Journal of
the Serbian
Chemical Society
JSCS-info@shd.org.rs • www.shd.org.rs/JSCS

ACCEPTED MANUSCRIPT

This is an early electronic version of an as-received manuscript that has been accepted for publication in the Journal of the Serbian Chemical Society but has not yet been subjected to the editing process and publishing procedure applied by the JSCS Editorial Office.

Please cite this article as: J. Z. Penjišević, V. V. Šukalović, D. B. Andrić, G. M. Roglić, I. T. Novaković, V. Šoškić, S. V. Kostić-Rajačić, J. Serb. Chem. Soc. (2015), doi: 10.2298/JSC151021097P

This "raw" version of the manuscript is being provided to the authors and readers for their technical service. It must be stressed that the manuscript still has to be subjected to copyediting, typesetting, English grammar and syntax corrections, professional editing and authors' review of the galley proof before it is published in its final form. Please note that during these publishing processes, many errors may emerge which could affect the final content of the manuscript and all legal disclaimers applied according to the policies of the Journal.

Synthesis, biological evaluation and docking analysis of substituted piperidines and (2-methoxyphenyl)piperazines

JELENA Z. PENJIŠEVIĆ ${ }^{1 \#}$, VLADIMIR V. ŠUKALOVIĆ1 ${ }^{\#}$, DEANA B. ANDRIĆ ${ }^{2}$ *\#, GORAN M. ROGLIĆ ${ }^{2 \#}$, IRENA T. NOVAKOVIĆ ${ }^{1 \#,}$, VUKIĆ ŠOŠ ${ }^{\prime}$ KIĆ ${ }^{3 \#}$ and SLAĐANA V. KOSTIĆ-RAJAČIĆ ${ }^{1 \#}$
${ }^{1}$ ICTM - Center of Chemistry, University of Belgrade, Njegoševa 12, Belgrade, Serbia,
${ }^{2}$ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia and ${ }^{3}$ ORGENTEC Diagnostica Gmbh, Carl-Zeiss-Street 49-51, Mainz, Germany

(Received 21 October, revised 25 November, accepted 26 November 2015)

Abstract

A series of sixteen novel substituted piperidines and (2methoxyphenyl)piperazines were synthesized, starting from the key intermediates 1-(2-methoxyphenyl)-4-(piperidin-4-yl)piperazine and 1-(2-methoxyphenyl)-4-(piperidin-4-ylmethyl)piperazine. Biological evaluation of the synthesized compounds was pointed out for seven compounds, of which 1-(2-methoxyphenyl)-4-\{[1-(2-nitrobenzyl)piperidin-4-yl]methyl\}piperazine had the highest affinity for the dopamine D_{2} receptor. For all seven selected compounds docking analysis was performed in order to establish their structure-to-activity relationship.

Keywords: dopamine D_{2} receptor, docking analysis, allosteric, orthosteric bind site

INTRODUCTION

G-protein-coupled receptors (GPCRs) are transmembrane receptors that mediate most of their intracellular actions through pathways involving an activation of G-protein ${ }^{1} . \mathrm{D}_{2}$ dopamine receptors ($\mathrm{D}_{2} \mathrm{DAR}$) are member of this large protein family. Dysfunction of dopaminergic system in CNS can lead to a number of diseases, such as Parkinson's disease, schizophrenia, some neurohumoral disturbances, etc ${ }^{2,3}$. Therefore it is not surprising that the design and synthesis of new potential dopaminergic drugs is one of the main objectives of organic and medicinal chemistry.

Arylpiperazines are a common structural motif included in various compounds that interacts in specific manor with various GPCRs ${ }^{4}$. Within the scope of the program aimed at the discovery of new dopaminergic (DA-ergic)

[^0]ligands and in order to further explore our previously published data, a series of sixteen novel arylpiperazines have been synthesized ${ }^{5}$. All synthesized ligands were estimated for their in vitro binding affinities at the rat $\mathrm{D}_{2} \mathrm{DAR}$ and compared with results obtained trough docking analysis, using available $\mathrm{D}_{2} \mathrm{DAR}$ molecular model.

EXPERIMENTAL

General

M.p.: Boetius PHMK apparatus (VEB Analytic, Dresden, Germany) - uncorrected. ${ }^{1} \mathrm{H}-$ NMR and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (200 and 50 MHz): Gemini 2000 (Varian, Oxford); solvent deuterochloroform, unless otherwise stated; ppm (δ) downfield from the internal standard tetramethylsilane as the internal standard. LC/MS: 6210 Time-of-Flight LC-MS system (Agilent Technologies, Germany); for data analysis MassHunter Workstation Software was used. IR spectra: Thermo Scientific spectrometer. Microwave: MicroSYNTH Milestone and a Biotage Initiator 2.5 EXP. Analytical TLC: POLYGRAM SIL G/UV254 plastic-backed thinlayer silica gel plates (Macherey-Nagel, Germany). Chromatographic purifications: Merck-60 silica gel columns (diameter $70 \mathrm{~mm}, \mathrm{~h}=45 \mathrm{~mm}$; the same for all compounds), 230-400 mesh ASTM, medium pressure (dry column flash chromatography). Reagents and solvents were used without purification: Alfa-Aesar and Sigma Aldrich. Solutions: routinely dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ prior to evaporation.

Chemistry

Ethyl 4-[4-(2-metoxyphenyl)piperazin-1-yl]piperidine-1-carboxylate (3): To a stirring solution of N-carbethoxy-4-piperidone (1) $(1.7 \mathrm{~g}, 0.01 \mathrm{~mol})$ in methanol $(25 \mathrm{ml})(\mathrm{pH}$ value of solution was adjusted to 7 by addition of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$), 1-(2-methoxyphenyl)piperazine (2) $(3.24 \mathrm{~g}, 0.02 \mathrm{~mol})$ was added, followed by the addition of $\mathrm{NaBH}_{3} \mathrm{CN}(0.4 \mathrm{~g}, 0.0072 \mathrm{~mol})$ in portions. Stirring was continued at r.t. for 24 h . The pH value of resulting solution was adjusted to 2 by the addition of $10 \% \mathrm{HCl}$ solution and the excess of the methanol was removed in vacuum. The pH value of the residue was adjusted to 9 by the addition of 10% NaOH solution, extracted with dichloromethane. Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. The product was purified by dry-flash chromatography using a gradient of $\mathrm{CH}_{3} \mathrm{OH}(0-10 \%)$ in dichloromethane as a solvent. Yield: 88%.
General procedure for the hydrolysis of the carbamates $\mathbf{3}$ and 9
Carbamates $\mathbf{3}$ or $\mathbf{9}(0.02 \mathrm{~mol})$ was suspended in $\mathrm{ccHCl}(60 \mathrm{ml})$, transferred into a sealed tube, placed into microwave. Irradiation at $130^{\circ} \mathrm{C}$ was completed after 90 min at an initial power of 300 W . The reaction mixture was poured into water, pH value adjusted to 9 by addition of $10 \% \mathrm{NaOH}$ solution and extracted with dichloromethane. Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. The product was purified by dry-flash chromatography using a gradient of methanol ($0-10 \%$) in dichloromethane as a solvent.

1-(Ethoxycarbonyl)piperidine-4-carboxylic acid (6): To a solution of piperidine-4carboxylic acid (5) (20 g, 0.155 mol$)$ in water $(200 \mathrm{ml}), \mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~g})$ was added, mixture was stirred at room temperature for 30 min . and solution of ethyl chloroformate ($25.5 \mathrm{~g}, 0.28$ mol) in toluene (240 ml) was added dropwise. Stirring was continued at room temperature for 20h. After separation of the layers, in the aqueous layer ccHCl was added until $\mathrm{pH} \sim 2$, extracted with dichloromethane, organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. Yield: 78%.

Ethyl 4-(chlorocarbonyl)piperidine-1-carboxylate (7): Solution of 1-(ethoxycarbonyl) piperidine-4-carboxylic acid (6) $(7.5 \mathrm{~g}, 0.0375 \mathrm{~mol})$, thionyl chloride ($5.35 \mathrm{~g}, 0.045 \mathrm{~mol}$) and chloroform (200 ml) was stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction mixture was evaporated in vacuum and product was used immediately, without further purification. Yield: 67%.

Ethyl 4-[4-(2-methoxyphenyl)piperazine-1-carbonyl]piperidine-1-carboxylate (8): The solution of chloride 7 in chloroform (50 ml) was added dropwise to a solution of triethylamine $(3.78 \mathrm{~g}, 0.0375 \mathrm{~mol})$, 1-(2-methoxyphenyl)piperazine (2) ($6.07 \mathrm{~g}, 0.0375 \mathrm{~mol}$) in chloroform $(150 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$. Reaction mixture was stirred at room temperature for 20 h . The resulting mixture was extracted with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, organic layer was extracted with $10 \% \mathrm{HCl}$ solution. Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuum. The product was purified by dry-flash chromatography eluting with dichloromethane containing increasing amounts of methanol $(0-10 \%)$. Yield: 85%.

