.495 0.699 0.699
Declarative recall (DR) 0.495 0.495 0 0.482 0.482

Semantic recognition (SR) 0.495 0.842 1.078 0 0.433
Episodic recognition (ER) 0.307 0.842 1.078 0.354 0

TABLE 2. COSTS OF SWITCHING BETWEEN TASKS UTILISING DIFFERENT COGNITIVE MECHANISMS, GIVEN AS COHENS d EFFECT SIZES.

in a performance deficit. These transitional asymmetries
have also been identified when transitioning between tasks
that differ by complexity [15], recent practice [13], modality
(form or method of response) [16], and whether the task
was voluntary [17]. These empirical observations have been
codified into conditional rules with associated effect sizes
in Table 3.

4.3.1. Complexity. Task complexity was assessed using
existing definitions from experimental psychology [15],
namely the number and combination of rules required to
solve or complete the task. For example, subtraction is
relatively less complex than division. The reason for this
is that division uses the principles of subtraction as well
as other principles, such as remainders and carrying digits
between places. In the airline check-in task, for example,
the task regarding forbidden materials was considered to
be more complex than the task regarding liquids. This is
because it is more complex to determine whether several
items fall into several categories versus a single category.

4.3.2. Familiarity. Task familiarity was determined by as-
sessing not only the frequency with which an average user
completes a given task, but also whether the task assesses
familiar knowledge or processes [13]. For example, select-
ing your language preference might not necessarily be a
common chore, but it requires judgment based on a familiar
fact. In contrast, printing a luggage tag is something that is
an activity that is both infrequent and unfamiliar.

4.3.3. Response Modality. Response modality refers to
the physical method for issuing a response from the user
to the system. For example, different modalities include a
QWERTY keyboard, a mouse pointer, or a verbal response.
There is evidence that transitioning from one response
modality to another can incur a switch cost. However,
Sandhu and Dyson [16] demonstrate that a switch cost due
to response modality may not occur when a modality switch
coincides with a cognitive resource switch. In other words,
switching response modalities is most disruptive when it is
the only change that takes place.

5. Modelling a business process as a constraint
satisfaction problem

5.1. Constraint satisfaction problems

The goal of a constraint satisfaction problem (CSP) is
to assign values to a set of variables subject to a set of

constraints. The constraints express local restrictions, such
as “these two variables must have different values”, but there
exist algorithms [18] for finding global solutions. Below
we shall describe weighted constraint satisfaction problems:
these include “soft” constraints that may be violated for
some cost. We first introduce the classic CSP framework.

5.1.1. Classic CSP. A classic CSP is defined by a triple
P = (X,D,C). X is the set of variables, {x1, ..., xn}. A
domain di ∈ D is a set of allowable values for variable
xi. A constraint c ∈ C is a pair (Xc, Rc), where Xc ⊂
X is the scope of the constraint and Rc is a relation over
the corresponding set of domains. Rc specifies tuples of
simultaneously-allowed values for the variables in the scope
and can be defined explicitly as a subset of the product of the
domains, or as an abstract relation which can test whether
a given tuple of values is allowed, for example: x1 6= x2.

An assignment specifies values for some or all of the
variables. An assignment is consistent if it does not violate
any constraints. A complete assignment is one which assigns
values to all variables. A solution to a CSP is a complete
consistent assignment. A CSP is consistent if a solution for
it exists. Finding a solution to a CSP is an NP-complete
problem.

5.1.2. Weighted CSP. In a classical CSP the constraints are
all absolute or “hard”, no consistent assignment can violate
any constraint and all solutions are equally “good”. Several
variants have been proposed to extend the CSP framework to
include “soft” constraints expressing priorities, preferences,
costs, and probabilities. Schiex, Fargier and Verfaillie [4]
generalised these and defined valued CSP (VCSP). A VCSP
is similar to a classical CSP except that the constraints assign
costs to assignments instead of allowing or disallowing
them1.

