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Abstract Magnetic flux synoptic charts are critical for reliable modeling of the
corona and heliosphere. Until now, however, these charts were provided without
any estimate of uncertainties. The uncertainties are due to instrumental noise in
the measurements and to the spatial variance of the magnetic flux distribution
that contributes to each bin in the synoptic chart. We describe here a simple
method to compute synoptic magnetic flux maps and their corresponding mag-
netic flux spatial variance charts that can be used to estimate the uncertainty
in the results of coronal models. We have tested this approach by computing a
potential-field-source-surface model of the coronal field for a Monte Carlo sim-
ulation of Carrington synoptic magnetic flux maps generated from the variance
map. We show that these uncertainties affect both the locations of source-surface
neutral lines and the distributions of coronal holes in the models.

Keywords: Solar Activity, Observations, Data Analysis;

1. Introduction

Synoptic charts are routinely used to display the distribution of various physical
quantities over the entire solar surface. Such charts are indispensable in repre-
senting global/large scale properties of solar magnetic fields in the photosphere
and corona including location of active regions and complexes of activity (active
longitudes or activity nests), coronal holes, chromospheric filaments, and the
heliospheric neutral sheet. Synoptic charts of the photospheric magnetic field
are currently used as the input for all coronal and solar wind models. The charts
are created by merging together a series of full disk observations spanning at
least a full Carrington rotation. Traditional synoptic charts are created in several
major steps. First, the individual full disk images are remapped into heliographic
coordinates. In case of the photospheric line-of-sight magnetograms an additional
assumption is made that the magnetic field is radial. Second, it is assumed that
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the solar surface rotates as a solid body with the rotation rate of ∼27.27 days,
and the individual remapped charts belonging to the same Carrington rotation
are combined together to form a continuous synoptic chart. In the process, the
parts of remapped charts with overlapping heliographic coordinates are averaged.

Due to the nonrigid rotation, the evolution of solar features and their proper
motions, the averaging tends to smear the features in the synoptic chart as
additional remapped images are added. To minimize this spatial smearing and
emphasize the contribution of portion of the solar image closest to the solar
central meridian, NSO (National Solar Observatory) individual remapped images
are typically weighted by a cos4 λ prior to averaging, where λ is the central
meridian distance. In addition, to compensate for changes in statistics (number
of pixels contributing to each larger pixel on remapped image), an additional
weighting function cosλ sinφ (where φ is latitude) was applied in early synoptic
charts (Harvey et al., 1980). Later changes to classic synoptic maps included a
latitude dependent blending of observed pixels smoothed by a running Gaussian
function to achieve a constant signal-to-noise ratio throughout the chart, and
the creation of dynamic synoptic charts (e.g. Harvey and Worden, 1998). The
dynamic synoptic charts are updated by new observations and, thus, represent
the evolution of solar features unlike classical synoptic charts for which each
longitudinal strip corresponded to a fixed in time snap-shot of solar surface
(usually, when this range of longitudes was near to the solar central meridian).
To better represent the distribution of solar features in between the observational
updates, Worden and Harvey (2000) developed a concept of evolving synoptic
charts, which included the evolution of solar features due to an average dif-
ferential rotation profile, meridional flow, supergranular diffusion, and random
emergence of small scale (background) flux elements.

The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model
expands the Worden and Harvey (2000) approach. It includes the Los Alamos
National Laboratory (LANL) data assimilation code, which uses multiple realiza-
tions to account for various model parameters and their uncertainties. Observa-
tions are incorporated into the model, pixel-by-pixel, by summing the model and
observed pixel values with weights calculated using a modified least-squares com-
bination of the observational and model uncertainties (Arge et al., 2010). The
ADAPT model is used to generate an input of solar magnetic field maps to mod-
els of the background solar wind (Wang-Sheeley-Arge or WSA model) and the
global corona during solar total eclipses (e.g., http://www.nso.edu/node/136).