Ethyl 4-\{[4-(2-methoxyphenyl)piperazin-1-yl]methyl\}piperidine-1-carboxylate (9): Mixture of compound $8(0.01 \mathrm{~mol})$ and $\mathrm{NaBH}_{4}(1 \mathrm{~g}, 0.025 \mathrm{~mol})$ in diglyme $(25 \mathrm{ml})$ was stirred for 40 min at $-5^{\circ} \mathrm{C}$ under argon. During that time, boron trifluoride diethyl etherate $(3.9 \mathrm{~g}, 3.4 \mathrm{ml}, 0.025 \mathrm{mmol})$ was added dropwise. After stirring for 1 h at $5{ }^{\circ} \mathrm{C}$ reaction mixture was heated to $80-90^{\circ} \mathrm{C}$, followed by stirring for additional one hour. The mixture was cooled at room temperature, carefully poured into 10 ml of water and then 20 ml cc HCl was added. Mixture was heated at $60-80^{\circ} \mathrm{C}$ on aqueous bathroom for 3 h and concentrated on vacuum. In the residue $10 \% \mathrm{NaOH}$ solution was added until pH 9 , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. Product was purified by dry-flash chromatography using dichloromethane/methanol system as eluent. Yield: 85%.
General procedure for alkylation of compounds 4 and 10
Mixture of compound $\mathbf{4}$ or $\mathbf{1 0}(0.0018 \mathrm{~mol})$, benzyl halides $\mathbf{1 1 - 1 4}$ (0.0018 mol$), \mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.0036 \mathrm{~mol})$ and acetonitrile $(25 \mathrm{ml})$ was stirred at room temperature for 48 h , poured into water, extracted with dichloromethane. Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. Product was purified by dry-flash chromatography using a gradient of methanol ($0-10 \%$) in dichloromethane as a solvent.

General procedure for the synthesis of compounds (27-30) and (31-34)

Solution of benzoyl or nitrobenzoyl chloride 23-26 $(0.0017 \mathrm{~mol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.34 \mathrm{ml})$ was added dropwise to a solution of $\mathbf{4}$ or $\mathbf{1 0}(0.0017 \mathrm{~mol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.24 \mathrm{ml}$, 0.0017 mol) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 72 h . The resulting mixture was extracted with $10 \% \quad \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, separated organic layer was washed with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. The product was purified by dry-flash chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing increasing amounts of $\mathrm{MeOH}(0-10 \%)$.

Analytical and spectral data for the synthesized compounds are given in the Supplementary material to this paper.

Membrane preparation, radio ligand binding assays and data analysis

Synaptosomal membranes from rat striatal were prepared for radioligand binding assays as previously described ${ }^{6}$. $\left.{ }^{3} \mathrm{H}\right]$ Spiperone (spec. act.73.36 Ci mmol-1) used to label D_{2} DAR were purchased from Perkin Elmer LAS GmbH, Rodgau, Germany).

$\left[{ }^{3} \mathrm{H}\right]$ Spiperone-receptor binding assay

$\left[{ }^{3} \mathrm{H}\right]$ Spiperone binding was assayed in $4 \mathrm{mM} \mathrm{MgCl} 2,1.5 \mathrm{mM} \mathrm{CaCl}_{2}, 5 \mathrm{mM} \mathrm{KCl}, 120$ $\mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ Tris- HCl solution, pH 7.4 , at a membrane protein concentration of 0.7
mgmL^{-1} at $37^{\circ} \mathrm{C}$ for 10 min . in a total volume of 0.4 mL of the incubation mixture. Binding of the radioligand to the $5-\mathrm{HT}_{2}$ receptors was prevented by $50 \mu \mathrm{M}$ ketanserin. The Ki values of the tested compounds were determined by competition binding at 0.2 nM of the radio ligand and eight to ten different concentrations of each compound (10^{-4} to $10^{-10} \mathrm{M}$). Nonspecific binding was measured in the presence of 1.0 mM spiperone. The reaction was terminated by rapid filtration through Whatman GF/C filters, which were further washed three times with 5.0 mL of ice-cold incubation buffer. Each point was determined in triplicate. Retained radioactivity was measured by introducing of dry filters into 10 mL of toluene-based scintillation liquid and counting in a 1219 Rackbeta Wallac scintillation counter (EG\&G Wallac, Turku, Finland) at an efficiency of $51-55 \%$ for tritium. The results were analyzed by nonlinear curve fitting of the inhibition curves of the compounds utilizing the Graph-Pad Prism program ${ }^{7}$. Hill slope coefficients were fixed to unity during calculation.

Docking analysis

Docking analysis was done with already available D_{2} DAR model based on a crystal D_{3} DAR structure ${ }^{8}$. The receptors' binding site was determined by combining results from experimental data ${ }^{9,10}$ and the Schrödinger Maestro receptor grid generation module ${ }^{11}$. Amino acid residue charges were adjusted where needed, assuming physiological conditions.

Selected ligands were prepared with ligprep Maestro module and docked using Glide module from Schrödinger Suite 2011^{11}. All ligands were docked as protonated, using the OPLS_2005 force field. The initial position of the ligand in the binding site, was arbitrary, while the protonated nitrogen on the ligand part was kept in close proximity of the Asp 114 of the D_{2} DAR. After initial ligand placement, no further constraints were applied and the docking procedure was carried out. Obtained structures were examined and those meeting the following criteria were selected: best docking score of the complex, shortest salt bridge formed between Asp 114 of the D_{2} DAR and ligand, chair conformation of arylpiperazine ring and aryl part of the molecule positioned in the rear hydrophobic pocket of the receptor (Phe 386, Trp 390 and $\operatorname{Tyr} 420)^{12}$. After an initial criterion was satisfied, the second step was the examination of different interactions that can be formed between receptor and ligand (hydrogen bonds, aromatic-aromatic interactions, etc.). In that way, the best possible docking structures were selected. Structures were visualized using DS Visualize v2.5.1 ${ }^{13}$ and the obtained images were rendered using PovRay Raytracer v3.6 ${ }^{14}$.

RESULT AND DISCUSSION

The general synthetic route and chemical structures of the novel substituted piperidine and (2-methoxyphenyl)piperazine are summarized in Schemes 1-3.

Preparation of the key intermediates, 1-(2-methoxyphenyl)-4-(piperidin-4yl)piperazine (4) and 1-(2-methoxyphenyl)-4-(piperidin-4-ylmethyl)piperazine (10) are described in Schemes 1 and 2. Ethyl 4-[4-(2-metoxyphenyl)piperazin-1-yl]piperidine-1-carboxylate (3), produced by reductive amination of the commercially available ketone $\mathbf{1}$ was further hydrolyzed, under microwave conditions, and intermediate 4 was obtained (Scheme 1).

Commercially available piperidine-4-carboxylic acid (5) was transformed into carbamate 6 and further into chloride 7 by reacting with thionyl chloride. Acylation of (2-methoxyphenyl)piperazine with chloride 7 gave amide 8, which provide compound 9 by the reduction with $\mathrm{NaBH}_{4} /$ boron trifluoride ethyl
etherate. The carbamate $\mathbf{9}$ was converted to secondary amine $\mathbf{1 0}$ by hydrolysis with ccHCl under MW conditions (Scheme 2).

Scheme 1. Synthesis of 1-(2-methoxyphenyl)-4-(piperidin-4-yl)piperazine (4); reagents:
a) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MeOH}, \mathrm{pH} 7$, r.t; b) cc HCl , MW, $180^{\circ} \mathrm{C}, 300 \mathrm{~W}$.

Scheme 2. Synthesis of 1-(2-methoxyphenyl)-4-(piperidin-4-ylmethyl)piperazine (10); reagents: a) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, ethyl chloroformate, toluene, r.t; b) thionyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; c) triethyl amine, chloroform, $5^{\circ} \mathrm{C}$; d) NaBH_{4}, boron trifluoride diethyl etherate, diglyme, $-5^{\circ} \mathrm{C}$; e) cc $\mathrm{HCl}, \mathrm{MW}, 180^{\circ} \mathrm{C}, 300 \mathrm{~W}$.

Both intermediates, 4 and 10, were alkylated with benzyl or nitro benzyl halogenide to give final ligands 15-18 and 19-22. Ligands 27-30 and 31-34 were obtained by acylation with corresponding acyl chloride (Scheme 3).

Scheme 3. Synthetic route and chemical structures of the (2-methoxyphenyl)piperazine dopaminergic ligands; reagents: a) compounds 11-14 $\left(\mathrm{R}=\mathrm{H}, 2-\mathrm{NO}_{2}, 3-\mathrm{NO}_{2}, 4-\mathrm{NO}_{2}\right), \mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{CH}_{3} \mathrm{CN}$, r.t; b) compounds 23-26 ($\mathrm{R}=\mathrm{H}, 2-\mathrm{NO}_{2}, 3-\mathrm{NO}_{2}, 4-\mathrm{NO}_{2}$), triethyl amine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; c) $\mathrm{DCC}, \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}$; d) NaBH_{4}, boron trifluoride diethyl etherate, diglyme, $-5^{\circ} \mathrm{C}$; yields for 15-22 and 27-34 (68-89\%).

Final products 15-22 and 27-34 were evaluated for their affinity to $\mathrm{D}_{2} \mathrm{DAR}$ in vitro competitive displacement assay of the $\left[{ }^{3} \mathrm{H}\right]$-spiperone (Table I). As a source of $\mathrm{D}_{2} \mathrm{DAR}$ synaptosomal membranes prepared from rat striatum were used.

The compound with the highest affinity for $D_{2} D A R$ was 1-(2-methoxyphenyl)-4-\{[1-(2-nitrobenzyl)piperidin-4-yl]methyl\}piperazine (20, $\mathrm{Ki}=30.6 \mathrm{nM})$. Compounds 19, 21, 22 and 31-34, expressed moderate binding affinity for D_{2} DAR, while $\mathbf{1 5 - 1 8}$ and $\mathbf{2 7 - 3 0}$ were completely inactive competitors of bound $\left[{ }^{3} \mathrm{H}\right]$-spiperone.

Compounds 20-22 and 31-34 were selected for docking analysis in order to establish their structure-to-activity relationship.
$\mathrm{D}_{2} \mathrm{DAR}$ model and selected compound were prepared as described and docking analysis was carried out. Obtained result show that compound 20 bind to $\mathrm{D}_{2} \mathrm{DAR}$ via salt bridge with Asp 114 on TM3. This is followed by multiple aromatic interactions between aryl part of the ligand and hydrophobic pocket (Phe 386, Trp 390 and Tyr 420) ${ }^{8,15,16}$. In this way ligand establish favorable orientation inside the receptor binding cavity that is prerequisite for forming of hydrogen bonds with Ser 193 on TM5. Stated interactions are formed with
$\mathrm{D}_{2} \mathrm{DAR}$ inside the orthosteric bind site (OBS). Docking analysis showed possible aromatic interactions with Phe 393 and His 397, both located inside the alosteric bind site (ABS) (Figure 1) and listed interactions lead to high compound activity.