A VCSP is defined by a tuple P = (S,X,D,C),
where X and D are sets of variables and their domains as
previously. Costs are specified using a valuation structure,
which is a triple S = (E,⊕,�), where E is a set of
costs ordered by � and ⊕ is an associative commutative
monotonic binary operation on E for combining costs.2
Weighted CSP (WCSP) is a specific subclass of valued
CSP in which the costs are the natural numbers or positive
infinity, E = N∪{∞} and ⊕ is the standard sum operation.

1. Equivalently a VCSP can be seen as classic CSP in which each
constraint has been annotated with a cost for removing it [4].

2. A classical CSP can be expressed as a VCSP with E = {t, f},
⊥ = t � f = > and ⊕ = ∧.



Rule name Condition Cost (effect size)
Modality A switch occurred which uses the same resources (on-diagonal above) and there is a modality switch. 0.16
Recent Practice A task of similar modality or resource has been used anywhere previously. 0.31
Familiarity The current task is more familiar than the previous task. 0.42
Complexity/Choice A task is done voluntarily and the complexity decreases. 2.92

A task is involuntary and the complexity decreases. 1.63
TABLE 3. ADDITIONAL COSTS OF TRANSITIONING BETWEEN TASKS DETERMINED BY SPECIFIC RULES, GIVEN AS COHENS d EFFECT SIZES.

Code Primary cognitive resource Modality Voluntary? Familiarity Complexity
LANG Semantic recognition Touchscreen No 5 1
AIRL Episodic recognition Touchscreen No 5 1
BKRF Visual working memory Touchscreen QWERTY No 3 3
AUPS Procedural memory Passport scanner No 2 2
AUPI Procedural memory Touchscreen QWERTY No 2 3
AUCC Procedural memory Credit card reader No 3 2
AUPW Declarative recall Touchscreen QWERTY No 4 3
FRBN Semantic recognition Touchscreen No 2 3
LIQH Episodic Touchscreen No 3 3
DIMH Visual working memory Touchscreen No 2 4
STSO Visual working memory Touchscreen Yes 2 4
STSR Visual working memory Touchscreen Yes 2 4
EXBG Episodic Touchscreen Yes 2 2
CFRM Episodic Touchscreen No 4 2
PRLT Procedural memory Luggage tag No 1 5
PRBP Episodic Touchscreen Yes 4 2

TABLE 4. PROPERTIES OF THE CHECK-IN KIOSK TASKS. FAMILIARITY AND COMPLEXITY ARE ON A SCALE FROM 1 (LOW) TO 5 (HIGH).

In this framework, constraints specify local costs of
assignments. A constraint c ∈ C is a pair (Xc, Fc) where
Xc is its scope and Fc is a cost function,

Fc :
∏

xi∈Xc

di → E (1)

Note that a hard CSP constraint c = (Xc, Rc) can be
represented in a WCSP as c′ = (Xc, Fc′), where

Fc′(v) =

{
0 if v ∈ Rc

∞ otherwise (2)

Given a WCSP P = (S,X,D,C), an assignment A of
variables Y ⊂ X has total cost VP (A) ∈ E. This cost is the
sum of all applicable cost functions.

Given a WCSP, the typical task is to find the optimal
solution, the complete assignment with the minimum to-
tal cost. The most popular algorithms for solving WCSP
employ branch and bound search, although algorithms for
solving WSCP remain an active research area.

5.2. Our model

As described in section 5.1.2, a weighted CSP is rep-
resented by the tuple P = (S,X,D,C). In our model,
a business process with n steps (where 1 is the first step
performed by the user and n the last) is represented by a
set of variables X , {x1, ..., xn}. The domain D (the set of
values that can be assigned to variable xi) consists of all
of the tasks, including any user authentication tasks, in the
business process. The set of constraints C includes hard
constraints that ensure tasks are performed exactly once
and ordering relations between tasks are maintained. C also

includes soft constraints represent the costs of switching
between tasks.

