Goulven Gildas Laruelle

Goulven Gildas Laruelle
Université Libre de Bruxelles | ULB · Dept. - Geoscience, Environment & Society (DGES)

Dr

About

92
Publications
35,025
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,727
Citations
Introduction
Biogeochemist and research associate of the F.R.S-FNRS at the Université Libre de Bruxelles. Specialized in the quantification at the global scale of carbon and nutrient fluxes in coastal systems.
Additional affiliations
October 2019 - present
Université Libre de Bruxelles
Position
  • Research Associate
January 2019 - September 2019
Université Libre de Bruxelles
Position
  • Post doc
October 2017 - December 2018
Sorbonne Université
Position
  • PostDoc Position
Education
March 2005 - September 2009
Utrecht University
Field of study

Publications

Publications (92)
Article
Over the past decade, estimates of the atmospheric CO2 uptake by continental shelf seas were constrained within the 0.18-0.45 Pg C yr−1 range. However, most of those estimates are based on extrapolations from limited datasets of local flux measurements (n < 100). Here, we propose to derive the CO2 air-sea exchange of the shelf seas by extracting 3...
Article
Full-text available
In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2), the air–sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled in both time and space and of surface pCO2 exhibiting much higher te...
Article
Full-text available
It has been speculated that the partial pressure of carbon dioxide (pCO2) in shelf waters may lag the rise in atmospheric CO2. Here, we show that this is the case across many shelf regions, implying a tendency for enhanced shelf uptake of atmospheric CO2. This result is based on analysis of long-term trends in the air–sea pCO2 gradient (ΔpCO2) usin...
Article
Full-text available
Antarctic ice cores have revealed the interplay between dust and climate in the Southern Hemisphere. Yet, so far, no continuous record of dust provenance has been established through the last deglaciation. Here, using a new database of 207 Rare Earth Element (REE) patterns measured in dust and sediments/soils from well-known potential source areas...
Article
Full-text available
Coastal ecosystems release or absorb carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), but the net effects of these ecosystems on the radiative balance remain unknown. We compiled a dataset of observations from 738 sites from studies published between 1975 and 2020 to quantify CO2, CH4 and N2O fluxes in estuaries and coastal vegetation i...
Poster
Full-text available
Most downstream compartments of the continental hydrological network, estuaries are the last biogeochemical filter of the Land-Ocean Aquatic Continuum before the oceanic realm. As such, they receive substantial amounts of carbon and nutrients from rivers and their intense biogeochemical processing allows the removal of part of those inputs, hence p...
Article
Full-text available
Plain Language Summary Large progress has been made to further our understanding of the exchange of CO2 between the atmosphere and the global coastal ocean. The complex interplay of physical and biogeochemical processes controlling these CO2 fluxes as well as their variations in time and space are still, however, poorly quantified. This knowledge g...
Conference Paper
Full-text available
Epica Dome C (EDC) ice core is invaluable and highly-resolved record of Earth's climate. Within the portfolio of climate proxies in deep ice core, quantifying the contribution of the various sources of dust has been very challenging and, so far, no continuous record of dust provenance has been established. Here, we developed an algorithm that combi...
Article
Full-text available
The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap...
Article
Full-text available
In recent years, advancements in machine learning based interpolation methods have enabled the production of high-resolution maps of sea surface partial pressure of CO2 (pCO2) derived from observations extracted from databases such as the Surface Ocean CO2 Atlas (SOCAT). These pCO2-products now allow quantifying the oceanic air–sea CO2 exchange bas...
Preprint
Full-text available
In recent years, advancements in machine learning based interpolation methods have enabled the production of high-resolution maps of sea surface partial pressure of CO2 (pCO2) derived from observations extracted from databases such as the Surface Ocean CO2 Atlas (SOCAT). These pCO2-products now allow quantifying the oceanic air-sea CO2 exchange bas...
Preprint
The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). Major advances have improved our understanding of the coastal air-sea exchanges of these three gasses since the first phase of the Regional Carbon Cycle Assessment and Processes...
Preprint
At the interface between the continental and oceanic domains, estuaries are essential components of the land-ocean aquatic continuum that play a significant role in biogeochemical cycles, as they transform and export large amounts of carbon and nutrients from rivers to coastal waters. Because of this intense biogeochemical processing, they are sign...
Chapter
Full-text available
The Earth’s climate is strongly affected by the partitioning of carbon between its mobile reservoirs, primarily between the atmosphere and the ocean. The distribution between the reservoirs is being massively perturbed by human activities, primarily due to fossil fuel emissions, with a range of consequences, including ocean warming and acidificatio...
Poster
Full-text available
The Marine Strategy Framework Directive determines the conditions for good status of marine environments and explicitly asks river-basin managers to improve the consideration of marine environmental objectives when elaborating action plans for regulating the imbalanced river nutrients fluxes that enrich and support harmful algal blooms in coastal a...
Article
Full-text available