TABLE I. Binding constants of the synthesized compounds for the dopamine D_{2} receptor

0	$\mathrm{R} / \mathrm{nM} \pm$ S.E.M	
0	$2-\mathrm{NO}_{2}$	736 ± 24
0	$3-\mathrm{NO}_{2}$	521.5 ± 13
0	$4-\mathrm{NO}_{2}$	937.5 ± 35
1	H	1512 ± 30
1	$2-\mathrm{NO}_{2}$	341.5 ± 12
1	$3-\mathrm{NO}_{2}$	30.6 ± 1.2
1	$4-\mathrm{NO}_{2}$	258 ± 11
		200 ± 12

Compound	0	$\mathrm{Ki} / \mathrm{nM} \pm \mathrm{S} . \mathrm{E} . \mathrm{M}$	
$\mathbf{2 7}$	0	H	1583.5 ± 32
$\mathbf{2 8}$	0	$2-\mathrm{NO}_{2}$	1205 ± 19
$\mathbf{2 9}$	0	$3-\mathrm{NO}_{2}$	755 ± 21
$\mathbf{3 0}$	4 $-\mathrm{NO}_{2}$	905 ± 28	
$\mathbf{3 1}$	1	H	189.5 ± 12.1
$\mathbf{3 2}$	1	$2-\mathrm{NO}_{2}$	219.5 ± 14.4
$\mathbf{3 3}$	1	$3-\mathrm{NO}_{2}$	300 ± 16.2
$\mathbf{3 4}$	1	$4-\mathrm{NO}_{2}$	334.5 ± 17.8

In the case of compounds 21 and 22, in contrast to compound 20, optimal hydrogen bond with serine residues on TM5 cannot be formed. Reduced binding affinity was a clear consequence of unfavorable orientation of the ligands 21 and 22 inside the receptor binding cavity. Compounds 31-34 dock, in the same manner, with aryl part oriented inside the hydrophobic pocket (Phe 386, Trp 390 and Tyr 420), salt bridge with Asp 114 and hydrogen bond with Ser 193 (Figure 2). The only difference, compared to compound 20, is the positioning of the head part of the ligand. Reduced flexibility of the head part leads to suboptimal
positioning of the aromatic part inside the ABS and only observed aromatic interaction is with Phe 394. This leads to reduced binding affinity, in regard to ligand 20.

Fig. 1. Docking of compound 20 into D_{2} DAR binding pocket.

Fig. 2. Docking of compound $\mathbf{3 1}$ into D_{2} DAR binding pocket.
Other compounds cannot form interactions listed above, mostly due to their rigidity. Therefore, they either cannot achieve correct orientation inside the ABS, or cannot form any hydrogen bond to serine residues on TM5.

CONCLUSION

In order to achieve high binding affinity $\mathrm{D}_{2} \mathrm{DAR}$ ligand has to fulfill several requirements. Formation of salt bridge with Asp 114 is crucial interaction that starts binding process, followed by orientation of arylpiperazine ligand part into OBS hydrophobic cavity. After those initial requirements are met, ligand has to establish one or more hydrogen bonds with serine residues on TM5. Failing that, ligand can still bind to $\mathrm{D}_{2} \mathrm{DAR}$, but with reduced affinity. In order to establish hydrogen bonds, ligand has to be of considerable length to span entire OBS
between Asp 114 and Ser 193 and/or 197. Since OBS is not linear, ligand has to adopt slightly curved conformation in order to successfully bind. Conformation of arylpiperazine part is fixed at chair conformation of arylpiperazine ring and rest of ligand has to be flexible enough to fit into the OBS space. In case of compounds 15-34, only compounds 21-22 and 31-34 can adopt described conformation that leads to high affinity receptor binding. Once, conformational requirements are fulfilled, affinity is determined by the number and streght of particular receptor-ligand interactions. Ligand 20 has the best overall fit into D_{2} DAR, and together with formed interactions, lead to highest affinity in the group.

Obtained results suggest that in future studies special attention should be paid to the synthesis of the ligands with prolonged, flexible bridge that will provide more degree of rotational freedom of the molecules, what allows a proper orientation of the ligands into OBS cavity, what is essential prerequisite for high affinity D_{2} DAR ligands.

SUPPLEMENTARY MATERIAL

Analytical and spectral data of the synthesized compounds are available electronically from http://www.shd.org.rs/JSCS/, or from the corresponding author on request.

Acknowledgments. These results are part of Project 172032, supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

$$
\begin{gathered}
\text { и з в о д } \\
\text { СИНТЕЗА, БИОЛОШКО ИСПИТИВАЊЕ И ДОКИНГ АНАЛИЗА СУПСТИТУИСАНИХ } \\
\text { ПИПЕРИДИНСКИХ И (2-МЕТОКСИФЕНИЛ)ПИПЕРАЗИНСКИХ ЛИГАНАДА }
\end{gathered}
$$

ЈЕЛЕНА 3. ПЕЊИШЕВИЋ ${ }^{1}$, ВЛАДИМИР В. ШУКАЛОВИЋ ${ }^{1}$, ДЕАНА Б. АНДРИЋ ${ }^{2}$, ГОРАН М. РОГЛИЋ², ИРЕНА Т. НОВАКОВИЋ ${ }^{1}$, ВУКИЋ ШОШКИЋ ${ }^{3}$ и СЛАЂАНА В. КОСТИЋ-РАЈАЧИЋ ${ }^{1}$

 Carl-Zeiss-Street 49-51, Mainz, Germany
Синтетисана је серија од шеснаест нових супституисаних пиперидина и (2-метоксифенил)пиперазина, полазећи од кључних интермедијера 1-(2-метоксифенил)-4--(пиперидин-4-ил)пиперазина и 1-(2-метоксифенил)-4-(пиперидин-4-илметил)пиперазина. Биолошко испитивање синтетисаних једињења је истакло седам једињења, од којих 1-(2-метоксифенил)-4-\{[1-(2-нитробензил)пиперидин-4-ил]метил\}пиперазин има највиши афинитет ка Дг допаминском рецептору. За свих седам једињења је урађена докинг анализа у циљу утврђивања односа структуре и активности.
(Примљено 21. октобра, ревидирано 25. новембра, прихваћено 26. новемб́ра 2015)

REFERENCES

1. C. Missale, S.R. Nash, S.W. Robinson, M. Jaber, M.G. Caron, Physiological. Rev. 78 (1998) 189
2. J.-M. Beaulieu, R.R. Gainetdinov, Pharmacol. Rev. 63 (2011) 182
3. N. Ye, J. L. Neumeyer, R. J. Baldessarini, X. Zhen, A. Zhang, Chem. Rev. 113 (2013) PR123
4. A. Zhang, J. L. Neumeyer, R. J. Baldessarini, Chem. Rev. 107 (2007) 274
5. J. Penjisevic, V. Sukalovic, D. Andric, S. Kostic-Rajacic, V. Soskic, G. Roglic, Arch. Pharm. Chem. Life Sci. 340 (2007) 456
6. H. Vogel, Drug Discovery and Evaluation- Pharmacological Assays, Springer - Verlag, Berlin, 2002, 501-513
7. GraphPad Prism, GraphPad Software (http://www.graph- pad.com)
8. V. Sukalovic, V. Soskic, M. Sencanski, D. Andric, S. Kostic-Rajacic, J. Mol. Model. 19 (2013) 1751
9. J.A. Javitch, Adv. Pharmacol. 42 (1998) 412
10. J.A. Javitch, D. Fu, J. Chen, A. Karlin, Neuron. 14 (1995) 825
11. Schrödinger, LLC, New York, NY (2011) Glide, version 5.7
12. J.A. Javitch, J.A. Ballesteros, H. Weinstein, J. Chen, Biochemistry 37 (1998) 998
13. Accelrys Software Inc., Discovery Studio Modeling Environment, Release 2.5, San Diego: Accelrys Software Inc. (2009) Discovery Studio Visualiser 2.5.1
14. The Persistence of Vision Ray-Tracer, (2003-2007) Pov-Ray http://www.povray.org/
15. V. Sukalovic, M. Zlatovic, D. Andric, G. Roglic, S. Kostic-Rajacic, V. Soskic, Arzneimittel-Forsch. 55 (2005) 145
16. M. Zlatovic, V. Sukalovic, G. Roglic, S. Kostic-Rajacic, D. Andric, J. Serb. Chem. Soc. 74 (2009) 1051.

