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1. INTRODUCTION 

In the search for evidence to evaluate hypotheses concerning a sequence of radiocarbon age 
determinations, it is usually enlightening to incorporate (relatively) objective procedures of a 
statistical nature. In doing this, it is necessary to be aware of the underlying model one is 
using, that is, to be aware of the assumptions one is making, in applying the statistical 
procedure(s). Then one can judge whether or not the technique is appropriate to the evidence 
one wishes to acquire. 

On perusal of the literature we have noted that the statistical technique used is not neces
sarily appropriate to the particular situation. In the first instance we have been concerned 
with techniques for comparing and, in the second, with those for combining a series of 
radiocarbon age determinations. In this article we consider these two aspects separately for 
a variety of situations, attempting to show clearly the modelling procedure involved. 
Methods for simultaneously comparing and combining a series of radiocarbon age deter
minations (i.e. the clustering of determinations, using appropriate statistical criteria) are 
considered elsewhere (Wilson and Ward n.d.). 

In the following, we discuss some of the statistical techniques that have been proposed in 
the literature for comparing and combining radiocarbon age determinations; this discussion 
is set in the context of the model that has been assumed and the appropriateness of this 
model to the problem. (This is not meant to be an exhaustive review of the literature, but 
rather an indication of the extent of the confusion that exists.) We will start, however, by 
making recommendations as to which technique(s) should be applied, according to the 
model(s) which in our view is/are appropriate, and demonstrate the dependence of the model 
on several factors, such as the type of material used for dating, its method of collection, and 
the evidence being sought. 

2. CONSIDERATIONS FOR THE COMPARISON AND COMBINATION OF 

RA DIOCARBON DETER MINA TIONS 

A radiocarbon age determination is usually presented in the form A ± E, where A is the esti
mate of the radiocarbon age b.p. and E is its standard deviation due to counting error, as 
supplied by the radiocarbon dating laboratory. Both these estimates are obtained by a 
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complex procedure which varies from laboratory to laboratory (for a description of the 
procedure followed at the Australian National University Radiocarbon Dating Laboratory 
see Polach (1976)). 

fdeally one should manipulate age estimates which have been derived by comparable 
procedures, and which can be shown to have comparable sampling distributions. In the 
following discussion we shall assume this to be the case. However, while this certainly 
should be a valid assumption for determinations supplied by the same laboratory, its validity 
may well be questionable for determinations supplied by different laboratories. Also, we 
have made the usual assumption that the estimate of the radiocarbon age follows a normal 
distribution. (Although, as Polach (1976) has written, 'It is not appropriate to pool ages ± 
errors. A more accurate procedure is to pool ... the <5C14 values, because the "depletion 
error" is normally distributed round the <5C14 % value, while the "age error" is lognormally 
distributed round the Age' b.p. Use of this more accurate procedure makes little difference 
for age estimates less than approximately 30 000 years b.p., but careful consideration should 
be given to the assumption of normality for age estimates greater than this value.) 

We note that the conventional representation A ± E actually represents a 68 % confidence 
interval, rather than the more usual statistical representation of (x- y, x+ y) representing 
an approximate 95% confidence interval. In this paper we shall use the notation (A, 
E2);* here E2 is the variance (or squared standard error) of the radiocarbon age estimate, 
due to imprecision of the measurement. An approximate 95 % confidence interval for the 
radiocarbon age estimate, taking into account only the counting error, is then given by 
(A-2E, A+2E). 

First, suppose one wishes to compare a series of radiocarbon determinations. Then the 
prime consideration is whether one has two or more determinations made on the same object 
or different parts of the same object (as occurs for instance when several laboratories are 
evaluating counting procedures or reference standards or when parts of an object of un
known age are distributed among these laboratories for analysis); or whether one has deter
minations made upon two or more samples known not to be from the same object or which 
cannot be assumed to have been derived from the same object. There is a fundamental 
difference in the sampling considerations and in the error factors in these two situations 
(referred to now as Case I and Case II respectively). 

