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Models of driving behavior (e.g., car following and lane changing) describe 
the longitudinal and lateral movements of vehicles in the traffic stream.  
Calibration and validation of these models require detailed vehicle tra­
jectory data. Trajectory data about traffic in cities in the developing 
world are not publicly available. These cities are characterized by a 
heterogeneous mix of vehicle types and by a lack of lane discipline. This 
paper reports on an effort to create a data set of vehicle trajectory data 
in mixed traffic and on the first results of analysis of these data. The 
data were collected through video photography in an urban midblock 
road section in Chennai, India. The trajectory data were extracted from 
the video sequences with specialized software, and the locally weighted 
regression method was used to process the data to reduce measure­
ment errors and obtain continuous position, speed, and acceleration 
functions. The collected data were freely available at http://toledo 
.net.technion.ac.il/downloads. The traffic flow characteristics of these 
trajectories, such as speed, acceleration and deceleration, and longi­
tudinal spacing, were investigated. The results show statistically sig­
nificant differences between the various vehicle types in travel speeds, 
accelerations, distance keeping, and selection of lateral positions on the 
roadway. The results further indicate that vehicles, particularly motor­
cycles, move substantially in the lateral direction and that in a sub­
stantial fraction of the observations, drivers are not strictly following 
their leaders. The results suggest directions for development of a driving 
behavior model for mixed traffic streams.

The study of vehicle-to-vehicle interactions is necessary for an under-
standing of the traffic flow and safety problem. Driving behavior 
models describe driver maneuvering in various traffic situations. 
The core behavioral models, those for car following and acceleration 
and those for lane changing, have been studied for several decades. 
Many theories about the functional forms governing these behav-
iors have been proposed. Comprehensive reviews of these models 
have been provided, for example, by Brackstone and McDonald 
(1) and Toledo (2). However, far less research has focused on the 
use of observational data to calibrate and validate models of driv-
ing behavior. One reason for this gap in the literature is the dif-
ficulty in obtaining the required data, which consist of time–space 
trajectories of the vehicles in a section of road. From these data, 
time series of the variables that are used in driving models (e.g., 
positions, speeds, and accelerations of the various vehicles; rela-

tive speeds; time and space headways) are extracted. The validity 
of driving behavior models depends on the availability and quality 
of these data. FHWA’S next generation simulation (NGSIM) proj-
ect collected and shared several data sets of vehicle trajectories on 
expressway and urban arterials in the United States (3). These have 
been used extensively to calibrate and validate driving behavior 
models (4–8).

The literature on modeling mixed traffic in developing coun-
tries at the microscopic level is growing steadily. For example, 
Cho and Wu developed a model for the longitudinal movement 
of motorcycles based on their desired speed, space headway, and  
safety margin (9). Lan and Chang studied situations in which the 
driver follows a single leader or multiple leaders, including when 
the lateral overlap is partial in mixed streams (10). Gunay devel-
oped a car following model based on safety distances that takes 
into account the lateral frictions between the subject and other 
vehicles (11). Budhkar and Maurya used a variant of this model  
in a simulation model for bidirectional traffic (12). Jin et al. mod-
eled a staggered car following model that uses the optimal veloc-
ity model structure by taking into account the lateral separation 
between the vehicles (13). The longitudinal movement model of Lee 
et al. introduced more complex behavior patterns, such as squeez-
ing through small lateral gaps, moving abreast of other vehicles in 
the same lane, oblique following, and swerving (14). In the context 
of lateral movement, Munigety et al. used a discrete choice model 
for the choice of lateral movement (15). The literature proposes 
a wide and growing range of behaviors that must be captured for 
the microscopic modeling of mixed traffic streams and has offered 
a variety of competing behavioral theories proposed for this pur-
pose. However, calibration and validation of driving behavior, in 
the context of mixed traffic modeling, have mostly been based 
on macroscopic flow characteristics, such as flows, speeds and 
densities (16, 17). This approach limits the level of detail that 
can be captured in the developed models. A few studies have used 
trajectory data, but these are often small samples collected for 
a specific study. For example, Kanagaraj et al. collected the tra-
jectories of the subject and lead and lag vehicles in a merging 
situation (18). Sangole and Patil selectively collected trajectories 
for the involved vehicles in group gap acceptance behavior at an 
uncontrolled intersection (19). Vehicle trajectory data related to 
mixed traffic appear not to be publicly available, possibly because 
data collection and extraction are difficult and expensive and  
because of the technical complexities associated with a wide mix of 
vehicles types of varying physical dimensions and dynamics char-
acteristics (speed and acceleration capabilities) and non-lane-based 
movements (20).

This paper reports on an effort to create a set of vehicle trajectory 
data in mixed traffic and reports on the first results of analysis of 
these data. The data were collected with video photography in an 
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urban midblock road section in Chennai, India. The trajectory data 
were extracted from the video sequences with Trajectory Extractor 
(21) and then were processed with the locally weighted regression 
method (22, 23) to reduce measurement errors and to obtain contin-
uous position functions that may be differentiated once or twice to 
obtain speed and acceleration functions, respectively. Finally, the 
traffic flow characteristics of these trajectories were investigated.