As for any other measurements, the full disk magnetic observations that form
the basis for the synoptic charts are subject to noise in the measured parameters.
The noise could depend on the instrument characteristics (e.g., type of detec-
tor, telescope aperture, pixel size etc, observing conditions (e.g., atmospheric
seeing for ground-based instruments or disturbances in orbital parameters for
spaceborne platforms) and other similar factors. Since the synoptic charts are
constructed by averaging a contribution of individual images with smaller pix-
els into maps with larger pixels, there are additional statistical uncertainties.
Until now, however, the synoptic maps were produced without corresponding
uncertainties and were essentially treated by modelers as noise-free input.
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Here we present the first attempt to evaluate the uncertainties of the syn-
optic charts. As a first step, we concentrate on statistical uncertainties aris-
ing from distribution of image pixels contributing to each pixel in the synop-
tic chart. In Section 2, we describe the method to compute these uncertain-
ties and show the resulting maps of errors. In Section 3, we employ the error
maps to create an ensemble of input synoptic charts within these uncertainties,
and we use these charts as input for a Potential Field Source Surface (PFSS)
model (Altschuler and Newkirk, 1969, Schatten, Wilcox, and Ness, 1969). We
show that the level on uncertainties in the synoptic maps may result in a notice-
able change in the projection of the heliospheric neutral line onto the photosphere
and it also affects the position and boundaries of the photospheric footpoints of
areas of open magnetic field (coronal holes). In Section 4 we summarize these
findings.

While for this study we used data provided by the Synoptic Optical Long-term
Investigations of the Sun-Vector SpectroMagnetograph (SOLIS/VSM, Balasubramaniam and Pevtsov,
2011 and reference therein), our technique is equally applicable to magnetograms
produced by other instruments.

2. Data Analysis

We describe here a new method to produce remapped heliographic magne-
tograms and magnetic flux density synoptic charts from a set of individual mag-
netogram images. Typically, the heliographic resolution of either a heliographic
magnetogram or a synoptic chart is much lower than the spatial resolution of a
single magnetogram image. Currently, a widely adopted heliographic resolution is
1◦×1◦ in latitude and longitude. This resolution implies that, in general, several
pixels contribute to each heliographic bin. This number, however, varies with the
distance from the solar disk center. Therefore, the distribution of contributing
pixels allows not only to compute a weighted mean flux density for those bins,
but also to estimate an uncertainty of this value based on the spatial variance of
this distribution. This procedure is discussed in more detail in the next section.

2.1. Remapped Heliographic Magnetograms

To compute the weighted mean flux density in each bin of a heliographic mag-
netogram we follow a 4-step procedure, illustrated in Figure 1.

The first step consists of transforming the coordinates of the four corners of
a pixel in the magnetogram image into Stonyhurst heliographic longitudes (L)
and latitudes (B) on the solar disk (Thompson, 2006). If (x, y) are the Cartesian
coordinates in pixel units of a point in circular magnetogram image relative to
the image center and the position angle between the geocentric North pole and
the solar rotational North pole is zero (P=0), the formulas for the computation
of the Stonyhurst heliographic coordinates (L,B) are as follow (the Astronomical

Almanac):

sin(B) = sin(B0) cos(ρ) + cos(B0) sin(ρ) cos(θ)

sin(L) = − sin(ρ) sin(θ)/ cos(B), (1)
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where ρ = arcsin(r) − S · r is the heliocentric angular distance of the point

on the solar surface from the center of the Sun’s disk, r =
√

x2 + y2/R◦, θ =
arg(x, y) 1, R◦ is the solar radius in pixels, S is the angular semi-diameter of
the Sun, and B0 is the Stonyhurst heliographic latitude of the observer. The top
left plot of Figure 1 shows this transformation for the four corners of a typical
off-center pixel. For this illustration we used an ideal 512× 512 image of a solar
disk centered at (256,256) with a radius of 250 pixels, B0 = 0, and semi-diameter
S = 959.63 arcsec.