In the Case I situation, one can assume that all determinations have the same true mean 
and that differences have occurred due to changes in the circumstances (often uncontrollable) 
under which the determination was made. The model that we propose as appropriate here, 
given present-day knowledge, is the following. One observes a series of n radiocarbon 
determinations {Aj, E;; i= 1, ... , n} which can be taken respectively to be realizations of 
random variables {a j ; i= J, .. . ,n} where each a j has the same expected value, say 0, i.e. 

i= 1, ... , n. 

If one assumes that the only sources of errors are due to the counting procedure and that 
these errors are comparable, as discussed above (noting that appropriate changes must be 
made if this is not the case), then one can assume that 

>I< We have noted some confusion concerning the representation of the error factor pertaining to age estimates. 
Use of the notation (A,El) would help avoid this confusion. A major advantage to such a notation is that one then 
could identify more clearly the components of the variance of the radiocarbon age estimate that have been taken 
into account, by writing the age in tbe form (A,E1 + F2 + G1

) (see below for definitions of these additional error 
factors), whereas it is not immediately clear what is meant by y in the expression (x±y). 
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i= 1, ... ,n, 

where e j is assumed to be normally distributed with mean zero and variance E?, i.e. 

ei ", N(O, E1). 
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To test the hypothesis that the series of determinations are consistent (i.e. all have effectively 
the same age), one determines the pooled mean, A p' where 

(1) 

and then uses the test statistic, T, given by 

n 

T = 'L(Ai-Ap)2jEl (2) 
1 

which has a chi-square distribution on n - 1 degrees of freedom under the null hypothesis. * 
If the determinations are judged not to be significantly different then they can be com

bined, the pooled age being A p, given by (1), and the variance of the pooled age being given 
by 

V(Ap)=(~ljElrl (3) 

If the determinations are judged to be significantly different then they should not be com
bined, but need careful reconsideration. To determine objectively which observation(s) is/are 
outliers, a clustering type of approach involving the likelihood ratio is recommended and 
this is discussed elsewhere (Wilson and Ward n.d.). 

In recent years there has been an increasing awareness by archaeologists, among other 
Quaternary researchers, that a single radiocarbon determination does not a secure date 
make. This is due not only to the 'counting error' but also to unquantifiable errors that may 
occur during the complex dating procedure with unknown probability. (See Polach (1976) 
for a discussion of these.) The above analysis suggests that a more secure date may be 
obtained from two or more determinations (for random samples from the object) rather 
than from devoting valuable resources to decreasing the counting statistic variance, E2. 

Considering now the Case II situation, one does not know whether all determinations are 
estimating the same date (or effectively indistinguishably different dates). t Also, it is neces
sary to make the assumption that the group of (carbon) samples from which the determina
tions are made is a random sample. Suppose one has a (random) sample of determinations of 
size n {(AI, ED, ... (A j , ED ... (An' E~)}, then these can be regarded as having true or 
'real' ages, RI, ... , R i , ••• Rn respectively. One wants, eventually, to make inferences 
concerning {Ri' i= I, ... , n}, the real ages corresponding to the observations {(Aj, ED, i= 1, 
... , n}. (Compare with Case I, where one knew that the real age was R for all samples, and 
wished to make inferences concerning {aj' i= 1, ... , n }.) Unfortunately, the distribution of 
{R i }, the estimated (or calibrated) real age for R i , is unknown and is likely to be complex, for 
it involves not only the errors inherent in the radiocarbon determinations (counting error) 

* This is the same test used by Clark (J 975, p. 252 and tables 2 and 3). T = (n-l)F, where F is given by expression 
(2) of Law (1975). It should be noted, however, that there F is not a variance ratio. 

t One does not need a priori strong subjective evidence for the null hypothesis to be or not to be true to apply 
the method given here. 
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Ri Real (or true) age BP 