Data Collection

Site

The video data were collected on a six-lane separated urban arterial 
road at the Maraimalai Adigalar Bridge in Saidapet, Chennai, India. 
Collection took place on the northbound approach, shown in Figure 1.  
The section was on a bridge, which ensured that the road geom-
etry was uniform and that there were no nearby intersections, bus 
stops, parked vehicles, or other side factors that could affect drivers’ 
behavior. Furthermore, there was no interaction between the vehicle 
traffic and pedestrians, because the pedestrian walkway is segre-
gated by a barrier. The video data were recorded between 10:00 a.m. 
and 3:30 p.m. on February 13, 2014.

Trajectory Extraction

Over the years, several automated or semiautomated tools for extract-
ing trajectory data from video sequences have been developed, 
including VEVID (24), NGSIM video (25), and Trajectory Extrac-
tor (21). The latter has been used to collect motorcycle and bicycle 
trajectories in London. TRAZER (26) and Traffic Data Extractor (20) 
were developed and used for trajectory extraction in mixed traffic.

In this study, Trajectory Extractor was used to obtain the coordi-
nates, dimensions, and vehicle class of all vehicles that appeared in 
the video sequences during the 30 min between 2:45 and 3:15 p.m. 
(21). This period represents medium-level traffic flows, which exhibit 
both vehicle following and lateral shift behaviors. The trajectories 
were extracted at a time resolution of 0.5 s. The extraction was semi-
automated. A Windows-based graphical user interface allowed a 
human operator to use the mouse to identify the edges of vehicles on 
the screen. The system converts these points into real-world coordi-
nates and calculates vehicle position, speed, and acceleration. The 
coordinate conversion relies on four reference points in the video 
images and their coordinates in the real world.

Figure 2 shows the software’s graphical user interface with an 
image from the road section in the study.

Data Smoothing

Once the position data have been extracted, they must be smoothed 
to overcome missing observations (e.g., those caused by occlusions), 
reduce measurement errors, and calculate other variables of interest, 
such as speeds, accelerations, and intervehicle relations. Several stud-
ies have shown that this step is necessary for obtaining unbiased and 
internally consistent trajectories (27–29). Methods for trajectory data 
processing relied on signal filtering (30, 31), smoothing methods (23, 
32), or moving average techniques (28, 33).

The locally weighted regression approach proposed and validated 
by Toledo et al. was used for data smoothing (23). The method uses 
a set of N (window size) observations before and after the measure-
ment point of interest, t0. The trajectory function around this point 
is assumed to be a polynomial function of time:

x t f t tt t t t t m
m

t t

m

M

∑( )( ) ( )= β + ε = β + ε
=

, (1), , ,

0
0 0 0 0 0

where

βt0 = [βt0,0    βt0,1    βt0,2 . . . βt0,M]

		 =	� vector of M + 1 parameters of polynomial function 
estimated around time t0,

ft0(t, βt0)	=	� fitted position at time t estimated by local regression 
function centered at time t0, and

	 εt0,t	=	� normally distributed error terms.

FIGURE 1    Data collection site in Chennai.
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FIGURE 2    Trajectory extractor user interface showing road 
section and reference points.
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The parameters of this local function are estimated with N obser-
vations in the window around t0 with a weighted least-squares 
estimator:

X f t W X f tt t t t t t[ ] [ ]( ) ( )β = − β ′ − β
β

argmin , , (2)
0 0 0 0 0 0

where

	 Xt0	=	� column vector of N position observations used to 
estimate a trajectory function centered on t0,

	ft0(t, βt0)	=	corresponding vector of fitted values, and
	 Wt0	=	� [N × N] diagonal matrix with elements corresponding 

to the weights of the observations.

The observation weights are a tricube function of its distance from 
the point of interest t0:
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where w(t0, t) is the weight assigned to the observation at time t in 
fitting a curve centered at t0 and d is the distance from t0 to the near-
est point outside the window of N points to be considered in fitting 
the curve.

Upper and lower bound constraints on the estimated speeds and 
accelerations are also added to the optimization problem in Equa-
tion 2. Instantaneous speeds and accelerations are calculated as the 
first and second derivatives with respect to time of the fitted position 
polynomial function.

The longitudinal and lateral positions were smoothed indepen-
dently of each other. Following the results in Toledo et al. (23) and 
some experimentation with the current data set, a window size of 
N = 7 and polynomial order M = 4 were used in both cases. In the 
longitudinal direction, the smoothed data have a mean average error 
(MAE) of 0.544 m and a root mean square error (RMSE) of 0.788 m,  
compared with the raw data. In the lateral dimension the errors are 
MAE = 0.062 m and RMSE = 0.082 m.