Journal of the Serbian Chemical Society

Synthesis, biological evaluation and docking analysis of

 substituted piperidines and (2-methoxyphenyl)piperazinesJELENA Z. PENJIŠEVIĆ ${ }^{1}$, VLADIMIR V. ŠUKALOVIĆ ${ }^{1}$, DEANA B. ANDRIĆ ${ }^{2 *}$ GORAN M. ROGLIĆ́, IRENA T. NOVAKOVIĆ1, VUKIĆ ŠOŠKIĆ ${ }^{3}$ and SLAĐANA V. KOSTIĆ-RAJAČIĆ ${ }^{1}$
${ }^{1}$ ICTM - Center of Chemistry, University of Belgrade, Njegoševa 12, Belgrade, Serbia, ${ }^{2}$ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia and ${ }^{3}$ ORGENTEC Diagnostica Gmbh, Carl-Zeiss-Street 49-51, Mainz, Germany

J. Serb. Chem. Soc. 80 (0) (2015) 000-000

ANALYTICAL AND SPECTRAL DATA FOR THE SYNTHESIZED COMPOUNDS

Ethyl 4-[4-(2-metoxyphenyl)piperazin-1-yl]piperidine-1-carboxylate (3): Yield: 88%, oil; IR (ATR, cm^{-1}): 1698.2 (C=O), 1590.7, 1501.4 (C=C-), 1236.0 (C-N), 1025.7 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 1.46\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}_{1}=4 \mathrm{~Hz}, \mathrm{~J}_{2}=12 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.87(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=12.4 \mathrm{~Hz},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.45\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}_{1}=11.2 \mathrm{~Hz}, \mathrm{~J}_{2}=3.4 \mathrm{~Hz},{ }^{4} \mathrm{CH}\right)$, 2.76-2.83 $\left(6 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine, ${ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), 3.02-3.15 ($4 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.\mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 4.21-4.24\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine $), 6.83-7.043$ ($4 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 14.4\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 27.9$ (2C, C_{3} and C_{5} piperidine), 43.1 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), $49.0\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperazine), $50.7\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), 55.1 (1C, OCH3), $61.6\left(1 \mathrm{C}, \underline{\mathrm{CH}}_{2-}\right.$ CH_{3}), 66.9 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 110.8 ($1 \mathrm{C}, \mathrm{C}_{3}$, 2-methoxyphenyl group), 117.9 (1C, C5, 2-methoxyphenyl group), 120.8 (1C, $\mathrm{C}_{4}, 2$-methoxyphenyl group), 122.8 (1C, C_{6}, 2-methoxyphenyl group), 140.9 (1C, C_{2}, 2-methoxyphenyl group), 152.0 (1C, C_{1}, 2-methoxyphenyl group), $155.3(-\mathrm{C}=\mathrm{O})$; $\mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$ 348.2282; found 348.2284.

1-(2-Methoxyphenyl)-4-(piperidin-4-yl)piperazine (4): Yield: 50\%, oil; IR (ATR, cm^{-1}): $3254.4(\mathrm{~N}-\mathrm{H}), 1585.6,1502.6(\mathrm{C}=\mathrm{C}-), 1241.1(\mathrm{C}-\mathrm{N}), 1018.0(\mathrm{C}-\mathrm{N})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.76\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{~J}=10,5 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.98\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.49(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=3.5$ $\mathrm{Hz}, \mathrm{J}=10.5 \mathrm{~Hz},{ }^{4} \mathrm{CH}$ piperidine), 2.75-2.82 $\left(6 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine, ${ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $3.09\left(4 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.37(2 \mathrm{H}, \mathrm{d}$,

[^1]$\mathrm{J}=12.5 \mathrm{~Hz},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}$ piperidine), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.82-7.02(4 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm})$: 27.2 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 44.4 (2C, C_{2} and C_{6} piperidine), 49.1 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 50.8 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 60.2\left(1 \mathrm{C}, \mathrm{C}_{4}\right.$ piperidine $), 111.0\left(1 \mathrm{C}, \mathrm{C}_{3}, 2-\right.$ methoxyphenyl group), 118.1 ($1 \mathrm{C}, \mathrm{C}_{5}$, 2-methoxyphenyl group), 121.0 ($1 \mathrm{C}, \mathrm{C}_{4}$, 2-methoxyphenyl group), 122.9 (1C, C6, 2 -methoxyphenyl group), 141.1 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2-methoxyphenyl group), 152.2 ($1 \mathrm{C}, \mathrm{C}_{1}, 2$-methoxyphenyl group); $\mathrm{MS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ 276.2070; found 276.2066.

1-(2-Methoxyphenyl)-4-(piperidin-4-ylmethyl)piperazine (10): Yield: 54\%, oil; IR (ATR, cm^{-1}): 3432.4 (N-H), 1534.8, 1499.6 (C=C-), 1237.1 (C-N), 1021.9 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.03-1.23\left(2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), 1.62-1.69 ($1 \mathrm{H}, \mathrm{m},{ }^{4} \mathrm{CH}$ piperidine), $1.78\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.24\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 2.60-2.67\left(6 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine, ${ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $3.05-3.10\left(4 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38-3.48\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), 6.83-7.02 ($4 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right.$): $31.4\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), 33.3 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 45.9 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 50.6 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 53.7 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), 55.2 (1 C , OCH_{3}), $65.0\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 111.1$ (1C, $\mathrm{C}_{3}, 2$-methoxyphenyl group), 118.2 (1C, C_{5}, 2-methoxyphenyl group), 121.0 (1C, C_{4}, 2-methoxyphenyl group), 122.8 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 141.5 (1C, C_{2}, 2-methoxyphenyl group), 152.3 (1C, C_{1}, 2-methoxyphenyl group); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ 290.2227; found 290.2222.

1-(Ethoxycarbonyl)piperidine-4-carboxylic acid (6): Yield: 78\%, oil; IR (ATR, cm^{-1}): 1732.7 (C=O), 1673.5 (C=O), $1033.2(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\delta / \mathrm{ppm}): 1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.66(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=10.4 \mathrm{~Hz}, \mathrm{~J}=4.4 \mathrm{~Hz}$, ${ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.93\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), 2.51 $\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{4} \mathrm{CH}\right.$ piperidine), 2.85-2.99 $\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), 4.03-4.19 ($4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}$ piperidine, $\mathrm{CH}_{2}-\mathrm{CH}_{3}$), $8.43(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 14.6\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 27.6$ ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 40.6 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 43.0 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 61.5 (1 C , $\mathrm{CH}_{3}-\mathrm{CH}_{2}$), 155.6 ($1 \mathrm{C},-\mathrm{C}=\mathrm{O}$), 179.9 ($1 \mathrm{C}, \mathrm{COOH}$); MS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{4} 202.1073$; found 202.1069.

Ethyl 4-[4-(2-methoxyphenyl)piperazine-1-carbonyl]piperidine-1-carboxylate (8): Yield: 85%, oil; IR (ATR, cm^{-1}): 1690.4 (C=O), 1622.2 (C=O), 1503.3, 1430.7 (C=C-), 1243.3 (C-N), 1015.6 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.26$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}_{3}$), 1.70-1.88 ($4 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperidine), 2.63$2.90\left(3 \mathrm{H}, \mathrm{m},{ }^{4} \mathrm{CH},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $3.00-3.09\left(4 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), 3.67-3.83 ($4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.08-4.24 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{3},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}$ piperidine), 6.83-7.09 ($\mathrm{m}, 4 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm})$: $14.6\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, $28.2\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5}
piperidine), 38.1 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 43.2 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 50.5 (2 C , C_{2} and C_{6} piperazine), 51.1 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 61.2$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 111.2\left(1 \mathrm{C}, \mathrm{C}_{3}, 2-m e t h o x y p h e n y l\right.$ group), 118.3 (1C, $\mathrm{C}_{5}, 2-$ methoxyphenyl group), 120.9 ($1 \mathrm{C}, \mathrm{C}_{4}, 2$-methoxyphenyl group), 123.6 ($1 \mathrm{C}, \mathrm{C}_{6}$, 2-methoxyphenyl group), 140.3 ($1 \mathrm{C}, \mathrm{C}_{2}, 2$-methoxyphenyl group), 152.1 ($1 \mathrm{C}, \mathrm{C}_{1}$, 2-methoxyphenyl group), 155.4 ($1 \mathrm{C}, \mathrm{O}-\mathrm{C}=\mathrm{O}$), 172.7 ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$); $\mathrm{MS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} 376.2228$; found 376.2231.

Ethyl 4-\{[4-(2-methoxyphenyl)piperazin-1-yl]methyl\}piperidine-1-carboxylate (9): Yield: 85%, oil; IR (ATR, cm^{-1}): 1691.3 (C=O), 1499.0, 1432.0 ($\mathrm{C}=\mathrm{C}-$), $1225.4(\mathrm{C}-\mathrm{N}), 1017.0(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.00-1.14(2 \mathrm{H}, \mathrm{m}$, ${ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.57-1.81(3 \mathrm{H}, \mathrm{m}$, ${ }^{4} \mathrm{CH},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.24\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 2.58-2.63(4 \mathrm{H}$, $\mathrm{m},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), 2.67-2.80 $\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), 3.07 $\left(4 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine $), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00-4.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{CH}_{3},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}$ piperidine), 6.84-7.04 $\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\delta / \mathrm{ppm}): 14.7\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 30.7\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), $33.5\left(1 \mathrm{C}, \mathrm{C}_{4}\right.$ piperidine), 43.9 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 50.6 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), $53.9\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 61.1\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 64.6$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 111.1\left(1 \mathrm{C}, \mathrm{C}_{3}\right.$, 2-methoxyphenyl group), $118.1\left(1 \mathrm{C}, \mathrm{C}_{5}\right.$, 2methoxyphenyl group), 120.9 (1C, $\mathrm{C}_{4}, 2$-methoxyphenyl group), 122.8 (1C, C_{6}, 2-methoxyphenyl group), 141.4 (1C, C_{2}, 2-methoxyphenyl group), 152.3 (1C, C_{1}, 2-methoxyphenyl group), 155.7 (1C, O-C=O); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} 362.2438$; found 362.2437.