Figure 1 Schematic relationship between real age R;, o/an object and the approx imately 95 % confidence limits 
far the radiocarbon age, assuming no counting errol' 

but also, among others (Polach 1976), the unknown error factor in the calibration curve. 
This error factor is quantifiable, however, and therefore should be taken into consideration 
when dealing with determinations from different objects. So, in making inferences concern
ing the true dates, {Rj, j = 1, ... , n}, one must consider the distribution of random variables 
{a j, j = 1, ... , n} corresponding to the realizations {A j}, while also taking into consideration 
the calibration error. To simplify the description of the model we are proposing we shall 
consider, in the first instance, a single determination A j, and suppose that ET = 0. Now the 
calibration curve is not necessarily unique and may vary for different objects (of different 
materials and from different locations) of essentially the same age. Then (approximately) 
95 % confidence limits for the radiocarbon determination, observed to be A j , for the object of 
real age, R j , are given by (A j -2Fj , A j +2FJ, where F j is the standard deviation of the 
calibration error for the jlh observation. This is shown diagrammatically in figure 1, where 
the shaded band is a representation of the area wherein the calibration curve probably lies. 
To put this mathematically, we are regarding each radiocarbon determination A j as having 
been 'derived' from its corresponding real date Rj , and this is represented by a reali za tion Aj 
ofa random variable aj, where 

aj = OJ+/;, 

where the expected value of a j is equal to OJ, i.e. 

£(a;) = OJ 

and where 

Ij ~ N(O,F;). 

(4) 

We are also assuming here thatli is statistically independent offj (i=fj). The values we shall 
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use here for FT are those given by Clark (1975, p. 256; his sD of 502 and 602 years depend
ing on whether the determination is less than or greater than 2700 years b.p. These values are 
based upon analysis of wood charcoal and dendrochronological relationships, and the 
possibility that they could be underestimates of the values for material of differing types is 
under consideration. 

Then when one includes the uncertainty in the radiocarbon determination due to the 
counting error the model (4) becomes 

i = 1, ... ,11 (5) 

where ej involves the same assumptions detailed above for Case I and it is also assumed 
here that e j and Ij are independent of one another for all i. If there is additional inaccuracy 
due to the 'sunspot effect', then the model given by (5) becomes 

aj = O;+ej+!i+gj* 

where gj is assumed to be normally distributed 

gj"'" N(O, G;) 

i = 1, ... ,11 

and represents the inaccuracy due to this effect. The value of G7 is 702 years b.p. where the 
effect is suspected (and zero otherwise). A further assumption is made here that the set of 
variables (e j,!;, gj; i= J, ... ,n) are independent of one another for each observation and 
from one observation to another. (This is essentially the extension to n observations of the 
model proposed by Clark (1975) for a single observation, and the correspondence in 
notation is sr =£2, si =F2, s; =c2

.) 

To test the hypothesis that the estimates of the real dates are equal, one first determines 
the pooled mean, A p , where 

(6) 

where S7=E;+Ff+G; (this corresponds to (1) for Case I). Then oneca1culates the test 
statistic T' (corresponding to T given by (2) for Case J) given by 

/I 

T' = I,(A j -Ap)2/S? (7) 
I 

which has a chi-square distribution with 11- I degrees of freedom under the null hypothesis 

Ho: R1 = ... = Ri = ... = Rn" 

If the estimates of the real dates are judged not to be significantly different and, if from 
archaeological considerations, it is deemed appropriate, then the radiocarbon determina
tions can be combined, the pooled radiocarbon age being Ap given by (6), and the variance 
of the pooled age being given by 

V(Ap) = (t1/S;rl (8) 

[It should be stressed that V(A p) is the variance of the mean of the group of n observations 
and not the variance of the group of determinations. The determination of the variance of 

... This type of model is known as a random effects model in Ihe statistical literature. 
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the group of determinations is of a more complex nature and is considered elsewhere 
(Wilson and Ward n.d.). The estimated real age and the confidence interval for this real 
age can be determined by reading off the appropriate values from the calibration curve as 
shown by Clark (1975) (V(Ap) here is equal to S2 in his notation).] 