Punzo et al. defined consistency conditions that must be met for 
the trajectory data to be useful in studying driving behavior (29). The 
internal consistency condition guarantees agreement between posi-
tion, speed, and acceleration values. The smoothing method used here 
defines the position as a continuous function and defines speeds and 
accelerations as its derivatives. Thus, the internal consistency con-
dition is satisfied by definition. The platoon consistency constraint 
guarantees that there are no overlaps between the trajectories of vehi-
cles, which imply collisions. Initially, 4,107 position points (3.7%) 
violated this condition. In these cases, the two overlapping vehicles 
were moved to eliminate the collisions, and the smoothing process was 
repeated. In the final data set, 4,199 observations (3.73%) with platoon 
consistency problems remain. Both these and the corrected observa-
tions were flagged in the data set. These observations should be used in 
macroscopic-level analysis of the data (e.g., vehicle counts and densi-
ties) but should be removed or be used with caution in microscopic-
level analysis (e.g., headway between leader–follower pairs). The final 
data set is available at http://toledo.net.technion.ac.il/downloads.

Traffic Flow Characteristics

The collected data set includes 3,005 vehicle trajectories. The posi-
tions are observed at a resolution of 0.5 s, for a total of 111,629 
observations. Mixed traffic flow has distinct characteristics that 

distinguish it from homogeneous traffic. The first is a more varied 
vehicle mix. This is well demonstrated in the collected data: only 
26.6% of the vehicles in the traffic flow were passenger cars, 56.4% 
were motorcycles, 12.2% were autorickshaws, and 4.8% were 
heavy vehicles, including light and heavy trucks and buses.

Longitudinal Movement

Table 1 presents summary statistics of the traffic flow characteristics 
in the longitudinal direction. Traffic flows and densities are 1-min 
averages. The reported speed and acceleration statistics are for 
instantaneous values. The total traffic flow observed in the study 
section is 6,010 vehicles per hour (vph). Instantaneous speeds vary 
from 0 to 15.22 m/s with a mean of 5.88 m/s. The average speeds of 
the various vehicle types in the stream differ. The mean speed of cars 
is the highest (6.13 m/s), followed by motorcycles (6.01 m/s). Heavy 
vehicles (5.64 m/s) and, especially, autorickshaws (5.06 m/s) travel at 
lower speeds. Analysis of variance (ANOVA) tests were conducted  
for the average speeds of individual vehicles. These test showed that 
the differences among the vehicle types are statistically significant  
[F(3, 3001) = 114.93, p-value < .001]. Pairwise comparisons show the 
mean speeds of autorickshaws and heavy vehicles are each statically 
significant compared with those of motorcycles and cars. All four 
differences are significant with p-value ≤ .001. The mean speeds of 
motorcycles and cars are not statistically significant (p-value = .590). 
These differences may stem from the higher operating capabilities of 
cars and the higher maneuverability of motorcycles within the traffic 
stream, compared with the lower maneuverability of heavy vehicles 
and poor dynamics characteristics of autorickshaws.

The acceleration rates applied by the various vehicle types also dif-
fer for both acceleration and deceleration [F(3, 3,001) = 51.76, p-value 
< .001, and F(3, 3,001) = 64.21, p-value < .001, respectively]. The 
mean deceleration and acceleration rates of motorcycles (−0.731 m/s2  
and 0.761 m/s2, respectively) are higher compared with those of 
other types of vehicles. The post hoc analysis showed that these 
are statistically different from all other types in both acceleration 
and deceleration (p-value < .001 in all cases). This difference may 
be because of the greater maneuverability of motorcycles, which 
allows their drivers to apply higher acceleration and deceleration 
rates as they weave through traffic. Other vehicle types are more 
constrained by the vehicles surrounding them because of size and 
less maneuvering ability.

Lateral Movement

An important characteristic of mixed traffic is the existence of sub-
stantial lateral movement and lack of lane discipline. Table 2 pre
sents summary statistics of lateral movements in the collected data. 
Speeds as well as accelerations and decelerations in this direction 
are much lower compared with the longitudinal direction. However, 
the differences among vehicle types remain similar.

Motorcycles and cars have higher average lateral speeds (0.116 m/s 
and 0.095 m/s, respectively) compared with autorickshaws and heavy 
vehicles (0.082 m/s and 0.088 m/s, respectively). ANOVA results 
show that these differences are statistically significant [F(3, 3001) = 
109.27, p-value < .001], both overall and in a comparison of pairs of 
vehicle types (p-value < .001 in all cases). This result may be related 
to swerving or weaving in traffic by motorcycles as allowed by their 
size and higher maneuverability compared with those of other vehicle 
types. Motorcycles also have higher values of mean lateral deceleration  
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and acceleration (−0.091 m/s2 and 0.090 m/s2, respectively).  
Autorickshaws have the lowest mean values (−0.077 m/s2 and  
0.077 m/s2, respectively). The inequality of mean lateral deceleration  
and acceleration values among the vehicle classes is statistically  
significant [F(3, 3,001) = 90.33, p-value < .001, and F(3, 3,001) = 
65.73, p-value < .001, respectively]. The post hoc test shows that lateral  
decelerations and accelerations of motorcycles are different from  
those of all other vehicle types (p-value < .001 in all cases). The  
values of cars and autorickshaws are also statistically significant in 
both decelerations and accelerations (p-value = .006 and p-value  
< .001, respectively).