1-(1-Benzylpiperidin-4-yl)-4-(2-methoxyphenyl)piperazine (15): Yield: 76\%, oil; IR (ATR, cm^{-1}): 1590.7, 1450.5 (C=C-), $1237.0(\mathrm{C}-\mathrm{N}), 1019.6(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H}-$ NMR ($200 \mathrm{MHz}, \delta / \mathrm{ppm}$): $1.65\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.86\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.01(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=11.2 \mathrm{~Hz},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}_{2}$ piperidine), $2.36\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{~J}=11.4 \mathrm{~Hz},{ }^{4} \mathrm{CH}\right.$ piperidine), 2.76-2.81 (m, $4 \mathrm{H},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.8$ $\mathrm{Hz},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}$ piperidine), 3.09-3.14 (m, $4 \mathrm{H},{ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), 3.51 $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.83-7.04(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.22-7.33 (m, 5 H , aromatic); ${ }^{13} \mathrm{CNMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 27.8$ (2C, C_{3} and C_{5} piperidine), 49.2 $\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperidine), $50.7\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperazine), $53.0\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.2\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 62.1\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 62.9\left(1 \mathrm{C}, \mathrm{C}_{4}\right.$, piperidine), 111.0 (1C, $\mathrm{C}_{3}, 2$-methoxyphenyl group), 118.2 (1C, $\mathrm{C}_{5}, 2$-methoxyphenyl group), 120.9 (1C, $\mathrm{C}_{4}, 2$-methoxyphenyl group), 122.9 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 127.0 $\left(1 \mathrm{C}, \mathrm{C}_{4}\right.$, phenyl group), $128.2\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5}, phenyl group), $129.1\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6}, phenyl group), 138.1 ($1 \mathrm{C}, \mathrm{C}_{1}$, phenyl group), 141.2 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2-methoxyphenyl group), 152.2 (1C, $\mathrm{C}_{1}, 2$-methoxyphenyl group); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O} 366.2540$; found 366.2547.

1-(2-Methoxyphenyl)-4-[1-(2-nitrobenzyl)piperidin-4-yl]piperazine (16): Yield: 80%, m.p. $145-147^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1589.7, 1454.5 (C=C-), 1526.0 (N-O), 1369.8 (N-O), 1237.5 (C-N), 1022.6 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, ~ \delta / \mathrm{ppm})$: $1.56\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.82(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=11.8 \mathrm{~Hz},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), 2.01-2.12 ($2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}$ piperidine), $2.29\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{~J}=11.2 \mathrm{~Hz},{ }^{4} \mathrm{CH}\right.$ piperidine $), 2.74-2.78\left(4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2}\right.$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.86\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $3.1(4 \mathrm{H}, \mathrm{s}$, ${ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.83-7.04$ $(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.37(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, aromatic), $7.53(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, aromatic), $7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}$, aromatic), $7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}$, aromatic); ${ }^{13} \mathrm{C}-$ NMR ($50 \mathrm{MHz}, \delta / \mathrm{ppm}$): $28.3\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), $49.3\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperidine), 50.9 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 53.3 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 58.8\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 61.8\left(1 \mathrm{C}, \mathrm{C}_{4}\right.$, piperidine), $111.1\left(1 \mathrm{C}, \mathrm{C}_{3}, 2-\right.$ methoxyphenyl group), 118.1 (1C, C_{5}, 2-methoxyphenyl group), 120.9 ($1 \mathrm{C}, \mathrm{C}_{4}$, 2-methoxyphenyl group), 122.9 ($1 \mathrm{C}, \mathrm{C}_{6}, 2$-methoxyphenyl group), 124.3 ($1 \mathrm{C}, \mathrm{C}_{1}$, 2-nitrophenyl group), 127.7 ($1 \mathrm{C}, \mathrm{C}_{3}, 2$-nitrophenyl group), 130.8 (1C, $\mathrm{C}_{4}, 2$ nitrophenyl group), 132.4 ($1 \mathrm{C}, \mathrm{C}_{5}, 2$-nitrophenyl group), 134.3 (1C, $\mathrm{C}_{6}, 2-$ nitrophenyl group), 141.3 ($1 \mathrm{C}, \mathrm{C}_{2}, 2$-methoxyphenyl group), 149.7 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2-nitrophenyl group), 152.2 (1C, $\mathrm{C}_{1}, 2$-methoxyphenyl group); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} 411.2391$; found 411.2402.

1-(2-Methoxyphenyl)-4-[1-(3-nitrobenzyl)piperidin-4-yl]piperazine (17): Yield: 86%, oil; IR (ATR, cm^{-1}): 1588.3, 1499.4 (C=C-), 1530.8 (N-O), 1346.9 (N-O), 1237.5 (C-N), 1027.6 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.63$ ($2 \mathrm{H}, \mathrm{qd}$, $\mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{~J}=10.7 \mathrm{~Hz},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.86\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.8 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $2.34(1 \mathrm{H}, \mathrm{tt}$, $\mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz},{ }^{4} \mathrm{CH}$ piperidine $)$, $2.76-2.80\left(4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2}\right.$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), 3.08-3.11 ($4 \mathrm{H}, \mathrm{m}$, ${ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.83-7.04$ $(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, aromatic), $7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}$, aromatic), $8.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}\right.$, aromatic), $8.2\left(1 \mathrm{H}, \mathrm{s}\right.$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\mathrm{MHz}, \delta / \mathrm{ppm}): 28.2$ ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 49.3 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 50.9 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 55.2 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), 55.3 (1 C , $\left.\mathrm{OCH}_{3}\right), 62.0\left(2 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right.$ and C_{4} piperidine), $111.0\left(1 \mathrm{C}, \mathrm{C}_{3}, 2\right.$-methoxyphenyl group), 118.2 (1C, $\mathrm{C}_{5}, 2$-methoxyphenyl group), 120.3 (2C, C 4 , 2-methoxyphenyl group and $\mathrm{C}_{4}, 3$-nitrophenyl group), 122.1 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 122.9 (1C, C 2 , 3-nitrophenyl group), 123.6 (1C, $\mathrm{C}_{5}, 3$-nitrophenyl group), 129.1 (1C, $\mathrm{C}_{6}, 3$-nitrophenyl group), 134.9 ($1 \mathrm{C}, \mathrm{C}_{1}, 3$-nitrophenyl group), 141.3 (1C, C_{2}, 2-methoxyphenyl group), 149.8 (1C, $\mathrm{C}_{3}, 3$-nitrophenyl group), 152.2 (1C, C_{1}, 2-methoxyphenyl group); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}$ 411.2391; found 411.2389.

1-(2-Methoxyphenyl)-4-[1-(4-nitrobenzyl)piperidin-4-yl]piperazine (18):
Yield: 76%, m.p. $144-146^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1599.4, 1445.6 ($\mathrm{C}=\mathrm{C}-$), 1513.8 (N-O), 1344.2 (N-O), $1236.8(\mathrm{C}-\mathrm{N}), 1020.3(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm})$: $1.65\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{~J}=12.2 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine $), 1.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11,8$ $\mathrm{Hz},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.00-2.11\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine $), 2.39$ $\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{~J}=11.2 \mathrm{~Hz},{ }^{4} \mathrm{CH}\right.$ piperidine $), 2.80-2.84\left(4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2}\right.$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.92\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $3.12-3.14(\mathrm{~m}, 4 \mathrm{H}$, ${ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine $), 3.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.84-7.05$ $(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}$, aromatic), $8.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 28.1$ (2C, C_{3} and C_{5} piperidine), 49.3 $\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperidine), 50.7 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), $53.2\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 62.0\left(2 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right.$ and C_{4} piperidine), $111.0(1 \mathrm{C}$, C_{3}, 2-methoxyphenyl group), 118.2 ($1 \mathrm{C}, \mathrm{C}_{5}$, 2-methoxyphenyl group), 121.0 (1C, C_{4}, 2-methoxyphenyl group), 123.0 ($1 \mathrm{C}, \mathrm{C}_{6}, 2$-methoxyphenyl group), 123.5 (2C, C_{3} and C_{5}, 4-nitrophenyl group), 129. 3 ($2 \mathrm{C}, \mathrm{C}_{2}$ and $\mathrm{C}_{6}, 4$-nitrophenyl group), 141.1 (1C, C_{2}, 2-methoxyphenyl group), 146.8 (2C, C_{1} and C_{4}, 4-nitrophenyl group), 152.2 ($1 \mathrm{C}, \mathrm{C}_{1}$, 2-methoxyphenyl group); $\mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} 411.2391$; found 411.2409.

1-[(1-Benzylpiperidin-4-yl)methyl]-4-(2-methoxyphenyl)piperazine (19): Yield: 80%, m.p. $104-105^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1588.4, 1447.5 ($\mathrm{C}=\mathrm{C}-$), 1238.7 (C-N), $1024.9(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.25(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{~J}=12$ $\mathrm{Hz},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), 1.46-1.59 $\left(1 \mathrm{H}, \mathrm{m},{ }^{4} \mathrm{CH}\right.$ piperidine), $1.74(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=13 \mathrm{~Hz},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.89-2.00\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $2.41\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 2.52\left(4 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}_{2}\right.$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), 2.89 $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $3.07\left(4 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.83-7.04(4 \mathrm{H}, \mathrm{m}$, aromatic), 7.23-7.33 ($5 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}$): 31.0 (2C, C_{3} and C_{5} piperidine), 33.1 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 50.6 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 53.8 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 53.9 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), 55.3 (1C, $\left.\mathrm{OCH}_{3}\right), 62.5\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 64.8\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right)$, $111.1\left(1 \mathrm{C}, \mathrm{C}_{3}, 2\right.$-methoxyphenyl group), 118.2 (1C, C5, 2-methoxyphenyl group), 120.9 (1C, C_{4}, 2-methoxyphenyl group), 122.8 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 126.9 (1C, C_{4}, phenyl group), 128.1 (2C, C_{3} and C_{5} phenyl group), 129.2 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} phenyl group), 138.5 $\left(1 \mathrm{C}, \mathrm{C}_{1}\right.$, phenyl group), 141.5 ($1 \mathrm{C}, \mathrm{C}_{2}, 2$-methoxyphenyl group), 152.3 ($1 \mathrm{C}, \mathrm{C}_{1}$, 2-methoxyphenyl group); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}$ 380.2696; found 380.2692.