If the assumption of independence of, say,fj and/j (i#j) is relaxed (and this might be 
more appropriate if one is considering, say, material of the same type and one is using the 
same calibration curve, or if one is considering Case I) then the test statistic Tor T' is of the 
form 

where the vector 

A = . 
[

AI.-AP] 

c A/I ~ AI 
where Ap is given by either (1) or (6) and Vis the estimate of the variance-covariance matrix 
of {aj' ... , a,,}. (T" simplifies to T and to T' for Case I and Case II respectively, if one 
assumes Ii is independent of./j.) A model of this form has been proposed by Clark (n.d.) 
giving a test statistic of the form T". His model basically assumes that there is a true calibra
tion curve, for which a close approximation is available from recent research. One then 
uses the form of this best approximation to determine V, and the off-diagonal terms will 
vary depending on the approximation used. 

3. CRITIQUE OF PREVIOUS APPROACHES 

I n the following we present a critique of the relevant literature that involves the major 
attempts 'at solutions to have been proposed for the problems of comparison and combina
tion of radiocarbon determinations. For each of the selected articles we have attempted to 
determine the authors' objectives, and to assess their solutions with respect to the objective, 
the type of Case (I and/or II) and the other considerations given in the previous section. 
Where deemed necessary, we propose solutions that we consider to be more appropriate 
and, in so doing, hope to be able to show how the difficulties associated with interpretation 
of and with inference from a set of radiocarbon determinations are overcome by a clear 
formulation and analysis of the appropriate model. Tn addition, we have taken data from 
this literature to use in simple paradigms for the methods proposed in the previous section. 

The first article to consider the type of situation with which we have been concerned 
appears to be that by Libby (1954) (although it could be adjudged not entirely suitable for 
comment, since dating procedures have much improved in accuracy and standard errors 
should no longer be obtained by just taking 'the square root of the total number of counts 
taken' (1954, p. 136». It is interesting to note that he used the procedure we recommend 
above when discussing Case I, for the determination of a more secure date. Namely, he split 
the sample into (three) parts and made determinations on each part separately. Libby also 
determined weighted averages as we recommend above for Case I, but he recommended that 
'It is probably better, however, to take the arithmetical average .. .' (1954, p. 136). However, 



Comparing and combining radiocarbon age determinations 25 

this calculation would assume that the variances of the counting statistics are equal. That 
this is not so can be shown by calculating 

(9) 

where Emnx is the largest value of E 1, ••• ,E. and E min is the smallest, and F is distributed 
according to an F-distribution with (VI' v2) degrees of freedom, where VI is the number of 
'observations' from which Emnx is obtained and, similarly, V2 from E min • If the variances 
are equal (and taking into account that the number of 'observations' for each determination 
here would be effectively infinite) then F= 1.0. The value one obtains for Libby's data 
given (p. 136) as (4.029, 0.05 2), (4.085, 0.072) and (4.156,0.132) is 

F = 0.13 2/0.05 2 = 6.76. 

So the conditions for the arithmetical procedure to be valid are not satisfied and this 
procedure is not to be recommended. 

Another early article is that by Spaulding (1958), wherein he considered both Case I and 
Case II types of data, without differentiation, and he analysed both cases as if they were of 
Case I type. Also, he used an analysis of variance technique to compare the dates, assuming 
that 'the variance of the individual dates [can be] treated as means of samples with an 
infinite number of observations in each sample' (1958, p. 310). One basic assumption of the 
ANOV A technique, however, is that the variances within a group, corresponding here to 
the variance of the individual dates, are equal. If one makes Spaulding's assumption that 
the variances of the individual determinations are based on an infinite number of observa
tions, then application of the F-test given by (9), (as demonstrated above) shows that the 
basic assumption of the ANOV A technique does not hold for Spaulding's data . If this 
assumption was satisfied then in this type of situation the ANOV A result would be identical 
to the result given by Tin (2) for Case I and T' in (7) for Case II. 