Lateral Position

The lack of lane discipline affects driver choice related to the 
lateral positions of their vehicles. Figure 3 shows the distribu
tion of lateral positions by vehicle type. Driving in India is on the 
left-hand side. The lateral position 0.0 is on the leftmost (near) 
side of the roadway and is 11.2 on the rightmost (far) side. The 
mean lateral positions of motorcycles (4.39 m) and autorickshaws 
(4.51 m) are to the left of those of heavy vehicles (5.85 m) and 
cars (7.16 m). The lateral position distributions of motorcycles  

TABLE 2    Lateral Traffic Flow Characteristics

Vehicle Type Mean SD Median Minimum Maximum

Speed (m/s)

Motorcycle 0.116 0.107 0.087 0 1.458

Car 0.095 0.089 0.071 0 1.209

Autorickshaw 0.082 0.075 0.062 0 1.215

Heavy vehicles 0.088 0.079 0.067 0 0.798
All types 0.104 0.098 0.078 0 1.458

Acceleration (m/s2)

Motorcycle 0.090 0.075 0.072 0 0.648

Car 0.083 0.069 0.066 0 0.606

Autorickshaw 0.077 0.065 0.061 0 0.639

Heavy vehicles 0.084 0.069 0.067 0 0.548
All types 0.086 0.072 0.068 0 0.648

Deceleration (m/s2)

Motorcycle −0.091 0.078 −0.070 −0.639 0

Car −0.082 0.072 −0.064 −0.592 0

Autorickshaw −0.077 0.069 −0.059 −0.652 0

Heavy vehicles −0.080 0.070 −0.062 −0.561 0
All types −0.086 0.075 −0.066 −0.652 0

TABLE 1    Longitudinal Traffic Flow Characteristics

Vehicle Type Mean SD Median Minimum Maximum

Flow (vph)

Motorcycle 3,390 643.5 3,300 2,040 4,920

Car 1,600 454.3 1,500 960 2,880

Autorickshaw 732 220.3 720 240 1,080

Heavy vehicles 288 124.5 270 60 540
All types 6,010 1,004.5 5,940 3,960 7,860

Density (vpkpl)

Motorcycle 67.1 13.2 64.1 40.8 91.9

Car 31.9 11.1 31.4 12.2 59.5

Autorickshaw 18.0 5.2 18.5 4.2 26.5

Heavy vehicles 6.5 2.7 6.8 0.7 11.2
All types 123.5 24.0 120.4 77.7 186.9

Speed (m/s)

Motorcycle 6.01 1.44 5.94 0.02 15.22

Car 6.13 1.29 6.06 0.37 13.96

Autorickshaw 5.06 1.19 5.03 0 11.51

Heavy vehicles 5.64 1.13 5.67 0 10.40
All types 5.88 1.40 5.82 0 15.22

Acceleration (m/s2)

Motorcycle 0.761 0.748 0.519 0 4.734

Car 0.646 0.653 0.431 0 4.436

Autorickshaw 0.692 0.712 0.459 0 4.501

Heavy vehicles 0.672 0.652 0.465 0 3.981
All types 0.717 0.717 0.484 0 4.734

Deceleration (m/s2)

Motorcycle −0.731 0.714 −0.503 −4.659 0

Car −0.605 0.608 −0.407 −4.371 0

Autorickshaw −0.654 0.668 −0.426 −4.340 0

Heavy vehicles −0.630 0.623 −0.420 −4.208 0
All types −0.681 0.679 −0.460 −4.659 0

Note: SD = standard deviation; vpkpl = vehicles per kilometer per hour.
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and autorickshaws are skewed to the near side. Nearly 74% of the 
motorcycles and 62% of the autorickshaws are observed on the near 
third of the roadway (0.0 to 3.73 m), and only 18.82% and 19.32% 
of motorcycles and autorickshaws, respectively, are observed on 
the far third (7.47 to 11.20 m, respectively). In contrast, the lateral 
position distribution of cars is skewed to the far side of the road-
way. Fifty-six percent of the cars are observed in the far third, and 
only 6% are observed in the near third. Heavy vehicles tend to be in 
the middle third of the roadway (3.74 to 7.46 m); 55% of cars are 
in this part and about 16% and 29% are on the near and far sides, 
respectively. ANOVA tests on the positions of the various types 
of vehicles show that they are significantly different [F(3, 3,001)  
= 241.33, p-value < .001]. All pairwise comparisons are statisti-
cally significant (p-value < .001 in all cases) except those of motor-
cycles and autorickshaws. A possible explanation is that drivers of 
cars tend to prefer the higher speeds and lower friction with other 
vehicle types and obstructions (e.g., parked vehicles, bicycles, 
pedestrians) offered by the far side of the roadway. The maneuver-
ability of motorcycles enables them to obtain higher speeds even on 
the near side. Therefore, motorcycle drivers may prefer to avoid 
interacting with larger cars and heavy vehicles and so keep to the 
near side. Autorickshaws stop for passengers on the near side, which 
may further affect their tendency to stay on this side of the roadway. 
Most of the heavy vehicles in the section are buses. Bus drivers need 
to make stops on the near side but also may prefer to avoid inter
acting with the smaller vehicle types and other obstructions that are 
more present on the near side.