1-(2-Methoxyphenyl)-4-\{[1-(2-nitrobenzyl)piperidin-4-yl]methyl\}piperazine (20): Yield: 82%, m.p. $99-101^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1589.1, 1499.5 (C=C-), 1532.6 (N-O), 1314.2 (N-O), 1236.1 (C-N), 1026.4 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\delta / \mathrm{ppm}): 1.21\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}_{1}=11.5 \mathrm{~Hz}, \mathrm{~J}_{2}=3 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), 1.45-1.58 $\left(1 \mathrm{H}, \mathrm{m},{ }^{4} \mathrm{CH}\right.$ piperidine), $1.72\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine),
1.96-2.07 ($2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}$ and ${ }^{6} \mathrm{CH}$ piperidine), $2.23\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right)$, 2.59-2.61 ($4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.78\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), 3.07 ($4 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), 3.76 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}$), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.83-7.03(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.32-7.83(\mathrm{~m}, 4 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$-NMR ($50 \mathrm{MHz}, \delta / \mathrm{ppm}$): 31.1 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 33.1 (1C, C_{4} piperidine), 50.6 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), $53.9\left(4 \mathrm{C}, \mathrm{C}_{2}, \mathrm{C}_{6}\right.$ piperidine and C_{3}, C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 63.5\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 64.9\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 111.1$ (1C, C_{3}, 2-methoxyphenyl group), 118.2 (1C, $\mathrm{C}_{5}, 2$-methoxyphenyl group), 120.9 (1C, C_{4}, 2-methoxyphenyl group), 122.8 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 124.3 (1C, $\mathrm{C}_{1}, 2$-nitrophenyl group), 127.6 ($1 \mathrm{C}, \mathrm{C}_{3}, 2$-nitrophenyl group), 130.8 (1 C , $\mathrm{C}_{4}, 2$-nitrophenyl group), 132.4 ($1 \mathrm{C}, \mathrm{C}_{5}$, 2-nitrophenyl group), 134.7 ($1 \mathrm{C}, \mathrm{C}_{6}, 2$ nitrophenyl group), 141.5 ($1 \mathrm{C}, \mathrm{C}_{2}, 2$-methoxyphenyl group), 149.8 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2-nitrophenyl group), 152.3 ($1 \mathrm{C}, \mathrm{C}_{1}, 2$-methoxyphenyl group); MS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3} 425.2547$; found 425.2540 .

1-(2-Methoxyphenyl)-4-\{[1-(3-nitrobenzyl)piperidin-4-yl]methyl]piperazine (21): Yield: 80%, m.p. $131-133^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1594.7 , 1444.9 ($\mathrm{C}=\mathrm{C}-$), 1534.2 (N-O), 1342.3 (N-O), 1251.5 (C-N), 1030.8 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz , $\delta / \mathrm{ppm}): 1.32\left(2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{~J}=12 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), 1.48-1.64 ($1 \mathrm{H}, \mathrm{m},{ }^{4} \mathrm{CH}$ piperidine), $1.76\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), 1.95$2.06\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $2.25\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 2.60(\mathrm{~s}$, $4 \mathrm{H},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.85\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $3.07\left(4 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.86$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.83-7.04(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, aromatic), 7.67 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}$, aromatic), $8.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, aromatic) $8.2(1 \mathrm{H}, \mathrm{s}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 31.0\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), 33.1 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 50.6 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 53.8 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), $53.9\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 62.5\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 64.8(1 \mathrm{C}$, $\mathrm{CH}_{2}-\mathrm{N}$), 111.1 (1C, C_{3}, 2-methoxyphenyl group), 118.2 ($1 \mathrm{C}, \mathrm{C}_{5}$, 2methoxyphenyl group), 120.9 ($2 \mathrm{C}, \mathrm{C}_{4}, 3$-nitrophenyl group and $\mathrm{C}_{4}, 2$ methoxyphenyl group), 122.1 ($1 \mathrm{C}, \mathrm{C}_{6}, 2$-methoxyphenyl group), 122.8 ($1 \mathrm{C}, \mathrm{C}_{2}$, 3-nitrophenyl group), 123.7 ($1 \mathrm{C}, \mathrm{C}_{5}, 3$-nitrophenyl group), 129.1 (1C, $\mathrm{C}_{6}, 3-$ nitrophenyl group), 135.0 ($1 \mathrm{C}, \mathrm{C}_{1}, 3$-nitrophenyl group), 141.3 ($1 \mathrm{C}, \mathrm{C}_{2}, 2$ methoxyphenyl group), 149.3 ($1 \mathrm{C}, \mathrm{C}_{3}$, 3-nitrophenyl group), 152.3 ($1 \mathrm{C}, \mathrm{C}_{1}$, 2-methoxyphenyl group); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3}$ 425.2547; found 425.2552.

1-(2-Methoxyphenyl)-4-\{[1-(4-nitrobenzyl)piperidin-4-yl]methyl]piperazine (22): Yield: 87%, m.p. $120-121^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): $1598.2,1447.6$ (C=C-), 1507.9 (N-O), 1343.0 (N-O), 1242.9 (C-N), 1026.6 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz , $\delta / \mathrm{ppm}): 1.26$ ($2 \mathrm{H}, \mathrm{qd}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{CH}$ and ${ }^{5} \mathrm{CH}$ piperidine), 1.47-1.66 ($1 \mathrm{H}, \mathrm{m},{ }^{4} \mathrm{CH}$ piperidine), $1.76\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $1.95-$ $2.05\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $2.26\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 2.60-2.62$
($4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.84\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ and ${ }^{6} \mathrm{CH}$ piperidine), $3.07\left(\mathrm{~s}, 4 \mathrm{H},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.86(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.83-7.04(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.50(2 \mathrm{H} \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, aromatic), 8.17 $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}\right.$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 31.0\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), 33.0 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), $50.6\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperazine), $53.8(4 \mathrm{C}$, $\mathrm{C}_{2}, \mathrm{C}_{6}$ piperidine and $\mathrm{C}_{3}, \mathrm{C}_{5}$ piperazine $), 55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 62.5\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right)$, $64.8\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 111.0$ (1C, C_{3}, 2-methoxyphenyl group), 118.1 (1C, $\mathrm{C}_{5}, 2-$ methoxyphenyl group), 120.9 (1C, $\mathrm{C}_{4}, 2$-methoxyphenyl group), 122.8 (1C, C_{6}, 2-methoxyphenyl group), 123.4 ($2 \mathrm{C}, \mathrm{C}_{3}$ and $\mathrm{C}_{5}, 4$-nitrophenyl group), 129.4 (2C, C_{2} and $\mathrm{C}_{6}, 4$-nitrophenyl group), 141.4 (1C, C_{2}, 2-methoxyphenyl group), 146.9 (2C, C_{1} and C_{4}, 4-nitrophenyl group), 152.2 (1C, C_{1}, 2-methoxyphenyl group); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3} 425.2547$; found 425.2561 .
\{4-[4-(2-methoxyphenyl)piperazin-1-yl]piperidin-1-yl\}(phenyl)methanone
(27): Yield: 76%, m.p. $131-132^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1626.6 (C=O), 1234.1 (CN), 1024.3 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm}): 1.55-2.17$ ($5 \mathrm{H} \mathrm{m},{ }^{3} \mathrm{CH}_{2},{ }^{5} \mathrm{CH}_{2}$ and ${ }^{2} \mathrm{CH}$ piperidine), $2.56\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{CH}\right.$ piperidine), 2.76-2.80 ($5 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2},{ }^{6} \mathrm{CH}_{2}$ piperazine and ${ }^{6} \mathrm{CH}$ piperidine), $3.109\left(5 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2},{ }^{5} \mathrm{CH}_{2}\right.$ piperazine and ${ }^{2} \mathrm{CH}$ piperidine), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.75\left(1 \mathrm{H}, \mathrm{s},{ }^{6} \mathrm{CH}\right.$ piperidine), 6.84-7.05 (4H, m, aromatic), 7.26-7.40 ($5 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\delta / \mathrm{ppm}): 28.2$ ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 47.1 (2C, C_{2} and C_{6} piperidine), 49.4 $\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperazine), $50.9\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right)$, 61.8 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 111.1 ($1 \mathrm{C}, \mathrm{C}_{3}, 2$-methoxyphenyl group), 118.1 ($1 \mathrm{C}, \mathrm{C}_{5}$, 2-methoxyphenyl group), 121.0 ($1 \mathrm{C}, \mathrm{C}_{4}, 2$-methoxyphenyl group), 123.0 ($1 \mathrm{C}, \mathrm{C}_{6}$, 2-methoxyphenyl group), 126.8 (2C, C_{2} and C_{6} phenyl group), 128.4 (2C, C_{3} and C_{5}, phenyl group), 129.5 (1C, C_{4}, phenyl group), 136.2 ($1 \mathrm{C}, \mathrm{C}_{1}$, phenyl group), 141.2 (1C, $\mathrm{C}_{2}, 2$-methoxyphenyl group), 152.2 ($1 \mathrm{C}, \mathrm{C}_{1}, 2$-methoxyphenyl group), $170.2(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$; MS (m/z): [M+H] ${ }^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} 380.2333$; found 380.2338 .
\{4-[4-(2-methoxyphenyl)piperazin-1-yl]piperidin-1-yl\}(2-nitrophenyl)methanone (28): Yield: 75\%, m.p. $159-161^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1638.7 ($\mathrm{C}=\mathrm{O}$), 1521.1 (N-O), $1341.8(\mathrm{~N}-\mathrm{O}), 1236.1(\mathrm{C}-\mathrm{N}), 1025.4(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\delta / \mathrm{ppm}): 1.25-1.99\left(5 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2},{ }^{5} \mathrm{CH}_{2}\right.$ and ${ }^{2} \mathrm{CH}$ piperidine $), 2.61(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=3.4$ $\mathrm{Hz}, \mathrm{J}=10 \mathrm{~Hz},{ }^{4} \mathrm{CH}$ piperidine), 2.78-2.83 $\left(5 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2},{ }^{2} \mathrm{CH}_{2}\right.$ piperazine and ${ }^{6} \mathrm{CH}$ piperidine), $3.10-3.12\left(5 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2},{ }^{5} \mathrm{CH}_{2}\right.$ piperazine and ${ }^{2} \mathrm{CH}$ piperidine), 3.78 $\left(1 \mathrm{H}, \mathrm{s},{ }^{6} \mathrm{CH}\right.$ piperidine), $3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.85-7.06(5 \mathrm{H}, \mathrm{m}$, aromatic), 7.58$7.66(1 \mathrm{H}, \mathrm{m}$, aromatic $)$, $7.72-7.78(1 \mathrm{H}, \mathrm{m}$, aromatic), 8.18-8.35 (1H, m, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 28.0\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), 47.1 $\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperidine), 49.3 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), $50.8\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 61.5\left(1 \mathrm{C}, \mathrm{C}_{4}\right.$ piperidine), $111.1\left(1 \mathrm{C}, \mathrm{C}_{3}, 2-\right.$ methoxyphenyl group), 118.2 ($1 \mathrm{C}, \mathrm{C}_{5}, 2$-methoxyphenyl group), 121.0 ($1 \mathrm{C}, \mathrm{C}_{4}$, 2-methoxyphenyl group), 122.1 ($1 \mathrm{C}, \mathrm{C}_{6}, 2$-methoxyphenyl group), 124.8 ($1 \mathrm{C}, \mathrm{C}_{3}$,