Next, we connect the four points with segments as shown in the top right
plot of Figure 1. Strictly speaking this is an approximation, since the curve
connecting each pair of points is slightly different than a straight line. However,
the difference is negligible because the radius of the Sun is much larger than the
pixel size, so that to a pixel the radius of curvature is effectively infinite. The
resulting shape is a quadrilateral covering, in some cases, more than a single bin
in the heliographic grid.

In order to compute the fraction w of the magnetic flux density B contained in
a pixel that contributes to a particular heliographic bin, we divide each side of the
quadrilateral intoM equal parts and connect the opposite points, as shown in left
bottom panel of Figure 1 for the caseM = 4. Then, we use the coordinates of the
center of each grid point (bottom right panel of Figure 1) to compute w: If n is the
number of grid points that fall into the heliographic bin, the contribution of this
pixel to the magnetic flux density value of that bin is given by (n/M2)B = wB.
As an example, for the case illustrated in Figure 1 and for the heliographic
bin centered at (58.5◦, 63.5◦), the weight w would be given by 9/16 = 0.5625.
When M is sufficiently high, the difference in the areas of each grid section
becomes negligible and the method is more accurate. For the SOLIS/VSM data
used in this analysis, we found that a segmentation higher than M = 10 does
not improve the accuracy of the calculations. A comparison with heliographic
remapped magnetograms produced by the SOLIS/VSM pipeline reveals that
our remapping method is at least as accurate as other standard techniques in
preserving the magnetic flux.

The generalization of this procedure for the remapping of a magnetogram
image into heliographic coordinates is straightforward. If Nj is the number of
pixels with values {Bi : i = 1, · · · , Nj} and weights {wi : i = 1, · · · , Nj} that
contribute to the heliographic bin j, the weighted average flux density Bj of that
bin is given by:

Bj =

Nj
∑

i

wiBi/Wj , (2)

where Wj =
∑Nj

i wi. An unbiased estimator of a weighted population vari-
ance can be calculated using the formula:

1The function arg is defined such that arg(x, y) = arctan(y/x) ∈ [−180◦, 180◦], and thus
resolves the ambiguity between which quadrant the result should lie in.
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Figure 1. Transformation of the four corners of a idealized solar image pixel into heliographic
coordinates, using Eq. 1 (Step 1). Steps 2-4 illustrate the procedure described in Section 2.1
to compute the fraction of the magnetic flux density contained in a pixel that contributes to
a particular heliographic bin.

σ2

j =
Wj

W 2

j −W ′

j

Nj
∑

i

wi(Bi −Bj)
2, (3)

where W ′

j =
∑Nj

i w2

i . The standard deviation is simply the square root of the
variance above. Another useful quantity, for the discussion that follows, is:

|B|2j =

Nj
∑

i

wiB
2

i /Wj (4)

Figure 2 shows an example of this procedure applied to a SOLIS/VSM obser-
vation taken on May 20, 2013 at 14:15 UT. Prior of being remapped into helio-
graphic coordinates using Eq. 2, the original full disk line-of-sight magnetogram
(top left image) is divided by cos(ρ) to produce a heliographic map of the radial
component of the magnetic flux density (top right image). This transformation,
from line-of-sight to radial magnetic field density, is valid only under the assump-
tion that the photospheric magnetic field is indeed radial. Evidence that the pho-
tospheric field is approximately radial was found by Svalgaard, Duvall, and Scherrer
(1978), Petrie and Patrikeeva (2009), and Gosain and Pevtsov (2013). The stan-
dard deviation map (left bottom image) is then computed using Eq. 3.
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Figure 2. SOLIS/VSM observation taken on May 20, 2013 at 14:15 UT. The top left image
shows the measured full disk (2048×2048 pixels image) longitudinal photospheric magnetic flux
density in the neutral iron spectral line at 630.15 nm. The top right image is the corresponding
heliographic remapped radial field magnetogram. The bottom two images show the computed
standard deviation map (left) and the sum of the weights W (right). The procedure is described
in Section 2.1.