Lateral Movement Variation

For evaluating the extent of lateral movement that vehicles under-
take within the section, the standard deviation of the lateral positions 
within the section was calculated. Figure 4 presents the distributions 
of these standard deviations. Overall, autorickshaws make the fewest 
lateral movements (0.43 m), followed by heavy vehicles (0.49 m) 
and cars (0.51 m). Motorcycles have a higher value (0.62 m). The 
differences in these values are statistically significant [F(3, 3,001) =  
34.01, p-value < .001]. Again, it is plausible that the smaller size and 
higher maneuverability of motorcycles allow easier lateral move-
ment compared with the other vehicles. This supposition is supported 
by less lateral movement by heavy vehicles and autorickshaws, 
which are characterized by large size (heavy vehicles) and poor 
maneuverability.

Longitudinal Spacing

Longitudinal spacing is an important explanatory variable in car 
following models that captures the relationships between vehicles 
in the stream. In non-lane-based traffic, the definitions of leader 
and follower are not trivial. For this purpose a leader is the nearest 
vehicle in front of the subject that laterally overlaps it, and the 
spacing between the two vehicles is less than 30 m (roughly 2 s). 
Figures 5 and 6 present the distributions of longitudinal spacing 
by vehicle type of the leader and the follower, respectively. For 
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FIGURE 3    Distributions of lateral positions of (a) motorcycle, (b) car, (c) autorickshaw, and (d) heavy vehicle.
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FIGURE 4    Distributions of standard deviations of lateral positions of (a) motorcycle, (b) car, (c) autorickshaw,  
and (d) heavy vehicle.

leader type, vehicles maintain larger spacing with heavy vehicles 
(16.19 m), followed by autorickshaws (15.12 m), and maintain 
lower spacing with motorcycles (14.77 m) and cars (14.52 m). 
ANOVA analysis shows that the effect of the leader type is statisti-
cally significant [F(3, 1,503) = 3.77, p-value = .010]. However, in 
pairwise comparisons, only the differences between heavy vehicles 

and motorcycles (p-value = .046) and cars (p-value = .017) are 
significant. A similar trend is observed for follower type. Heavy 
vehicles (15.83 m) and autorickshaws (15.64 m) maintain larger 
spacing compared with motorcycles (14.40 m) and cars (14.63 m). 
These differences are statistically significant [F(3, 1,504) = 6.43, 
p-value < .001].

FIGURE 5    Distributions of longitudinal spacing based on leader type: (a) motorcycle and (b) car.
(continued)
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FIGURE 6    Distributions of longitudinal spacing based on follower type: (a) motorcycle, (b) car, (c) autorickshaw,  
and (d) heavy vehicle.

Lateral Overlap

In homogeneous traffic, vehicles are predominantly cars that adhere 
to lane discipline. Most of the time, therefore, a vehicle strictly fol-
lows the leader in the same lane. In mixed traffic, the lack of lane 
discipline and the mix of vehicles of different widths cause differ-

ent types of relations between vehicles in the stream. For the car 
following scenario, the extent of lateral overlap between a leader 
and a follower is the percentage of the follower width that later-
ally overlaps the leader. The widths of the leader and follower 
may differ substantially. Therefore, the overlap is defined by the 
smaller distance between opposite edges of the two vehicles, as 

FIGURE 5 (continued)    Distributions of longitudinal spacing based on leader type: (c) autorickshaw  
and (d) heavy vehicle.

P
er

ce
n

ta
g

e

Longitudinal Spacing (m)

P
er

ce
n

ta
g

e

Longitudinal Spacing (m)

(c) (d)



8� Transportation Research Record 2491

shown in Figure 7. With this definition, the lateral overlap may 
exceed 100% if the follower is narrower and entirely overlaps the 
leader.

The distributions of lateral overlap are shown in Figure 8. The 
mean value for lateral overlap is higher for motorcycles (61%), 
followed by cars (51%). Autorickshaws (45%) and heavy vehicles 

(40%) have lower overlap values. These differences among the 
vehicle types are statistically significant [F(3, 1,503) = 38.78, 
p-value < .001]. All pairwise comparisons, except that of heavy 
vehicles and autorickshaws (p-value = .804), are statistically sig-
nificant. Overall, the figure shows a wide range of overlap values.  
In 45% of the observations the overlap between the leader and the 

FIGURE 7    Definition of lateral overlap (LO) (W 5 width).