5.2.1. Implementation of our model. A proof-of-concept
implementation of our model has been created in Num-
berjack, a Python framework for constraint programming,
mixed integer programming and satisifiability solvers [19].
Numberjack integrates a number of third-party, open source
solvers (which are typically written in C/C++ for efficiency)
and can be easily extended to include additional solvers.
The Numberjack framework currently support Toulbar2—
an exact combinatorial optimization tool designed for solv-
ing Weighted Constraint Satisfaction Problems (otherwise
known as Cost Function Networks) [20]. Numberjack’s
proposition of a high-level modelling framework and an
underlying efficient and high-pedigree solver3 make it well
suited to our purpose.

As shown below, a Numberjack VarArray is used to
represent each step in the business process. The domain of
each variable is the natural numbers 0...d where each value
represents one of the possible tasks. A constraint is then
added to the model to ensure that each value in the domain
is assigned to exactly one variable.

from Numberjack import VarArray

# Create a variable array,
# one variable for each step
# in the business process
wcspVars = VarArray(0, d, nSteps)

model.add(AllDiff(wcspVariables))

3. Toulbar2 was a wining solver in the Uncertainty in Artificial Intelli-
gence (UAI) 2010 Approximate Inference Challenge.



A custom Numberjack constraint has been created to
enforce the partial ordering of tasks. This constraint (shown
below) ensures that for all combinations of the variables in
the CSP it is never the case that the value after is assigned to
a variable that precedes a variable assigned the value before.

class Order(Predicate):

def __init__(self, vars, before, after):
Predicate.__init__(self, vars,

"Order")
self.set_children(vars)
self.before = before
self.after = after
self.lb = None
self.ub = None

def decompose(self):
return [(x != self.after) | (y !=

self.before) for x, y in
combinations(self.children, 2)]

As defined in section 5.1.2, a constraint c ∈ C is a pair
(Xc, Fc) where Xc is its scope and Fc is a cost function.
Task switching costs are modelled as binary constraints; that
is, their scope is limited to variables that are immediately
next to each other. The task switching costs are represented
by a d-by-d matrix (where d = |D|).
from Numberjack import PostBinary

def pairwise(iterable):
a, b = tee(iterable)
next(b, None)
return izip(a, b)

# d-by-d matrix,
# binaryCost[d1][d2] specifies the
# cost of assigning d1 and d2 to
# variables that are immediately
# next to each other
binaryCosts = [...]

for var, varNext in pairwise(wcspVars):
model.add(PostBinary(var, varNext,

binaryCosts))

5.2.2. Results of modelling the airline self service check-
in. Table 5 shows the optimal task ordering given by
the solver for the self-service check-in scenario. The four
columns of the table correspond to the four different con-
crete authentication tasks we are considering. The cost re-
ported for each workflow is the sum of all the task switch
costs (Cohen’s d effect sizes) for that workflow4. The fact
that the four orderings and total costs are different supports
the central message of this paper: fitting an authentication
task to its context is important. Specifically, we can see

4. To obtain the total cost, we should add to that the costs of the
individual subtasks. We cannot do that yet, because they are expressed
in different non-comparable units, so this is a topic for future research.
See the next section, 5.2.3.

that the passport scan (AUPS) and insert payment card
(AUCC) authentication methods yield substantially lower
total switching costs—regardless of their intrinsic costs.
More generally, with twelve task switches in total, the mean
cost for each task switch, in each of the four cases, is
approximately 0.5, which constitutes a “medium” effect size
under the standard Cohen’s d interpretation: this indicates
that task switches are not an insignificant cost in general.

It is interesting to note that the solver splits the two seat
selection tasks for the outgoing and return flight. Within the
model, the two selection tasks are indistinguishable so the
cost of switching from either to the other is zero. Therefore,
we might expect that the solver would place these task next
to each other. However, this is an interesting example of
how our intuition can be wrong as this local optimization
ultimately precludes the globally optimal solution.

5.2.3. Limitations of our model.
Essentially, all models are wrong, but some are
useful. —George E. P. Box [21]

The first significant limitation of our model is its inabil-
ity to relate the reported total task switching costs to an
additional amount of time required to complete the business
process. Whilst this is a significant limitation, we feel that
the outputs of the model remain useful and may be used
alongside the existing techniques for estimating the time
taken to carry out specific tasks such as KLM-GOMS.