2.2. Magnetic Flux Density Synoptic Charts

Magnetic field observations taken during a single Carrington rotation can be
merged together to produce a chart of the magnetic flux density distribution over
the whole solar surface. If N is the number of magnetograms that contribute to
this chart, and {Nj : j = 1, · · · , N} is the number of pixels with flux density and
weight values {Bi,j , wi,j : i = 1, · · · , Nj} from magnetogram #j that contribute
to a heliographic bin k in the synoptic chart, the magnetic flux density Bk of
that bin is given by:

Bk =

(

N1
∑

i

wi,1Bi,1 +

N2
∑

i

wi,2Bi,2 + · · ·+

NN
∑

i

wi,NBi,N

)

/(W1 +W2 + · · ·+WN ) =

= (W1B1 +W2B2 + · · ·+WNBN )/(W1 +W2 + · · ·+WN ) =

=
N
∑

j

WjBj/
N
∑

j

Wj . (5)

This shows that Bk can be computed from the values obtained using Eq. 2
for the heliographic re-mappped images. The number N of magnetograms that
contribute to a given synoptic chart and the number Nj of image pixels that go
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into a particular heliographic bin depend on observational conditions. Typically,
for SOLIS/VSM observations under good weather conditions over a temporal

window of 40 days, between 30 and 40 magnetograms are used to build a synoptic
chart. Each magnetogram contributes with about 30 pixels to individual 1 × 1

degrees heliographic bins located at low latitudes. This number decreases for
bins located at higher latitude bands. If additional weights are introduced, like

w̃j = cos4(Lj), where Lj is the central meridian distance, then the final Bk value
will be:

Bk =

N
∑

j

w̃jWjBj/

N
∑

j

w̃jWj (6)

The weight w̃ is typically introduced to ensure that measurements taken

when a particular Carrington longitude is near the solar central meridian con-
tribute most to that Carrington longitude in the synoptic map. For the unbiased

estimated variance σ2

k, associated to Bk, we have (see Appendix A):

σ2

k =
1

1−

[

∑N

j w̃2

jW
′

j/
(

∑N

j w̃jWj

)2
]

(

∑N

j w̃jWj |B|2j
∑N

j w̃jWj

−B2

k

)

. (7)

The standard deviation synoptic map is simply the square root of Eq. 7.

Figure 3 shows an example of a photospheric magnetic flux density synoptic
chart, and the corresponding standard deviation map. The charts were computed

using Fe I 630.15 nm SOLIS/VSM full disk longitudinal magnetic observations
covering Carrington rotation (CR) 2137. The standard deviation map exhibits

several properties. First, the errors show a gradual increase towards polar re-
gions (associated with disk center-limb variation in noise). Second, the errors

are significantly larger in areas associated with strong fields of active regions.
This can be related to higher degree of spatial variation in magnetic structure

as compared with quiet sun areas. Finally, most areas with more uniform fields
(e.g, coronal holes) show the smallest variance.

The high correlation between Carrington error maps and Carrington magnetic
flux maps is further demonstrated in Figure 4 where, for each latitude band, we

computed the average of all longitudinal values of the absolute magnetic flux
density (top panel) and the corresponding standard deviation (bottom panel).

Figure 4 shows this comparison during phases of low (CR 2093, in blue) and high
(CR 2137, in red) solar magnetic activity. At the beginning of 2010 the magnetic

activity was predominately concentrated in the North solar hemisphere, in a
latitude band centered just below 30◦, while during the current phase of solar
maximum the magnetic activity has developed significantly in both hemispheres.

The drastic drop in the mean absolute magnetic flux density and standard devi-
ation values shown in Figure 4 near the extreme North polar regions during CR

2093 is due to the lack of data caused by large negative B0 angle.
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Figure 3. Photospheric magnetic flux density distribution (top) and corresponding standard
deviation map (bottom) for CR 2137. Both charts were computed using Fe I 630.15 nm
SOLIS/VSM full disk magnetic observations, following the procedure described in Section
2.2. The top image has been scaled between ±30 Gauss to better show the distribution of the
weak magnetic flux density field across the map. The actual flux density distribution, however,
covers a much larger range of field values - up to several hundred Gauss.