Again, Polach and Golson (1966) do not differentiate between Case II and Case I (their 
article, however, is concerned basically with Case J data). To determine whether a series of 
more than two determinations for a single object (i.e. Case I) is consistent they consider a 
series of pairs of differences. The interpretation of the results for a series of pairs of differ
ences is not straightforward, since the distribution of the results for such a series is awkward 
due to the lack of independence between some of the pairs (see comments on Polach's 
1972 paper below). Again, application of T in (2) is appropriate and, considering the data 
published therein (p. 16) on three independent measurements on a single piece of wood 
(4330,1902), (4560, 2102), (4940,3002), it is found that 

and 

Ap = 4525 

V(Ap) = 1282 

T = 2.99 < 5.99 = X~. 0 05, , . 

and there is no evidence to reject the null hypothesis that the observations are consistent. 
In another article Polach (1969) is concerned with Case I situations and gives the formulae 

corresponding to (I) and (3) for the special case ofa sample of size two. 
Leach (1972, p. 113) noted that 'some confusion as to the statistical meaning of absolute 

age statements' exists, and pointed out that the standard error supplied by the laboratory is 
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basically the standard error of the mean of the 'sample' and not the standard error of a 
population from which the 'sample' has been drawn (but in this situation, the formulae 
(Jx and (Jx are misleading for the discussion and should be ignored). Leach does not differen
tiate between Cases I and II and treats both as if they are Case I. He also gives a 'best 
estimate of age' to be 

A = Cf.A;/EJj(I.(ljEi)) (our notation). 

However, the model that would provide such an estimate is not stated and hence the 
values given by (I) for Case I models and (6) for Case II models are recommended here. He 
states also that a 'best estimate of standard error' is obtained from 

E = {I:(Ai-A)2jn(n-l)}t. 

This expression, however, is applicable only to a special type of model. Here E is the 
appropriate form of the estimate of the standard deviation of the arithmetic mean of a 
set of single observations from a single population with unknown variance, say (J2. In the 
case being considered, however, there is a set of mean values {A l' . .. , An} each with 
respective standard deviations {E I , ••• , En}. The appropriate form for the estimate of 
the variance of the weighted or pooled mean is given by (3) for Case I models and by (8) 
for Case II models. [Perhaps it is appropriate to note here that we show elsewhere (Wilson 
and Ward n.d.) that if the null hypothesis is that each real age Ri comes from the same 
distribution with a certain mean, in such a way that we have a realization of a random 
variable a j where aj,,-,N(O, S;+(J2) i=I, . . . , n where 0 and (J2 are unknown, and if 
also Sf = .. . = S,; = S2 then the estimate of () is 

V(Ap) = I:(Ai-Ap)2jn(n-l) 

and the estimate of (J2 is 62 where 

" &2 = L {(Aj- Ap)2 jn -I} - S2.] 
I 

It should be noted here that Law (1975) bases his results (for Case II data) on some of 
Leach's proposals, and he also comments (p. 448) 'No error has been introduced to allow 
for the uncertainty of the correction curve, as it serves no purpose where the corrected dates 
are only for comparison with each other'. We hope that we have demonstrated in section 2 
the fallacy of this approach. 

In considering Case I situations, Polach (1972) first considers 'the significance of the 
difference between two C I4 age determinations' (Appendix 1) by determining 

(10) 

where z"-'N(O,l). (This test can be derived also under the broader assumption that the 
two samples are from different populations with different variances.) Polach then notes 
(1972, p. 703) that 'the difference between two determinations of the same sample is often 
discussed in terms of their common standard deviation as (AI -A2)jS.D.(m) where S.D.(m) 
is (E~+EJyj2. Hence S.D.(m)=z x )2'. (Replacing his symbols by ours for clarity here.) 
He then assesses 'the frequency distribution of pairwise levels of agreement' since he claims 
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(1972, p. 696), without justification, that 'the expected parent frequency distribution is 
normal with standard deviation S.D.(m)=z x )2'. This procedure is wrong due to either 
typographical or algebraic error. To show the latter, first 

S.D.(m) = (Ei+EDtj2 by definition 

= 2zj(A 1 - A2 ) from (10~. 