2-nitrophenyl group), 128.0 (1C, $\mathrm{C}_{6}, 2$-nitrophenyl group), 129.7 (1C, C_{4}, 2nitrophenyl group), 133.2 ($1 \mathrm{C}, \mathrm{C}_{1}$, 2-nitrophenyl group), 134.3 ($1 \mathrm{C}, \mathrm{C}_{5}, 2$ nitrophenyl group), 141.1 (1C, $\mathrm{C}_{2}, 2$-methoxyphenyl group), 145.4 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2-nitrophenyl group), 152.2 ($1 \mathrm{C}, \mathrm{C}_{1}, 2$-methoxyphenyl group), $166.4(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$; $\mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} 425.2183$; found 425.2192.
\{4-[4-(2-methoxyphenyl)piperazin-1-yl]piperidin-1-yl\}(3-nitrophenyl)-
methanone (29): Yield: 72%, m.p. $118-119^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): $1621.8(\mathrm{C}=\mathrm{O})$, 1531.0 (N-O), 1351.3 (N-O), 1244.8 (C-N), 1025.3 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\delta / \mathrm{ppm})$: 1.53-1.63 $\left(2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), 1.88-2.16 $\left(2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}\right.$ and ${ }^{5} \mathrm{CH}$ piperidine), $2.62\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{~J}=11.4 \mathrm{~Hz},{ }^{4} \mathrm{CH}\right.$ piperidine), 2.73-2.83 $\left(5 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}_{2},{ }^{6} \mathrm{CH}_{2}\right.$ piperazine and ${ }^{2} \mathrm{CH}$ piperidine), $3.10-3.15\left(5 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2}\right.$, ${ }^{5} \mathrm{CH}_{2}$ piperazine and ${ }^{6} \mathrm{CH}$ piperidine), $3.50-3.73\left(1 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ piperidine), 3.82 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.74-4.79\left(1 \mathrm{H}, \mathrm{m},{ }^{6} \mathrm{CH}\right.$ piperidine), $6.82-7.06(4 \mathrm{H}, \mathrm{m}$, aromatic), 7.46-7.68 ($2 \mathrm{H}, \mathrm{m}$, aromatic), 8.18-8.39 ($2 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (50 MHz , $\delta / \mathrm{ppm}): 27.9$ ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 46.8 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine) 49.3 $\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperazine), 50.7 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right)$, 61.5 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 111.1 ($1 \mathrm{C}, \mathrm{C}_{3}, 2$-methoxyphenyl group), 118.1 ($1 \mathrm{C}, \mathrm{C}_{5}$, 2-methoxyphenyl group), 121.0 (1C, $\mathrm{C}_{4}, 2$-methoxyphenyl group), 122.1 (1C, C_{6}, 2-methoxyphenyl group), 123.0 (1C, $\mathrm{C}_{2}, 3$-nitrophenyl group), 124.4 (1C, $\mathrm{C}_{4}, 3$ nitrophenyl group), 129.8 ($1 \mathrm{C}, \mathrm{C}_{5}$, 3-nitrophenyl group), 132.9 ($1 \mathrm{C}, \mathrm{C}_{6}, 3$ nitrophenyl group), 137.7 (1C, C_{1}, 3-nitrophenyl group), 141.1 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2methoxyphenyl group), 148.0 ($1 \mathrm{C}, \mathrm{C}_{3}, 3$-nitrophenyl group), 152.2 ($1 \mathrm{C}, \mathrm{C}_{1}$, 2-methoxyphenyl group), $167.5(1 \mathrm{C}, \mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} 425.2183$; found 425.2195 .
\{4-[4-(2-methoxyphenyl)piperazin-1-yl]piperidin-1-yl\}(4-nitrophenyl)-
methanone (30): Yield: 70%, m.p. $156-157^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1630.1 ($\mathrm{C}=\mathrm{O}$), 1522.0 (N-O), $1352.0(\mathrm{~N}-\mathrm{O}), 1233.0(\mathrm{C}-\mathrm{N}), 1024.5(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\delta / \mathrm{ppm}): 1.47-2.07\left(5 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}_{2},{ }^{5} \mathrm{CH}_{2}\right.$ and ${ }^{2} \mathrm{CH}$ piperidine), $2.57-2.61(1 \mathrm{H}, \mathrm{m}$, ${ }^{4} \mathrm{CH}$ piperidine), $2.79\left(\mathrm{~s}, 4 \mathrm{H},{ }^{2} \mathrm{CH}_{2}\right.$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), $2.87\left(1 \mathrm{H}, \mathrm{s},{ }^{6} \mathrm{CH}\right.$ piperidine), $3.11\left(4 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2}\right.$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.66\left(1 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}\right.$ piperidine), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.73-4.76 $\left(1 \mathrm{H}, \mathrm{m},{ }^{6} \mathrm{CH}\right.$ piperidine), 6.85-7.02 $\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic), $7.56-7.58\left(2 \mathrm{H} \mathrm{m}\right.$, aromatic), 8.27-8.29 $\left(2 \mathrm{H}, \mathrm{m}\right.$, aromatic); ${ }^{13} \mathrm{C}-$ NMR ($50 \mathrm{MHz}, \delta / \mathrm{ppm}$): 28.1 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 47.0 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 49.4 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 50.9 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 61.5\left(1 \mathrm{C}, \mathrm{C}_{4}\right.$ piperidine), $111.1\left(1 \mathrm{C}, \mathrm{C}_{3}\right.$, 2-methoxyphenyl group), 118.2 (1C, C5, 2-methoxyphenyl group), 121.0 (1C, C_{4}, 2-methoxyphenyl group), 123.1 (1C, C_{6}, 2-methoxyphenyl group), 123.9 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5}, 4-nitrophenyl group), 127.9 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6}, 4-nitrophenyl group), 141.1 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2-methoxyphenyl group), 142.29 ($1 \mathrm{C}, \mathrm{C}_{1}, 4$-nitrophenyl group), 148.35 (1C, C_{4}, 4-nitrophenyl group), 152.2 ($1 \mathrm{C}, \mathrm{C}_{1}, 2$-methoxyphenyl group), $167.8(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$; MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} 425.2183$; found 425.2186.
(4-\{[4-(2-methoxyphenyl)piperazin-1-yl]methyl\}piperidin-1-yl)(phenyl)-
methanone (31): Yield: 68%, oil; IR (ATR, cm^{-1}): 1629.3 (C=O), 1239.0 (C-N), 1130.4 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}, \delta / \mathrm{ppm})$: $1.24-125\left(2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH},{ }^{5} \mathrm{CH}\right.$ piperidine), 1.80-1.85 (3H, m, ${ }^{3} \mathrm{CH},{ }^{5} \mathrm{CH}$ and ${ }^{4} \mathrm{CH}$ piperidine), 2.28-2.29 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}-\mathrm{N}\right), 2.62\left(5 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}_{2},{ }^{6} \mathrm{CH}_{2}\right.$ piperazine and ${ }^{2} \mathrm{CH}$ piperidine), $3.07(5 \mathrm{H}, \mathrm{s}$, ${ }^{3} \mathrm{CH}_{2},{ }^{5} \mathrm{CH}_{2}$ piperazine and ${ }^{6} \mathrm{CH}$ piperidine), $3.70\left(1 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}\right.$ piperidine), 3.86 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.72\left(1 \mathrm{H}, \mathrm{s},{ }^{6} \mathrm{CH}\right.$ piperidine), $6.84(1 \mathrm{H}, \mathrm{m}$, aromatic), $6.89(2 \mathrm{H}$, m , aromatic), $6.94\left(1 \mathrm{H}, \mathrm{m}\right.$, aromatic), $6.97\left(5 \mathrm{H}, \mathrm{m}\right.$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\mathrm{MHz}, \delta / \mathrm{ppm}$): 30.7 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 33.7 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 48.0 $\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperidine), $50.6\left(2 \mathrm{C}, \mathrm{C}_{2}\right.$ and C_{6} piperazine), $53.9\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 64.4\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 111.2\left(1 \mathrm{C}, \mathrm{C}_{3}, \quad 2-\right.$ methoxyphenyl group), 118.2 ($1 \mathrm{C}, \mathrm{C}_{5}$, 2-methoxyphenyl group), 121.0 ($1 \mathrm{C}, \mathrm{C}_{4}$, 2-methoxyphenyl group), 122.9 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 126.8 (2C, C_{2} and C_{6} phenyl group), 128.4 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5}, phenyl group), 129.4 ($1 \mathrm{C}, \mathrm{C}_{4}$, phenyl group), 136.5 ($1 \mathrm{C}, \mathrm{C}_{1}$, phenyl group), 141.4 ($1 \mathrm{C}, \mathrm{C}_{2}$, 2-methoxyphenyl group), 152.3 (1C, C 1,2 -methoxyphenyl group), 170.3 ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$); MS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2} 394.2489$; found 394.2488 .