3. Application to Coronal Models

Since the photospheric synoptic magnetic flux maps are the primary drivers
of coronal and heliospheric models, their accuracy will ultimately affect the
diagnostic capabilities of these models. Our ability to derive global (in solar
latitude and longitude) boundary conditions for these models is hindered because
of our limited Earth-based viewpoint. This affects models in two important ways.
First, in order to be able to derive complete boundary conditions as a function
of longitude, we are forced to assume that the magnetic structure we see from
Earth does not appreciably change as it rotates around to the far side. As active
regions may significantly evolve on a time scales of one-several days, this is
clearly not met. However, for studies on time-scales of a solar rotation or longer,
it is reasonable to assume that, on average, the unseen decay of active regions
will be balanced by the emergence of new, and as yet unseen active regions.

A second, and potentially more severe limitation for global models is the
quality of polar data. Assuming that the photospheric field is nearly radial, the
observed line-of-sight component of the magnetic field diminishes from equator to
pole by a factor ∼ cos(ρ), and the background noise level rises by the same factor.
Moreover, projection effects also reduce the resolution at progressively higher
latitudes. To further compound this, Earth’s ecliptic orbit leads to as much as
±7.25◦ offsets between views of the northern and southern polar regions. For
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Figure 4. Average along the longitudinal direction of the absolute magnetic flux density
(top) and standard deviation (bottom) maps as a function of latitude, for CR 2093 (blue) and
CR 2137 (red). Latitude bands with high level of activity are also characterized by a larger
uncertainty in the magnetic flux density value.

example, when the solar B0 angle is +7.25◦, the polar regions near the magnetic
pole located in the Sun’s northern hemisphere are observed much better from
Earth than are the polar regions around the magnetic pole in the southern
hemisphere. Consequently, for a large fraction of a year, one of the Sun’s magnetic
poles is poorly measured. The treatment of the Sun’s polar fields is difficult but
of great importance in determining the global structure of the corona and the
heliospheric magnetic fields (e.g., Hoeksema, Wilcox, and Scherrer, 1982). At
solar minimum much of the open flux that fills the heliosphere originates in
polar coronal holes.

Several solutions have been suggested in which the polar field is deduced
using various combinations of spatial and temporal smoothing, interpolation,
and extrapolation from nearby observed regions (e.g. Liu et al., 2007, Sun et al.,
2011). In particular, Arge and Pizzo (2000) have developed a technique to correct
polar field measurements by backward fitting in time during periods when a pole
is poorly observed. For our exploratory investigation, however, it is sufficient to
use a simple spatial interpolation approach where the value of the magnetic
flux density for the unobserved heliographic bins is determined from a quintic
surface to well-observed fields at polar latitudes. The surface fit is similar to the
one described in Sun et al. (2011).

The response of the coronal magnetic field to the photospheric activity pat-
terns can be diagnosed in a simple way by calculating extrapolated PFSS models.
Low in the corona, the magnetic field is sufficiently dominant over the plasma
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forces that a force-free field approximation is generally applicable. Moreover, for
large-scale coronal structure the effects of force-free electric currents, which are
inversely proportional to length scale, may be neglected. We use the photospheric
radial field maps from SOLIS/VSM to fix the radial field component of the model
at the lower boundary r = R, where R is the solar radius. Above some height in
the corona, the magnetic field is dominated by the thermal pressure and inertial
force of the expanding solar wind. To model the effects of the solar wind expan-
sion on the field, we introduce an upper boundary at r = Rs > R, and force the
field to be radial on this boundary, following Schatten, Wilcox, and Ness (1969),
Altschuler and Newkirk (1969) and many subsequent authors. The usual value
for Rs is Rs = 2.5R although different choices of Rs lead to more successful
reconstructions of coronal structure during different phases of the solar cycle
(Lee et al. 2011). We adopt the standard value Rs = 2.5R in this work. With
these two boundary conditions, the potential field model can be fully determined
in the domain R ≤ r ≤ Rs.