Secondly, S.D.(m) is the standard deviation of the unweighted, or arithmetical, mean 
(A 1 + A 2)/2 rather than that of the weighted mean. More importantly, consider, by 
way of example, just two pairs of comparisons Al - A2 and A2 - A3 ; if A I' A2 and A 3 are 
independently and normally distributed then, under the null hypothesis that the determina
tions are consistent, the vector of comparisons 

v = [AI-A2] A2-A3 

has a bivariate normal distribution with mean vector (g) and with variance-covariance 
matrix 

= [Ei+E~ -m] M 2 2 2' -E2 E2+E3 

To test the null hypothesis, the appropriate form of the test statistic is 

S" = vTM-1v 

and under the null hypothesis S" has a chi-square distribution with two degrees of freedom. 
This approach obviously can be extended to more than two comparisons. An equivalent, 
but more straightforward, approach to using S" is the repeated application of T given by 
(2) for Case I models. To demonstrate this simply we have extracted some dates from 
Polach (1972) and given these in table 1. These include three determinations of a single age 
by the Australian National University laboratory (ANU-7) and another determination of 
the same age made elsewhere (W-1571). We have included five determinations made on 

Table 1 Data extracted from Polach (1972, table 3) 

Sample At Ef 
number Determinations as reported 

ANU-7 14550 2702 
ANU-7 15000 6002 
ANU-7 13 700 3002 
W-1571 14650 5002 

ANU-5 11 700 2602 
C-800 10860 4102 
L-698D 11840 1002 
FSU-3 11245 4502 
Tx-44 10700 2102 
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another group of samples in the second part of the table. To check consistency of the 
three ANU-7 determinations we obtain, using (1), (3) and (2), 

A" = 14253 

V(Ap) = 1902 

T = 6.16 (compared with xt 0.05 = 5.99), 

a borderline case concerning consistency of the determinations. However, if we include 
W -1571, noting the assumption discussed in section I that the distributional properties for 
different procedures are comparable, we obtain 

and 

Ap = 14303 

V(Ap) = 1782 

T = 6.71 (compared with xi; 0.05 = 7.81), (11) 

from which one would conclude that there is no evidence that the four determinations are 
not consistent. 

Now considering the five determinations of another age, we obtain 

and 

Ap = 11 593 

V(Ap) = 822 

T = 28.15 (compared with X~; 0.05 = 9.49). ( 12) 

To test overall consistency of the determinations of both groups of data (or all groups if 
considering more than two), the chi-square test statistic values (here two values given by 
(II) and (12) can be combined (since they are independent) to give an overall chi-square 
value (here 34.86) which can be compared with a chi-square distribution (with, in this 
instance, seven' degrees of freedom (X~;0 . 05= 14.07». To determine which observation(s) 
is/are likely to be outlier(s), the interested reader is referred to the paper by Wilson and 
Ward (n.d.). 

An excellent discussion of the conditions under which averaging is appropriate is given 
by Long and Rippeteau (1974) who warn against uncritical averaging of determinations. 
They then question whether the calibrated determinations should be averaged, or whether 
the uncalibrated values should be averaged and the average calibrated. As we discussed 
in section I, considering the usual distributional assumptions and present-day knowledge, 
the uncalibrated determinations should be averaged, taking into account the eventual 
calibration for Case II. Long and Rippeteau also propose use of Chauvenet's criterion for 
the rejection of outliers, but the inappropriateness of this criterion for this situation has 
been discussed elsewhere (Renfrew and Clark 1974). To determine whether outliers are 
present, T «2) Case I) or T' «7) Case II) should be used. To show the use of T or T' for 
determining the presence of outliers and the inappropriateness of Chauvenet's criterion, 
consider the determinations in table 2 used to estimate the age range of the Lamoka Lake 
site by Long and Rippeteau (1974, p. 22, table 5). The analysis provides a paradigm of the 
methods proposed here. This set of data is also graphed in figure 2, where the double line 
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Table 2 Lamoka Lake site determinations Fom Long and Rippeteau (1974, p. 212) 

Sample Determinations A ,** £;* F
2 *** I 

S2 
I 

number (be) >/< (bp) 