(4-\{[4-(2-methoxyphenyl)piperazin-1-yl]methyl\}piperidin-1-yl)(2-nitrophenyl)methanon (32): Yield: 73%, m.p. $127-130^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1628.4 (C=O), 1524.2 (N-O), 1343.5 (N-O), 1235.7 (C-N), 1114.5 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\delta / \mathrm{ppm}): 1.06-1.09\left(2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH},{ }^{5} \mathrm{CH}\right.$ piperidine), $1.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right), 1.68-1.72$ ($3 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH},{ }^{5} \mathrm{CH}$ and ${ }^{4} \mathrm{CH}$ piperidine), 2.24-2.33 ($1 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}$ piperidine), 2.61 ($4 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), 2.84-2.88 ($1 \mathrm{H}, \mathrm{m},{ }^{6} \mathrm{CH}$ piperidine), $3.02(4 \mathrm{H}$, $\mathrm{s},{ }^{3} \mathrm{CH}_{2}$ and ${ }^{5} \mathrm{CH}_{2}$ piperazine), $3.36\left(1 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}\right.$ piperidine), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.73-4.78 ($1 \mathrm{H}, \mathrm{m},{ }^{6} \mathrm{CH}$ piperidine), $6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$, aromatic), 6.89-6.94 $(2 \mathrm{H}, \mathrm{m}$, aromatic), 6.97-7.00 $(1 \mathrm{H}, \mathrm{m}$, aromatic) $7.38(1 \mathrm{H}, \mathrm{s}$, aromatic $), 7.55(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}$, aromatic), $7.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, aromatic), 8.19 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}): 29.9\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), 33.6 (1C, C_{4} piperidine), 46.7 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 50.7 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), $53.9\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 64.2\left(1 \mathrm{C}, \mathrm{CH}_{2}{ }^{-}\right.$ N), 111.1 (1C, C ${ }_{3}$, 2-methoxyphenyl group), 118.1 (1C, C5, 2-methoxyphenyl group), 121.0 ($1 \mathrm{C}, \mathrm{C}_{4}, 2$-methoxyphenyl group), 122.9 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 124.8 ($1 \mathrm{C}, \mathrm{C}_{3}, 2$-nitrophenyl group), 128.0 ($1 \mathrm{C}, \mathrm{C}_{6}, 2$-nitrophenyl group), 129.6 ($1 \mathrm{C}, \mathrm{C}_{4}, 2$-nitrophenyl group), 133.5 ($1 \mathrm{C}, \mathrm{C}_{1}, 2$-nitrophenyl group), 134.4 (1C, $\mathrm{C}_{5}, 2$-nitrophenyl group), 141.4 (1C, $\mathrm{C}_{2}, 2$-methoxyphenyl group), 145.3 (1C, $\mathrm{C}_{2}, 2$-nitrophenyl group), 152.3 (1C, $\mathrm{C}_{1}, 2$-methoxyphenyl group), 170.3 (1C, C=O); MS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} 439.2340$; found 439.2348.
(4-\{[4-(2-methoxyphenyl)piperazin-1-yl)methyl]piperidin-1-yl\}(3-nitrophenyl)methanone (33): Yield: 80%, m.p. $116-118^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1630.6 (C=O), 1533.1 (N-O), 1351.6 (N-O), 1243.6 (C-N), 1109.9 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}$
($200 \mathrm{MHz}, \delta / \mathrm{ppm}$): 1.15-1.17 ($2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH},{ }^{5} \mathrm{CH}$ piperidine), 1.82-1.94 (3H, m, ${ }^{3} \mathrm{CH},{ }^{5} \mathrm{CH}$ and ${ }^{4} \mathrm{CH}$ piperidine), $2.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right.$), 2.62 (s, $4 \mathrm{H},{ }^{2} \mathrm{CH}_{2}$ and ${ }^{6} \mathrm{CH}_{2}$ piperazine), 2.84 ($1 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}$ piperidine), $3.07\left(5 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}_{2},{ }^{6} \mathrm{CH}_{2}\right.$ piperazine and ${ }^{6} \mathrm{CH}$ piperidine), 3.64-3.66 ($1 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{CH}$ piperidine), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.73$ $\left(1 \mathrm{H}, \mathrm{s},{ }^{6} \mathrm{CH}\right.$ piperidine), 6.84-6.86 ($1 \mathrm{H}, \mathrm{m}$, aromatic), 6.89-6.94 $(2 \mathrm{H}, \mathrm{m}$, aromatic), 6.97-7.00 $(1 \mathrm{H}, \mathrm{m}$, aromatic), $7.58-7.62(1 \mathrm{H}, \mathrm{m}$, aromatic), $7.74(1 \mathrm{H}$, m , aromatic), 8.26-8.28 ($2 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm}$): 30.4 $\left(2 \mathrm{C}, \mathrm{C}_{3}\right.$ and C_{5} piperidine), 33.6 ($1 \mathrm{C}, \mathrm{C}_{4}$ piperidine), 47.9 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 50.6 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 53.8 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 64.2\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 111.1\left(1 \mathrm{C}, \mathrm{C}_{3}, 2\right.$-methoxyphenyl group), 118.1 (1C, $\mathrm{C}_{5}, 2$-methoxyphenyl group), 120.9 (1C, $\mathrm{C}_{4}, 2$-methoxyphenyl group), 122.8 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 124.2 ($1 \mathrm{C}, \mathrm{C}_{2}, 3$-nitrophenyl group), 128.0 (1C, C 4 , 3-nitrophenyl group), 129.7 (1C, $\mathrm{C}_{5}, 3$-nitrophenyl group), 132.9 (1C, $\mathrm{C}_{6}, 3$-nitrophenyl group), 137.9 ($1 \mathrm{C}, \mathrm{C}_{1}, 3$-nitrophenyl group), 141.3 (1C, C_{2}, 2-methoxyphenyl group), 149.8 (1C, C_{3}, 3-nitrophenyl group), 152.3 (1C, C_{1}, 2-methoxyphenyl group), 167.2 ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$); MS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} 439.2340$; found 439.2357 .
(4-\{[4-(2-methoxyphenyl)piperazin-1-yl]methyl]piperidin-1-yl)(4-nitrophenyl)methanone (34): Yield: 85%, m.p.19-121 ${ }^{\circ} \mathrm{C}$; IR (ATR, cm^{-1}): 1630.7 (C=O), 1519.0 (N-O), 1347.9 (N-O), 1239.4 (C-N), 1012.9 (C-N); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\mathrm{MHz}, \delta / \mathrm{ppm})$: 1.11-1.13 ($2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH},{ }^{5} \mathrm{CH}$ piperidine), 1.79-1.87 ($2 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{CH}$, ${ }^{5} \mathrm{CH}$ piperidine), $1.95\left(1 \mathrm{H}, \mathrm{m},{ }^{4} \mathrm{CH}\right.$ piperidine), 2.28-2.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{N}$), 2.62 ($5 \mathrm{H}, \mathrm{s},{ }^{2} \mathrm{CH}_{2},{ }^{6} \mathrm{CH}_{2}$ piperazine and ${ }^{2} \mathrm{CH}$ piperidine), $3.07\left(5 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{CH}_{2},{ }^{5} \mathrm{CH}_{2}\right.$ piperazine and ${ }^{6} \mathrm{CH}$ piperidine), $3.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz},{ }^{2} \mathrm{CH}\right.$ piperidine), 3.86 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz},{ }^{6} \mathrm{CH}\right.$ piperidine $)$, $6.84-6.86(1 \mathrm{H}, \mathrm{m}$, aromatic), 6.89-6.94 ($2 \mathrm{H}, \mathrm{m}$, aromatic), $6.97-7.01(1 \mathrm{H}, \mathrm{m}$, aromatic), $7.55(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=9 \mathrm{~Hz}$, aromatic), $8.26\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}\right.$, aromatic); ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}, \delta / \mathrm{ppm})$: 30.4 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperidine), 33.6 (1C, C_{4} piperidine), 47.8 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperidine), 50.6 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6} piperazine), 53.9 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5} piperazine), $55.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 64.2\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 111.1$ ($1 \mathrm{C}, \mathrm{C}_{3}$, 2-methoxyphenyl group), 118.1 (1C, $\mathrm{C}_{5}, 2$-methoxyphenyl group), 120.9 ($1 \mathrm{C}, \mathrm{C}_{4}, 2$-methoxyphenyl group), 122.9 (1C, $\mathrm{C}_{6}, 2$-methoxyphenyl group), 123.8 ($2 \mathrm{C}, \mathrm{C}_{3}$ and C_{5}, 4-nitrophenyl group), 127.8 ($2 \mathrm{C}, \mathrm{C}_{2}$ and C_{6}, 4-nitrophenyl group), $141.4\left(1 \mathrm{C}, \mathrm{C}_{2}\right.$, 2-methoxyphenyl group), 142.6 ($1 \mathrm{C}, \mathrm{C}_{1}$, 4-nitrophenyl group), 148.2 ($1 \mathrm{C}, \mathrm{C}_{4}, 4$ nitrophenyl group), 152.2 (1C, $\mathrm{C}_{1}, 2$-methoxyphenyl group), 167.8 (1C, C=O); MS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} 439.2340$; found 439.2360 .

[^0]: * Corresponding author. E-mail: deanad@chem.bg.ac.rs
 \# Serbian Chemical Society member.
 doi: 10.2298/JSC151021097P

[^1]: * Corresponding author. E-mail: deanad@chem.bg.ac.rs