We use the National Center for Atmospheric Research’s MUDPACK2 package
(Adams 1989) to solve Laplace’s equation numerically in spherical coordinates
subject to the above boundary conditions. Although Laplace’s equation can be
solved analytically, and has been so treated for several decades, we adopt a finite-
difference approach in this paper to avoid some problems associated with the
usual approach based on spherical harmonics (Tóth, van der Holst, and Huang, 2011).

To test how the uncertainties in a synoptic magnetic flux map may affect the
calculation of the global magnetic field of the solar corona we computed a PFSS
model of the coronal field for a Monte Carlo simulation of 100 Carrington synop-
tic magnetic flux maps generated from the standard deviation map. This test was
performed using SOLIS/VSM photospheric longitudinal magnetograms spanning
two distinct Carrington rotation numbers: CR 2104 (November - December 2010)
and CR 2137 (May - June 2013). These two CRs correspond to phases of low and
high solar magnetic activity cycle, respectively. In the simulated synoptic maps
of the ensemble, the value of each bin is randomly computed from a normal
distribution with a mean equal to the magnetic flux value of the original bin
and a standard deviation of σ, with σ being the value of the corresponding
bin in the standard deviation map. For each synoptic map of this set we then
computed a PFSS model of the coronal field. Figures 5 - 6 illustrate the result
of this experiment. For comparison we show in Figure 7 measurements at λ195
Å from the SECCHI EUV imager instrument mounted onto the NASA STEREO
Spacecraft covering the same two Carrington rotation numbers. SECCHI EUV
synoptic maps are available from http://secchi.nrl.navy.mil/synomaps/.

4. Discussion and Conclusions

The approach described in this paper is aimed at estimating errors based on
statistical properties of spatial distribution of pixels contributing to heliographic

2http://www2.cisl.ucar.edu/resources/legacy/mudpack

SOLA: ms_AstroPh.tex; 3 December 2013; 1:24; p. 10

http://secchi.nrl.navy.mil/synomaps/


Solar Maps

0 90 180 270 360
Carrington Longitude (degree)

-90

-45

0

45

90

L
at

it
u

d
e 

(d
eg

re
e)

0 90 180 270 360
Carrington Longitude (degree)

-90

-45

0

45

90

L
at

it
u

d
e 

(d
eg

re
e)

Figure 5. Left, the PFSS neutral line (thin black lines) and positive/negative open field
footpoints (red/blue pixels) are shown for CR 2104. The open field footpoints correspond to
coronal holes and the neutral line represents the heliospheric current sheet. Right, the 100
model neutral lines for a Monte Carlo simulation of Carrington synoptic magnetic flux maps
generated from the standard deviation map are over-plotted. Solid red/blue indicates pixels
where 100% of the models have positive/negative open field, white represents footpoints where
all models have closed field, and stronger/fainter coloring indicates where a larger/smaller
fraction of the models have open field.
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Figure 6. Same as Figure 5, but for CR 2137.

bins. However, uncertainties due to instrumental noise or other sources can be
easily included in the analysis by properly modifying the equations given in
Section 2.

The CR 2104 global coronal field shown in Figure 5 (left), is typical of coronal
structure around solar minimum: the global dipole is tilted at a small angle
with respect to the rotation axis so that the positive/negative coronal holes are
almost entirely confined to the southern/northern hemisphere and the neutral
line does not stray more than 40 degrees from the equator. The CR 2137 global
coronal field, shown in Figure 6 (left), is typical of coronal structure around
solar maximum: the global dipole is tilted at an angle close to 90 degrees with
respect to the rotation axis. The positive/negative coronal holes are confined to
the eastern/western hemisphere and the neutral line encircles the Sun passing
close to both poles. The comparison between these two coronal maps and the
observed coronal holes by the SECCHI EUV imager instrument (Figure 7) shows
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Figure 7. Intensity distribution at λ195 Å from the SECCHI EUV imager instrument for
CR 2104 (top) and CR 2137 (bottom). The images have been enhanced to show the location
of coronal holes (black regions).

a general good agreement between observations and modeling. For example, the
area of open magnetic field in Figure 5 (left) situated at about (-15, 200) degrees
latitude-longitude corresponds to a position of small coronal hole in Figure 7
(upper panel). For CR 2137, the area of open field in Figure 6 (left) at about
(-45, 300) degrees overlaps with coronal hole in Figure 7 (lower panel).