F
re

q
u

en
cy

 (
%

)

Lateral Overlap (%)

F
re

q
u

en
cy

 (
%

)

Lateral Overlap (%)

F
re

q
u

en
cy

 (
%

)

Lateral Overlap (%)

F
re

q
u

en
cy

 (
%

)

Lateral Overlap (%)

(a) (b)

(c) (d)

FIGURE 8    Distributions of lateral overlap of (a) motorcycle, (b) car, (c) autorickshaw, and (d) heavy vehicle.
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(a) (b)

(c) (d)

FIGURE 9    Following behaviors in mixed traffic: (a) car following, (b) staggered following, (c) following between two vehicles, and (d) passing.

follower is less than half the follower width. Thus, it is not evident that 
car following behavior is applicable to these situations, and there is 
a need to study other types of following behavior (e.g., staggered 
following) in mixed traffic streams.

Implications for Modeling

The presented results suggest several directions and aspects that 
need to be taken into account in microscopic modeling of mixed 
traffic streams. First, the results clearly demonstrate the variability 
in behavior among various types of vehicles. Most analyzed traf-
fic characteristics differ significantly by vehicle type. These dif-
ferences are most pronounced in the selection of lateral positions. 
However, significant differences also exist in all speed and accelera-
tion distributions, in both the longitudinal and lateral dimensions 
and distance keeping. Among the four vehicle types represented in 
the data, motorcycles stand out as having distinctive behavior. They 

tend to travel faster and to be more proactive in changing speeds 
and moving laterally. In contrast, trucks and autorickshaws tend to 
be slower and to maneuver less. These differences likely stem from 
the differences in physical dimensions and dynamic capabilities and 
maneuverability of the vehicles. In modeling, these differences may 
be captured by vehicle-type-specific sets of parameters. However, 
this approach may result in many model parameters that have to be 
estimated. Therefore, in model development, behaviors and param-
eters should be selected that will be modeled as type specific and 
others should be selected that will be modeled generically.

Second, results indicate that in a large fraction of the observations, 
vehicles are not strictly aligned laterally with the vehicle in front. 
This effect may be caused by the different dimensions (especially 
width) of vehicles, maneuverability, and lack of lane discipline, and 
it affects following behavior. Different following behaviors may be 
modeled in different situations, as illustrated in Figure 9. Recent 
research in this direction, focusing on staggered following, assumed 
that drivers have an incentive to increase their line of sight and thus 
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to increase their options to overtake their leader within the stream 
(9, 13, 14).

Finally, the lack of lane discipline and strict following behavior 
suggests that adjacent vehicles that are not laterally overlapping the 
subject vehicle may also affect its behavior. Their effects are not 
captured in current models. The need to account for their effects is 
underscored by the substantial lateral movement that vehicles—in 
particular, motorcycles—undertake in the mixed stream.

Summary

This paper focused on the study of the traffic characteristics of mixed 
traffic. A detailed set of vehicle trajectory data was collected in an 
urban midblock road section in Chennai. These data were processed 
and smoothed to reduce the effects of measurement errors and to 
estimate instantaneous position, speed, and acceleration values. The 
data are freely available.

The resulting data were studied for aggregate traffic flow charac-
teristics and variables related to the longitudinal and lateral move-
ment of the vehicles. Several insights have been gained from this 
analysis:

1.	 A main characteristic of mixed traffic is the presence of sig-
nificant amounts of vehicles of various types in the stream. There 
are substantial differences in the flow characteristics between these 
vehicle types. The results show differences in travel speeds, accel-
erations, choice of lateral position on the roadway, and almost all 
other measures that were studied.

2.	 Car following is a critical component of driving behavior. 
Analysis of the relationships between leaders and followers showed 
differences in distance keeping between the various types of vehi-
cles. Furthermore, in almost half the observations, strict following 
(in which a vehicle follows almost exactly behind another one) was 
not present.

3.	 Another characteristic of mixed traffic is weak lane discipline. 
The study showed that vehicles in the mixed stream—in particular, 
motorcycles—move substantially in the lateral direction.

Driving behavior models for mixed traffic streams should account 
for these characteristics. Models must account for the different capa-
bilities and preferences of various vehicle types, for longitudinal 
movements that are not based on strict car following, and for the 
effects of vehicles around the subject that do not have a leader–
follower relationship with it. The trajectory data collected in this 
study may be useful for such studies.

Acknowledgment

Venkatesan Kanagaraj was partly supported by a fellowship from 
the Israel Council for Higher Education at Technion–Israel Institute 
of Technology.