Secondly, although the cognitive resource transition
costs and task property transition costs are based on em-
pirical results from the literature, user studies should be
undertaken to validate the way in which they combine within
our framework.

As well as splitting up the two seat selection tasks,
in three cases the solver has placed return seat selection
before outbound seat selection. While this would obviously
be somewhat confusing for users, it is understandable that
the solver has arranged the tasks in this way because within
the model they appear identical. Our model simply doesn’t
capture the notion that when tasks relate to events that are
ordered, it makes sense for those tasks to have the same
order. In such cases the system designer must apply their
discretion to ensure that the system remains consistent with
reality and with user expectations.

6. Validation Study

In order to test the model’s predictions, we completed a
validation study. Our intention was to validate the theoretical
predictions regarding task switching, and thus we focused
on the subtasks which would be inherent in airline check-
in kiosks regardless of further authentication mechanisms
used (e.g., credit card, passport). Using a mock-up of the
airline check-in kiosk described above, we sought to assess
the model’s optimal subtask ordering recommendation. We
accomplished this in four ways: 1) Participants completed
the optimal (”best”) ordering in a simulated airline departure
scenario, 2) These same participants offered their own order



Select language Select language Select language Select language
Select airline Select airline Select airline Select airline
Check liquids Check liquids Check liquids Check liquids
Booking reference Booking reference Booking reference Booking reference
Check forbidden items Insert payment card Passport info Password
Select return seat Buy extra bag Select return seat Check forbidden items
Check luggage size Select return seat Check luggage size Select outbound seat
Passport scan Check luggage size Check forbidden items Check luggage size
Buy extra bag Check forbidden items Buy extra bag Buy extra bag
Confirm Confirm Confirm Confirm
Print boarding pass Print boarding pass Print boarding pass Print boarding pass
Select outbound seat Select outbound seat Select outbound seat Select return seat
Print luggage tag Print luggage tag Print luggage tag Print luggage tag

Cost 5.53 5.88 8.18 8.42
TABLE 5. OPTIMAL TASK ORDERING OF THE SELF-SERVICE CHECK-IN USING DIFFERENT AUTHENTICATION MECHANISMS.

Figure 2. Mock up for the self-service airport check-in kiosk.

recommendations for the task, 3) We further tested a second
sample of participants with the pessimal (”worst”) ordering,
and 4) We surveyed professionals trained in design fields in
order to gather an expert based ordering recommendation.
The Optimal ordering was: AIRL, LIQH, BKRF, FRBN,
STSO, DIMH, EXBG, CFRM, PRBP, PRLT; the Pessimal
ordering was: FRBN, AIRL, BKRF, EXBG, LIQH, DIMH,
CFRM, PRLT, STSO, PRBP.

6.1. Participants

Participants were recruited from the University College
London student and staff community and compensated £7
for their time. The study was approved by the UCL Ethics
Committee, and all participants offered informed consent.
For the Optimal condition, 40 participants were recruited. A
sample of 20 participants was recruited for the comparative
Pessimal condition, and a further 50 self-reported design
professionals were recruited to generate the Expert ordering
suggestion. The demographics of the group were as follows:
Optimal group (AgeMean = 26.6, AgeSD = 7.2, 28 fe-
males), Pessimal group (AgeMean = 29.1, AgeSD = 13.5,
15 females), Expert designers (AgeMean = 30.0, AgeSD =
9.7, 12 females, 8 no gender specified). Two participants
were removed from the Optimal group for not completing
the task, and three were removed from the Expert group for
not completing the survey. Participants were asked about
their average annual number of flights: OptimalGroup =
4.7(SD = 3.4), PessimalGroup = 3.5(SD = 3.2).

The sample of Expert designers was recruited from NCR
Corporation (www.ncr.com) as well as via the online sur-
vey system Prolific Academic (www.prolific.ac), and were
selected using a pre-screening occupation questionnaire. The
group identified as working with user experience design
in physical settings (n=17), software/web settings (n=33),
or both (n=6), with 5.2 mean years of experience (SD =
6.0). These participants were compensated with £1.67 for
completing the task (equivalent to £5/hour).