This review examines the current understanding of the global coastal ocean carbon cycle and provides a new quantitative synthesis of air-sea CO2 exchange. This reanalysis yields an estimate for the globally integrated coastal ocean CO2 flux of −0.25 ± 0.05 Pg C year−1, with polar and subpolar regions accounting for most of the CO2 removal (>90%). A...
Article
Full-text available
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum, with significant ecological and economic value. However, they have been facing strong morphological management changes and increased nutrient and contaminant inputs, possibly leading to ecological problems such as coastal eutrophication. Therefore, it is necessary to quan...
Article
Full-text available
The temporal variability of the sea surface partial pressure of CO2 (pCO2) and the underlying processes driving this variability are poorly understood in the coastal ocean. In this study, we tailor an existing method that quantifies the effects of thermal changes, biological activity, ocean circulation and freshwater fluxes to examine seasonal pCO2...
Article
Full-text available
Air–sea flux of carbon dioxide (CO2) is a critical component of the global carbon cycle and the climate system with the ocean removing about a quarter of the CO2 emitted into the atmosphere by human activities over the last decade. A common approach to estimate this net flux of CO2 across the air–sea interface is the use of surface ocean CO2 observ...
Preprint
Full-text available
The temporal variability of the sea surface partial pressure of CO2 (pCO2) and the underlying processes driving this variability are poorly understood in the coastal ocean. In this study, we tailor an existing method that quantifies the effects of thermal changes, biological activity, ocean circulation and fresh water fluxes to examine seasonal pCO...
Article
Full-text available
The implications of climate change and other human perturbations on the oceanic carbon cycle are still associated with large uncertainties. Global-scale modelling studies are essential to investigate anthropogenic perturbations of oceanic carbon fluxes but, until now, they have not considered the impacts of temporal changes in riverine and atmosphe...
Article
Estuaries are amongst the most productive ecosystems of the land ocean continuum, but they are also under high anthropic pressures due to coastal urbanization. Too sparse observations have hindered the understanding of complex interactions between water quality and estuarine hydrodynamics and biogeochemical transformations. Until now, estuarine mod...
Preprint
Full-text available
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum, with significant ecological and economic value. However, they have been facing strong morphological management changes as well as increased nutrient and contaminant inputs, possibly leading to ecological problems such as coastal eutrophication. Therefore, it is necessary...
Preprint
Full-text available
Air-sea flux of carbon dioxide (CO2) is a critical component of the global carbon cycle and the climate system with the ocean removing about a quarter of the CO2 emitted into the atmosphere by human activities over the last decade. A common approach to estimate this net flux of CO2 across the air-sea interface is the use of surface ocean CO2 observ...
Article
Full-text available
The contribution of continental shelves to the marine carbon cycle is still poorly understood. Their preindustrial state is, for one, essentially unknown, which strongly limits the quantitative assessment of their anthropogenic perturbation. To date, approaches developed to investigate and quantify carbon fluxes on continental shelves have strongly...
Article
Full-text available
In this study, we present the first combined open- and coastal-ocean pCO2 mapped monthly climatology (, 10.25921/qb25-f418, https://www.nodc.noaa.gov/ocads/oceans/MPI-ULB-SOM_FFN_clim.html, last access: 8 April 2020) constructed from observations collected between 1998 and 2015 extracted from the Surface Ocean CO2 Atlas (SOCAT) database. We combine...
Article
Full-text available
Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion¹ and climate change², with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do...
Article
Full-text available
The Paris Climate Agreements and Sustainable Development Goals, signed by 197 countries, present agendas and address key issues for implementing multi-scale responses for sustainable development under climate change—an effort that must involve local, regional, national, and supra-national stakeholders. In that regard, Continental Carbon Sequestrati...
Article
Full-text available
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative impor...
Article
Full-text available
Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by...
Preprint
Full-text available
Abstract. In this study, we present the first combined open and coastal ocean p CO<sub>2</sub> mapped monthly climatology (Landschützer et al. (2020), doi:10.25921/qb25-f418 , https://www.nodc.noaa.gov/ocads/oceans/MPI-ULB-SOM_FFN_clim.html ) constructed from observations collected between 1998 and 2015 extracted from the Surface Ocean CO<sub>2</su...
Article
Full-text available
In contrast to the open ocean, the sources and sinks for atmospheric carbon dioxide (CO2) in the coastal seas are poorly constrained and understood. Here we address this knowledge gap by analyzing the spatial and temporal variability of the coastal air‐sea flux of CO2 (FCO2) using a recent high‐resolution (0.25°) monthly climatology for coastal sea...
Article
Full-text available
The Seine river discharges over 700 Gg of carbon (C) every year into the sea mostly under the form of dissolved inorganic carbon (DIC) and emits 445 Gg under the form of carbon dioxide (CO2) to the atmosphere over its entire river network. The watershed, which drains 76,000 km², is heavily populated with 18 10⁶ inhabitants and is thus submitted to...
Article
Full-text available