The Monte Carlo simulations for both rotations (right panel of Figure 5 and
Figure 6) show significant diversity of neutral line structure. In some of the CR
2104 models there are two separate neutral lines, one resembling the neutral
line of the original model and a secondary compact, closed neutral line centered
near 180 degrees longitude, 45 degrees latitude. In the original CR 2137 model
the neutral line is mostly confined to the western hemisphere, whereas in a
significant number of the models in the Monte Carlo simulation the neutral
lines are shifted into the eastern hemisphere. In a subset of the simulations a
secondary compact, closed neutral line appears near 90 degrees longitude, -45
degrees latitude. The coronal hole distributions of the Monte Carlo simulations
closely resemble the distributions in the original models in general. However,
the faint coloring of some of the coronal hole structures in the right panels of
Figures 5 and 6 indicates that some large coronal hole structures, e.g., the most
northerly and southerly red patches in the eastern hemisphere in Figure 6, are
absent from a significant proportion of the models.

The global coronal structure depends most on the polar fields, which give
the overall large-scale axisymmetric structure, and the active regions, which
perturb the global field into complex 3D configurations. Although the polar field
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errors are lower than those associated to active regions (see Figure 3), they are
associated with nearly unipolar fluxes that extend over vast areas, and therefore
have major global influence over the models. The polar field strengths them-
selves are typically about 5 Gauss and the relative errors in the polar fields are
significant. During solar minima the polar fields dominate and during maxima
the active regions are more influential. These influences can be quantified and
compared (Petrie, 2013). Therefore, errors in both the polar or active region
fields would affect the models, with greatest influence during different phases of
the cycle: Polar fields contribute most of the errors near solar minimum, while
active regions contribute most of the errors near maximum. This implies that
the errors from the polar fields and active regions have about the same overall
influence over the models. Figures 5 and 6, representing near-minimum and near-
maximum fields, indicate that the errors from the polar fields and active regions
have about the same overall influence over the models.

We therefore conclude that the errors have a significant influence on the loca-
tion and structure of the neutral lines and the distribution of the coronal holes.
These initial results indicate that synoptic error maps can play an important
role for model predictions based on global distribution of magnetic fields on
the Sun. In the future, these effects need to be included in all global models.
In this article, we considered only the effects of statistical dispersion of image
pixels contributing to the same heliographic pixel of synoptic chart. Other (more
minor) effects related to instrument and observations (e.g., noise, atmospheric
seeing etc) will be the subject of a separate future study.

Finally, it is important to notice that while our study clearly shows the sig-
nificance of introducing uncertainties into the computation of the extrapolated
coronal field, several factors may affect the final result. For example, although
synoptic charts produced by different observatories are very similar, the cal-
ibration of the magnetic field measurements and the assumptions adopted in
constructing the synoptic map would differ from one observatory to another.
These differences my include the treatment of solar differential rotation, evolu-
tion of active regions, and the filling of the polar regions. All these factors will
affect not only the final synoptic magnetic chart, but also the corresponding error
map. A detailed study of these differences is beyond the scope of this study. The
purpose of our investigation is to show that taking into account errors in synoptic
maps is extremely important, regardless of the particular adopted methodology
and/or instrument.

Appendix

A. Estimated Variance in Magnetic Flux Synoptic Charts

Using the notation described in Section 2.2, one can generalize Eq. 3 to com-
pute the variance σ2

k of a heliographic bin k in the synoptic chart given the
contribution of N individual observations. That is,
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or simply,
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The standard deviation is simply the square root of the variance above.
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