6.2. Procedure

6.2.1. Check-in Kiosk. Participants were asked to use the
simulated airline check-in kiosk as if they were actually
preparing for a departure at an airport. Participants were
given two suitcases, one large suitcase for checked baggage,
and one small suitcase for carry on. The experimenter
opened the small suitcase and described the contents to the
user: two shirts, two paperback books, and a plastic bag con-
taining toiletries under 100ml in volume. The experimenter
told the participant that the large suitcase contained clothes
and no hazardous or forbidden materials. The participants
completed the airline check-in kiosk three times, each time



with a different provided cover story (given in pseudo-
random order between participants). The mock airlines were
“MetroAir”, “HappyJet”, and “QuickFly”, and the mock
destinations were Glasgow, Edinburgh, and Cardiff (depart-
ing from London). Participants took the two suitcases and
entered a second room to interact with a kiosk comprised of
a touchscreen monitor and two flapped dispensers (one for
boarding pass, one for baggage tag) on a small roller table
(see Figure 2). The flapped dispensers were pre-loaded with
the relevant boarding pass and baggage tag, and a simulated
printing sound oriented the participant to their locations
during the appropriate subtask. After completing each of the
three simulated check-in procedures, the participant moved
to a different room and completed the subjective satisfaction
questionnaire.

6.2.2. Subjective Satisfaction Questionnaire. After each
trial, participants completed the following 13-item Satisfac-
tion Questionnaire [22]. Each item was scored using a 5-
point Likert scale (from ”Strongly disagree” to ”Strongly
agree”). In order to reduce repetitiveness, the second and
third repetitions of the questionnaire asked for changes in
assessment relative to the previous trial (from ”Less than
before” to ”More than before”). In this way, a change score
was computed using responses from the first trial as a
baseline.

1) The system was annoying to use.
2) I liked using the system.
3) The system did what I thought it would do.
4) The system was fun to use.
5) The system was unreliable.
6) I was satisfied using this system.
7) I was comfortable using this system.
8) The system was disappointing.
9) The system was engaging.

10) The system was unpredictable.
11) I feel positive about the system.
12) I would not want to use this system.
13) The system was pleasant to use.

6.2.3. Ordering Preference Task. After the completion of
the check-in procedure, participants were asked to generate
their own suggested orderings for the subtasks. Using a
computerized tool, participants dragged boxes representing
the various subtasks into their preferred orderings. First, par-
ticipants were allowed to freely order the subtasks without
partial ordering constraints. Second, participants were told
which subtasks violated the partial ordering constraints (if
any), and were asked to rearrange the subtasks until the
ordering satisfied the constraints (see Figure 6).

6.3. Results

6.3.1. User Performance. Task performance was measured
by calculating the time to complete each subtask. The time
was computed based on the duration from completion of
previous subtask to the completion of the current subtask.

Figure 3. Mean completion times over three task repetitions between
Optimal ordering and Pessimal ordering conditions.

Results were similar when time was calculated as the du-
ration from the completion of the previous subtask to the
first click of the current subtask, although some subtasks
only required one click, thus we present subtask completion
times here.

To evaluate the impact of our model’s ordering sugges-
tions as well as the impact of prior kiosk experience, partic-
ipants were further clustered into two experience groups:
Have used airline check-in kiosk in the previous calen-
dar year (Used Kiosk), or have not (No Kiosk). Learning
curve (repetition over the three trials) was also evaluated
as a within subjects factor. Performance (mean completion
time) was evaluated using a repeated measures ANOVA
with a 2 (Condition: Optimal, Pessimal) x 2 (Experience:
Used Kiosk, No Kiosk) x 3 (Repetition) factorial design.
There were significant main effects of Condition (F1,55 =
4.82, p = 0.03) and Experience (F1,55 = 5.01, p = 0.03)
such that those in the Optimal order had faster completion
times, and those with airline kiosk experience in the previous
year had faster completion times. There was a significant
main effect of Repetition (F2,110 = 81.0, p < 0.001)
consistent with a monotonic learning curve (see Figure 3).
There was also a significant interaction of Repetition and
Experience (F2,110 = 5.09, p = 0.01) such that those with
experience demonstrated a flatter learning curve due to faster
initial completion times (see Figure 4). Completion time was
lower for 8 out of 10 subtasks (essentially tied for PRBP
and AIRL). According to the binomial distribution, the
probability of a result at least this extreme occurring from
randomly generated data is 5.3%. In summary, those in the
Optimal ordering condition demonstrated faster completion
times on all three repetitions of the task, and those with
prior experience were overall faster as well.

