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A compact flight dynamics model of a kite is developed by using Lagrangian formulation. The lengths of the three

ropes of the bridle and the tether of the kite depend on time and are used to implement an open-loop control scheme of

the kite system. By imposing simple time-periodic control laws, two pumping strategies for wind-energy generation

are explored. Periodic trajectories of the system and their stability properties (Floquet characteristic multipliers) are

computed numerically. As the amplitudes of the figure-eight paths are increased, the system becomes more efficient

but less stable. A cyclic-fold bifurcation is detected for a very large lateral displacement of the kite. The impact of the

control-law parameters on the generated power, including the period and the amplitude, is investigated. The results

indicate that a correct design of the control couldprovide an optimal energy-generation systemanda robust scheme to

exploit high-altitude winds.

Nomenclature

Clp, Cmq, Cnr = aerodynamic torque coefficients, s∕rad
Cmα, Clβ, Cnβ, = aerodynamic torque coefficients
CXα, CYβ, CZα = aerodynamic force coefficients, 1∕rad
CX0, CZ0, Cm0 = aerodynamic coefficients
c = kite chord, m
FA = aerodynamic force, N
FT = total tension force, N
g = gravitational acceleration, m∕s2
h = kite semiminor axis, m
L = tether length, m
l = bridle length, m
M = kite mass, kg
p, q, r = angular-velocity components, rad∕s
T = aerodynamic torque, N · m
VA = aerodynamic velocity, m∕s
VT = reference velocity, m∕s
_Wele = useful electrical power, W
XB, YB, ZB = body frame of reference
XE, YE, ZE = Earth frame of reference
α = angle of attack, rad
β = slipside angle, rad
Γ = tether elevation angle, rad
δ = bridle elevation angle, rad
η = bridle lateral angle, rad
θ = pitch angle, rad
ρ0 = air density, kg∕m3

ϕ = roll angle, rad
φ = tether lateral angle, rad
ψ = yaw angle, rad

I. Introduction

M OST of wind-energy-production systems, like wind turbines,
extract power at low altitudes. Although it has made possible

an extensivewind exploitation and a remarkable growth in later years,

important benefits would be obtained if power systemswere operated
at high altitudes. Winds increase with height, and for the jet streams,
located between 7 and 16 km of altitude, wind speeds are an order of
magnitude faster than those near the ground [1]. In addition, the
substitution of wind turbines by lightweight structures placed at a
high altitude, like kites, would reduce the costs and the visual impact
of these installations. Therefore, new opportunities will appear if
high-altitude wind-production systems (HAWPS) are developed and
tested. If successful, they will probably require restricted zones in air
traffic (as already exist for other power-generation facilities like
nuclear plants).
Previous work showed several possibilities in the designs of

HAWPS and also real demonstrations of technology and prototypes.
They included FlyGen concepts, which generate the power onboard,
and GroundGen concepts that use the traction force to obtain
electrical energy by using a tether connected to a generator on the
ground. Among the GroundGen schemes, one finds the crosswind
kite power [2], the Laddermill [3], the pumping mill [4], and kites
operating in pumping modes [5,6]. The latter is based on a periodic
cycle made up of two different phases. During the reel-out phase, the
traction force in the tether, generated by the kite flying in a crosswind
maneuver, is used to produce electrical energy by spinning a
generator at ground. The tether is winched in, and the kite flies back
during the reel-in phase.
The dynamics and control of the kite are two relevant difficulties of