C-288 2419 4369 200' 
M-26 2485 4435 2002 

Combined 
C-288, M-26**** 4402 14P 602 153 2 

C-367 3433 5383 2502 60 2 257 2 

M-195 2575 4525 2002 60' 209' 
M-911 2521 4471 150' 60 2 1622 

M-912 2451 4401 125 2 602 1392 

Y-1279 2550 4500 80' 60' 1002 

Y-1280 2540 4490 802 602 1002 

>/< Determinations and error factors as reported by Long and Rippeteau 
** In conversion from be to bp values it was assumed that p = 1950 in all cases 

*** Based upon values recommended by Clark 1975 
**** See text for explanation 

C·2BB 

M·26 

C'288) 
M·26 =======H H 

C-367 HC==============~==============~H 

M·195 h C=======~=======~H 

M·911 H 

M·912 C=====~======~H H 

Y·1279 HC===~H 

Y·1280 H====~'"" 

I 
b,c. 2000 30 00 

Figure 2 95 % confidence intervals for radiocarbon determinatiolls of table 2 
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gives the 95 % confidence interval involving just the counting error factor and the extended 
line gives the 95 % confidence interval when the calibration error is taken into account, 
where appropriate. 

Long and Rippeteau reject C-288 using Chauvenet's technique. However, C-288 and 
M-26 are in fact 'the same sample run by different laboratories' (1974, p. 212) so the 
procedure for a Case I situation is applicable. From (1) and (2) we obtain 

Ap = 4402 

and 

T = 0.055 < 3.84 = xi; 0 ,05 
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so we have no statistical evidence to doubt the consistency of the two determinations, and 
they may be combined to give the mean value for that object of (4402, 141 2) . This value 
can then be used in the Case II situation to determine whether the estimates of the real 
dates for the series are the same or not. For the seven age determinations (assuming no 
sunspot effect) we obtain 

A~ = 4507 

V(A~) = 522 

T' = 12.76 (compared with X~; 0.05 = 12.59). 

If, upon subjective or objective evaluation, C-367 is judged to be 'clearly aberrant' (1974, 
p. 212) then removing C-367 we obtain 

and 

A~ = 4472 

V(A~) = 53 2 

T = 0.65 (compareu with X;; 0.05 = 11.07). 

An objective method of statistically determining aberrant values is given elsewhere (Wilson 
and Ward n.d.). 

To test 'non-coevalness of radiocarbon dates', Long and Rippeteau (1974, p. 210) first 
recommended the correction (or calibration) of dates (this has been discussed above and is 
not recommended) followed by application of the F-test as proposed by Spaulding (1958) 
(also commented on above). They use also an estimate of the variance of the form proposed 
by Leach (1972) and this too has been commented on previously. Again, the appropriate 
procedure has been given in the previous section, where the model assumed has been clearly 
formulated and analysed. 

CONCLUSION 

That the importance of explicit modelling showing the statistical logic and techniques 
applied in any attempt to compare and combine age estimates cannot be over-emphasized 
is argued in this presentation of recommended procedures. 

J n the first section of this paper the modelling of the recommended procedures was made 
explicit. Two situations requiring different statistical modelling due to fundamental 
differences in the types of data were recognized: first, where two or more determinations 
are obtained from samples of the same object (Case I) and, secondly, where two or more 
determinations are made from samples which cannot be assumed to derive from the same 
object (Case II) . The latter; case applies in most archaeological situations. Inherent in the 
modelling of either case is the attempt to test the hypothesis that each of a series of deter
minations provides essentially the same value. The (chi-square) test statistic, T or T', 
provides a test of this hypothesis. Where the mem bers of a series are found statistically to be 
insignificantly different from one another, and where archaeological criteria allow, a pooled 
mean, Ap may be calculated with a new variance, V(Ap), for the mean of the grouped 
determinations. The explicit modelling for deriving these formulae and the procedures for 
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their application clarify the assumptions made and the techniques used In arriving at 
objective decisions regarding comparison and combination. 

Such modelling aspects usually have been neglected in previous attempts at solution of 
the problems of comparing and combining a series of radiocarbon determinations. The 
second part of this paper provides, first, a critique of some previously applied methods 
again emphasizing the modelling and their appropriateness implicit in their use and, 
secondly, provides paradigms to exemplify in their appropriate application to archaeological 
situations the procedures recommended here. 
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