6.3.2. User Satisfaction. User satisfaction was measured
using the 13-item Satisfaction Questionnaire (see above)
by taking the average responses on a 5-point Likert scale
(reverse coded for the negatively worded items). For the
second and third completion of the questionnaire, the scores



Figure 4. Mean completion times over three task repetitions between
Optimal ordering and Pessimal ordering conditions, by experience.

Figure 5. Satisfaction Scores over three task repetitions between Optimal
ordering and Pessimal ordering conditions, by experience.

were demeaned (subtracted by 3) and added to the previous
questionnaire’s result. Satisfaction was evaluated using a
repeated measures ANOVA with a 2 (Condition: Optimal,
Pessimal) x 2 (Experience: Used Kiosk, No Kiosk) x 3
(Repetition) factorial design. Although directionally in favor
of the Optimal ordering, the satisfaction ratings were not
statistically significantly higher for the Optimal ordering
versus the Pessimal ordering (F1,55 = 2.15, p = 0.149).
There was a significant main effect of Repetition (F2,110 =
27.9, p < 0.001) such that subjective user satisfaction in-
creased monotonically over the three task repetitions. There
was a significant three-way interaction of Repetition, Con-
dition, and Experience (F2,110 = 3.68, p = 0.03). Figure
Figure 5 illustrates the nature of this interaction, such that
those with no kiosk experience were more sensitive to the
Optimal vs. Pessimal manipulation than those with kiosk
experience. Specifically, those with no kiosk usage in the
previous year found the Optimal ordering to be more satis-
factory over time relative to the Pessimal ordering.

Figure 6. Screenshot of the ordering preference task.

6.3.3. Ordering Preferences. Participants provided their
own recommended orderings for the kiosk subtasks. Sepa-
rately, self-reported design professionals (who did not com-
plete the kiosk task) also provided recommended orderings.
From these experts, a consensus Expert ordering was gen-
erated (AIRL, BKRF, STSO, DIMH, FRBN, LIQH, EXBG,
CFRM, PRLT, PRBP) using the mode frequencies from
each subtask index. A Euclidean distance metric (based
on index differences) was computed for each participant’s
recommended ordering. In this way, we were able to calcu-
late a participant’s suggestion’s difference from the model’s
Optimal ordering, Pessimal ordering, and an Expert order-
ing. The Expert ordering was significantly more similar to
the model’s Optimal ordering than the Pessimal ordering
(tPaired = 9.15, p < 0.001). Thus, Experts suggested
orderings which were more similar to the model’s Optimal
suggestion.

Prefered ordering was evaluated using a repeated mea-
sures ANOVA with a 2 (Condition: Optimal, Pessimal)
x 2 (Experience: Used Kiosk, No Kiosk) x 3 (Compar-
ison Source: Optimal, Pessimal, Expert) factorial design.
There was a significant main effect of Comparison Source
(F2,110 = 27.4, p < 0.001) and a significant interaction
of Comparison Source and Condition (F2,110 = 7.92, p =
0.001) such that those who participated in the Optimal or-
dering gave suggestions which were more similar to both our
Optimal ordering and the Expert ordering. In summary, the
Expert suggested order and the model’s Optimal suggested
order were closer to recommendations given by participants
who had experienced the Optimal ordering (see Figure 7).

7. Conclusion and further work

We presented a framework for reasoning about the im-
pact of user authentication on the overall usability of a work-
flow. Our framework is the first to highlight the importance
of the fit between a particular user authentication method
and the context in which it is performed. Specifically, we
draw on results from cognitive psychology to quantify the
impact of switching between tasks that draw on different
cognitive resources and use different modalities.