Nitrous oxide (N2O) emissions from inland waters remain a major source of uncertainty in global greenhouse gas budgets. N2O emissions are typically estimated using emission factors (EFs), defined as the proportion of the terrestrial nitrogen (N) load to a water body that is emitted as N2O to the atmosphere. The Intergovernmental Panel on Climate Ch...
Chapter
Globally, nutrient loading to surface waters is large and increasing, with sources from land-based pollution to aquaculture and atmospheric deposition. Spatial differences in amounts and forms of nutrients released to receiving waters are large, with Asia, Western Europe, and North America exporting the highest loads of nutrients, especially of ino...
Article
Full-text available
The calculation of the air–water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air–water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced...
Article
Full-text available
The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced...
Article
Full-text available
Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverag...
Article
Full-text available
This study presents the first regional-scale assessment of estuarine CO2 evasion along the US East Coast (25–45∘ N). The focus is on 42 tidal estuaries, which together drain a catchment of 697 000 km2 or 76 % of the total area within this latitudinal band. The approach is based on the Carbon–Generic Estuary Model (C-GEM) that allows the simulation...
Article
Full-text available
This study presents the first regional-scale assessment of estuarine CO2 evasion along the US East Coast (25–45° N). The focus is on 42 tidal estuaries, which together drain a catchment of 697 000 km² or 76 % of the total area within this latitudinal band. The approach is based on the Carbon–Generic Estuary Model (C-GEM) that allows the simulation...
Poster
Full-text available
Uncertainty of the global oceanic CO2 uptake induced by the choice of the gas exchange velocity formulation and the wind product: quantification and spatial analysis
Article
Full-text available
In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2), the air-sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled both in time and space, and of surface pCO2 exhibiting much higher t...
Article
Full-text available
Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverag...
Article
Full-text available
This study presents the first regional-sca–45° N). The focus is on 43 tidal estuaries, which together drain a catchment of 697 103 km2 or 76 % of the total area within this latitudinal band. The approach is based on the Carbon – Generic Estuarine Model (C-GEM) that allows simulating hydrodynamics, transport and biogeochemistry for a wide range of e...
Article
This study presents the first regional application of the generic estuarine reactive-transport model C-GEM (Carbon-Generic Estuary Model) that is here combined with high-resolution databases to produce a carbon and CO2 budget for all tidal estuaries discharging into the North Sea. Steady-state simulations are performed for yearly-averaged condition...
Article
Full-text available
This study applies the Carbon-Generic Estuary Model (C-GEM) modeling platform to simulate the estuarine biogeochemical dynamics - in particular the air-water CO2 exchange - in three idealized tidal estuaries characterized by increasing riverine influence, from a so-called "marine estuary" to a "riverine estuary". An intermediate case called "mixed...
Article
Full-text available
This study applies the Carbon-Generic Estuary Model (C-GEM) modeling platform to simulate the estuarine biogeochemical dynamics – in particular the air-water CO2 exchange – in three idealized end-member systems covering the main features of tidal alluvial estuaries. C-GEM uses a generic biogeochemical reaction network and a unique set of model para...
Article
CO2 evasion from rivers (FCO2) is an important component of the global carbon budget. Here, we present the first global maps of CO2 partial pressures (pCO2) in rivers of stream order 3 and higher and the resulting FCO2 at 0.5° resolution constructed with a statistical model. Our statistical model based upon a GIS based approach is used to derive a...
Article
Full-text available
This regional study quantifies the CO2 exchange at the air–water interface along the land–ocean aquatic continuum (LOAC) of the northeast North American coast, from streams to the shelf break. Our analysis explicitly accounts for spatial and seasonal variability in the CO2 fluxes. The yearly integrated budget reveals the gradual change in the inten...
Article
Full-text available
Diatom aggregates contribute significantly to the vertical sinking flux of particulate matter in the ocean. These fragile structures form a specific microhabitat for the aggregated cells, but their internal chemical and physical characteristics remain largely unknown. Studies on the impact of aggregation on the Si cycle led to apparent inconsistenc...
Data
The coastal typology contained in theses files is decribed in details in Dürr et al. (2011) and attributes geomorphological estuarine types to the entire global coastline. It consists of a ribbon of grid cells at half-degree resolution, located along the entire global coastline at the exit (mouth) points of the global rivers. The typology was...
Article
Full-text available
This regional study quantifies the CO2 exchange at the air-water interface along the land-ocean aquatic continuum (LOAC) of the North East American coast, from streams to the shelf break. Our analysis explicitly accounts for spatial and seasonal variability in the CO2 fluxes. The yearly integrated budget reveals the gradual change in the intensity...
Article
Full-text available
Reactive transport models (RTMs) are powerful tools for disentangling the complex process interplay that drives estuarine biogeochemical dynamics, for assessing the quantitative role of estuaries in global biogeochemical cycles and for predicting their response to anthropogenic disturbances (land-use change, climate change and water management). Ne...