References

  1.	 Brackstone, M., and M. McDonald. Car-Following: A Historical Review. 
Transportation Research Part F, Vol. 2, No. 4, 1999, pp. 181–196.

  2.	 Toledo, T. Driving Behaviour: Models and Challenges. Transport 
Reviews, Vol. 27, No. 1, 2007, pp. 65–84.

  3.	 NGSIM—Next Generation SIMulation. FHWA, U.S. Department of 
Transportation. http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. 
Accessed Feb. 26, 2015.

  4.	 Kesting, A., and M. Treiber. Calibrating Car-Following Models by Using 
Trajectory Data: Methodological Study. In Transportation Research 
Record: Journal of the Transportation Research Board, No. 2088, Trans-
portation Research Board of the National Academies, Washington, D.C., 
2008, pp. 148–156.

  5.	 Toledo, T., H. N. Koutsopoulos, and M. Ben-Akiva. Estimation of an 
Integrated Driving Behavior Model. Transportation Research Part C, 
Vol. 17, No. 4, 2009, pp. 365–380.

  6.	 Moridpour, S., M. Sarvi, G. Rose, and E. Mazloumi. Lane-Changing 
Decision Model for Heavy Vehicle Drivers. Journal of Intelligent Trans-
portation Systems: Technology, Planning, and Operations, Vol. 16, No. 1, 
2012, pp. 24–35.

  7.	 Wan, X., P. J. Jin, F. Yang, J. Zhang, and B. Ran. Modeling Vehicle 
Interactions During Merge in Congested Weaving Section of Freeway 
Ramp. In Transportation Research Record: Journal of the Transporta-
tion Research Board, No. 2421, Transportation Research Board of the 
National Academies, Washington, D.C., 2014, pp. 82–92.

  8.	 Marczak, F., W. Daamen, and C. Buisson. Merging Behaviour: Empiri-
cal Comparison Between Two Sites and New Theory Development. 
Transportation Research Part C, Vol. 36, 2013, pp. 530–546.

  9.	 Cho, H. J., and Y. T. Wu. Modeling and Simulation of Motorcycle Traf-
fic Flow. Proc., IEEE International Conference on Systems, Man and 
Cybernetics, Vol. 7, 2004, pp. 6262–6267.

10.	 Lan, L. W., and C. W. Chang. Motorcycle-Following Models of General 
Motors (GM) and Adaptive Neuro-Fuzzy Inference System. Transpor-
tation Planning Journal, Vol. 33, No. 3, 2004, pp. 511–536 (in Chinese).

11.	 Gunay, B. Car Following Theory with Lateral Discomfort. Transportation 
Research Part B, Vol. 41, 2007, pp. 722–735.

12.	 Budhkar, A. K., and A. K. Maurya. Modeling of Bidirectional Mixed 
Traffic Stream with Weak Lane Discipline. Presented at 93rd Annual 
Meeting of the Transportation Research Board, Washington, D.C., 2014.

13.	 Jin, S., D. Wang, C. Xu, and Z. Huang. Staggered Car-Following Induced 
by Lateral Separation Effects in Traffic Flow. Physics Letters A, Vol. 376, 
2012, pp. 153–157.

14.	 Lee, T.-C., J. W. Polak, and M. G. H. Bell. New Approach to Modeling 
Mixed Traffic Containing Motorcycles in Urban Area. In Transporta-
tion Research Record: Journal of the Transportation Research Board, 
No. 2140, Transportation Research Board of the National Academies, 
Washington, D.C., 2009, pp. 195–205.

15.	 Munigety, C. R., S. Mantri, T. V. Mathew, and K. V. Krishna Rao. Analy-
sis and Modelling of Tactical Decisions of Vehicular Lateral Movement 
in Mixed Traffic Environment. Presented at 93rd Annual Meeting of the 
Transportation Research Board, Washington, D.C., 2014.

16.	 Asaithambi, G., V. Kanagaraj, K. K. Srinivasan, and R. Sivanandan. 
Characteristics of Mixed Traffic on Urban Arterials with Significant 
Volumes of Motorized Two-Wheelers: Role of Composition, Intraclass 
Variability, and Lack of Lane Discipline. In Transportation Research 
Record: Journal of the Transportation Research Board, No. 2317, Trans-
portation Research Board of the National Academies, Washington, D.C., 
2012, pp. 51–59.

17.	 Mathew, T. V., and P. Radhakrishnan. Calibration of Microsimulation 
Models for Non-lane-Based Heterogeneous Traffic at Signalized Inter-
sections. Journal of Urban Planning and Development, Vol. 136, No. 1, 
2010, pp. 59–66.

18.	 Kanagaraj, V., K. K. Srinivasan, and R. Sivanandan. Modeling Vehicular 
Merging Behavior Under Heterogeneous Traffic Conditions. In Transpor-
tation Research Record: Journal of the Transportation Research Board, 
No. 2188, Transportation Research Board of the National Academies, 
Washington, D.C., 2010, pp. 140–147.