Figure 7. Difference of participants’ suggested orderings to the model’s
Optimal and Pessimal ordering, as well as an Expert suggested ordering.

This is a new, disruptive approach to evaluating us-
ability of security solutions, and even systems usability in
general. We are sharing this powerful core idea with the
community in its preliminary form but we envisage further
work in several directions, both on our proof-of-concept
implementation of the solver and on the framework itself.
We need to develop reliable input tools, such as worksheets
and flowcharts, to allow independent designers to perform
consistent assignment of numerical values to the features of
their tasks. More fundamentally, we would like to develop a
“unit” (not necessarily just elapsed time; maybe other factors
like stress and annoyance might come into it) to measure
the usability cost, and a disciplined and justifiable method
for expressing in this same unit both the cost of a task and
the additional cost of a transition. This will allow the CSP
solver to add those sub-costs to compute a globally optimal
solution. These additional steps go hand in hand with user
studies and validation of the modelling approach. But the
general principles and methods that underlie our framework
are already useful and applicable today.

Our framework targets two audiences: designers of se-
cure systems and designers of new authentication schemes.
System designers can use the framework as scaffolding
that supports the overall design process. This scaffolding
encourages the designer to think about how their use of
authentication is likely to impact on their users and ulti-
mately on the success of the system. Similarly, security
researchers developing new authentication primitives can
use the framework to reason about their solution within a
realistic context of use.

Importantly, the theoretical model output was further
validated with a user study. Participants performed better
in the optimal ordering, and were more satisfied by the
optimally ordered interface. The model’s optimal ordering
was more similar to the suggested orderings of professional
designers, and participants who experienced in the optimal
ordering were more likely to further prefer and recommend
such an ordering. In this way, we were able to validate the
predictions of the theoretical model.

The consolidation of results from cognitive psychology
on the effects of task switching, and the presentation of these
results in a format directly usable by security professionals
is perhaps the most useful contribution of our work.

8. Related work

Sasse et al. [3], [23] present their findings of a 2-part
study into the impact of authentication on the productivity
of employees in a US governmental organisation. They con-
clude that the overall burden of user authentication includes
a disruption to the user’s primary task (that is, what they are
actually trying to achieve). Disruptions resulting from user
authentication damage productivity and result in significant
frustrations. Furthermore the authors found that avoidance—
not logging into services or using them less frequently—was
an increasingly common coping strategy when the burden
of authentication was felt to be too great.

While Shay et al. [24] have attempted to boost security
by pushing the limits of user workload, there is a call for
designers to consider the impacts of effortful authentication
mechanisms on the user. Employees reported to Inglesant
and Sasse [25] that they’d resort to insecure workarounds
in response to increasingly stringent password policies. This
friction [26] between the tasks has been shown to moderate
individual compliance.

Building on these observations, our work is the first
attempt to develop a model of such costs. The ultimate goal
of this model is to empower system designers to reason
about such effects before deployment.

Prior work has demonstrated the usefulness of modelling
subtask arrangement to find optimal orderings. Crampton
[27] arranges security-related subtasks to find orderings that
satisfy entailment, cardinality, and role-based constraints.
Zhang et al. [28] use an optimization procedure to mini-
mize mouse clicks in a computerized task workflow. Our
methodology uses similar techniques to consider a finer
grained user-centric cost model to optimize the handing off
of cognitive mechanisms throughout a task.

Constraint Satifaction Problems (CSP) have long found
application in decision supports systems. Scheduling—
determining the optimum allocation of shared resources to
competing activities—is a well-known NP-complete Con-
straint Satisfaction Problem (CSP) [29].

Cohen et al. [30] apply techniques from CSP to the
Workflow Satisfiability Problem (WSP)—that is, deciding
whether a plan exists for assinging task to authorized users
in a given business process . Our work draws inspiration
from their use of CSP. However, in our framework we are
concerned with an optimization problem.
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