19.	 Sangole, J. P., and G. R. Patil. Modeling Vehicle Group Gap Acceptance at 
Uncontrolled T-Intersections in Indian Traffic. Presented at 93rd Annual 
Meeting of the Transportation Research Board, Washington, D.C., 2014.

20.	 Munigety, C. R., V. Vivek, and T. V. Mathew. Semi-automated Tool for 
Extraction of Microlevel Traffic Data from Videographic Survey. In 
Transportation Research Record: Journal of the Transportation Research 
Board, No. 2443, Transportation Research Board of the National Acad-
emies, Washington, D.C., 2014, pp. 88–95.

21.	 Lee, T.-C., J. W. Polak, and M. G. H. Bell. Trajectory Extractor User 
Manual Version 1.0. Centre for Transport Studies, Imperial College 
London, 2008. http://myweb.ncku.edu.tw/∼jtclee/bike/iccts01155.pdf.

22.	 Cleveland, W. S., and S. J. Devlin. Locally Weighted Regression: An 
Approach to Regression Analysis by Local Fitting. Journal of the 
American Statistical Association, Vol. 83, 1988, pp. 596–610.

23.	 Toledo, T., H. N. Koutsopoulos, and K. I. Ahmed. Estimation of Vehi-
cle Trajectories with Locally Weighted Regression. In Transporta-



Kanagaraj, Asaithambi, Toledo, and Lee� 11

tion Research Record: Journal of the Transportation Research Board, 
No. 1999, Transportation Research Board of the National Academies, 
Washington, D.C., 2007, pp. 161–169.

24.	 Wei, H., C. Feng, E. Meyer, and J. Lee. Video-Capture-Based Approach to 
Extract Multiple Vehicular Trajectory Data for Traffic Modeling. Journal 
of Transportation Engineering, Vol. 131, No. 7, 2005, pp. 496–505.

25.	 Kovvali, V. G., V. Alexiadis, and L. Zhang. Video-Based Vehicle Trajec-
tory Data Collection. Presented at 86th Annual Meeting of the Transpor-
tation Research Board, Washington, D.C., 2007.

26.	 Mallikarjuna, C., A. Phanindra, and K. Ramachandra Rao. Traffic 
Data Collection under Mixed Traffic Conditions using Video Image 
Processing. Journal of Transportation Engineering, Vol. 135, No. 4, 
2009, pp. 174–182.

27.	 Ossen, S., and S. P. Hoogendoorn. Validity of Trajectory-Based Calibra-
tion Approach of Car-Following Models in Presence of Measurement 
Errors. In Transportation Research Record: Journal of the Transporta-
tion Research Board, No. 2088, Transportation Research Board of the 
National Academies, Washington, D.C., 2008, pp. 117–125.

28.	 Thiemann, C., M. Treiber, and A. Kesting. Estimating Acceleration and 
Lane-Changing Dynamics from Next Generation Simulation Trajectory 
Data. In Transportation Research Record: Journal of the Transportation 
Research Board, No. 2088, Transportation Research Board of the National 
Academies, Washington, D.C., 2008, pp. 90–101.

29.	 Punzo, V., M. T. Borzacchiello, and B. Ciuffo. On the Assessment of 
Vehicle Trajectory Data Accuracy and Application to the Next Generation 

SIMulation (NGSIM) Program Data. Transportation Research Part C, 
Vol. 19, 2011, pp. 1243–1262.

30.	 Punzo, V., D. J. Formisano, and V. Torrieri. Nonstationary Kalman 
Filter for Estimation of Accurate and Consistent Car Following Data. 
In Transportation Research Record: Journal of the Transportation 
Research Board, No. 1934, Transportation Research Board of the 
National Academies, Washington, D.C., 2005, pp. 3–12.

31.	 Montanino, M., and V. Punzo. Making NGSIM Data Usable for Stud-
ies on Traffic Flow Theory: Multistep Method for Vehicle Trajectory 
Reconstruction. In Transportation Research Record: Journal of the Trans-
portation Research Board, No. 2390, Transportation Research Board of 
the National Academies, Washington, D.C., 2013, pp. 99–111.

32.	 Marczak, F., and C. Buisson. New Filtering Method for Trajectory Mea-
surement Errors and Its Comparison with Existing Methods. In Transpor-
tation Research Record: Journal of the Transportation Research Board, 
No. 2315, Transportation Research Board of the National Academies, 
Washington, D.C., 2012, pp. 35–46.

33.	 Hamdar, S. H., and H. S. Mahmassani. From Existing Accident-Free 
Car-Following Models to Colliding Vehicles: Exploration and Assess-
ment. In Transportation Research Record: Journal of the Transporta-
tion Research Board, No. 2088, Transportation Research Board of the 
National Academies, Washington, D.C., 2008, pp. 45–56.

The Standing Committee on Traffic Flow Theory and Characteristics peer-reviewed 
this paper.