GroundGen concepts. They involve the well-known characteristics
of any aircraft, a highly flexible structure, and also constraints im-
posed by the tether and the bridle lines. The latter, which are only
active if the ropes are under tension, are coupledwith the dynamics of
the ropes. On the top of this, the kite should also operate in changing
wind conditions. These difficulties were recognized by the com-
munity that carried out theoretical analyses of the kite problem.
Pioneering work on the stability of towed bodies [7–9] have been
followed by several analyses of the longitudinal [10] and the lateral–
directional [11,12] stability of the kite. Flexibility effects were also
addressed [13]. To achieve optimal energy pumping maneuvers,
closed-loop schemes have been proposed in the past [14–18]. The
result is a robust system that is able to follow a certain prescribed
trajectory. The control of these schemes, however, needs to be fed by
instruments or sensors that measure the state of the kite. This in-
creases the complexity of the system. An alternative strategy,
explored in this work, is an open-loop control without sensors. In this
case, the stability of the orbit plays a critical role; because the kite
should fly following a periodic trajectory, the control laws must be
designed carefully to yield a stable periodic orbit. In order to achieve
optimal energy pumping manoeuvres, closed-loop schemes have
been proposed in the past [14––19].
This work presents a dynamicmodel of a kitewith a bridlemade of

three lines. This model, which explicitly eliminates the constraint
forces, extends the one presented in [10,12] in several directions. As
shown in Sec. III, constraint forces and the generated electrical
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energy are found once the kite trajectory is known. The computation
of stable periodic orbits and the airborne energy generation with both
a pumping mill strategy and a crosswind pumping scheme are
presented in Sec. IV. The main results of the work and a discussion
about the application of the model for wind-power generation are
presented in Sec. V.

II. Kite-System Model

This section closely follows [12], in which a kite model, including
lateral dynamics, was presented. The main extensions to this
work are 1) inertia kite model with a semi-elliptical cross section,
2) aerodynamic model with drag along the longitudinal kite axis, and
3) time-dependent tether and bridle lines lenghts given by external
control laws. These three novelties are here described in detail. (See
[12] for a thorough revision of other parts of the model.) For
convenience, we will use the notation sα and cα to denote the
trigonometric functions sin α and cos α, respectively.
The kite, here taken as a rigid solid, has a semi-elliptical cross

section of semiminor axis equal to h, major axis b (wingspan), and
chord c. For inertial considerations, kite thickness is neglected and its
areal density, σ ≡m∕A, is assumed constant. Here, M and A are the
mass and the surface of the kite, respectively. The center of massG of
the kite is placed at the intersection of the two planes of symmetry of
the kite and at distance hG from a plane normal to the semi-elliptical
cross section that passes through the focal points. The analytical
expressions for A, hG, and the inertial tensor �IG as a function of h, b,
c, and σ are given in Appendix A1.
The bridle is made up of three lines that connect the points A, B,

and C of the kite with the tether at the frictionless point Q,
respectively (see Fig. 1b). We remark that three is the maximum
number of bridle lines that can connect the kite with pointQwithout
making the problem hyperstatic. At point Q, there is a control unit
with amotor that controls the lengths of the bridle lines. At the ground
attachment pointO, there is a drum/generator module that is used to
extract electrical energy from the kite system or reel in the tether. The
bridle lines and the tether are here assumed as straight segments with
lengths given by certain time-dependent control laws. Because these
lengths are known functions, the kite system has five degrees of
freedom that we organized in the state vector:

xs � �Γ θ φ ψ ϕ �T (1)

in which Γ and φ are the elevation and lateral angles of the tether,
respectively, and θ, ϕ, and ψ are the pitch, roll, and yaw angles of the
kite, respectively (see Fig. 1).

Instead of the lengths of the bridle (jAQ ���j, jBQ ���j, and jCQ ���j), our
model uses the normalized length ~l�t� ≡ jQG

 ���j∕L0 and the angles δ�t�
and η�t� (see Fig. 1b), which yield to a more compact formulation of
the equations. Here, L0 is a constant reference length. These

dimensionless parameters, together with the normalized tether

length, ~L�t� ≡ jOQ
 ���j∕L0, form the control vector of the model:

xc � � ~L ~l δ η �T (2)

Because bridle lengths are important for kite design, the analytical
relations between the bridle lengths and the control variables are
given in Appendix A2.
An Earth-fixed inertial frame SE with origin at the ground

attachment pointO, zE axis along the vertical, and the wind velocity
W0 contained in the xE − zE plane is used. A second frame of
reference SBwith origin at the center ofmassG of the kite, attached to
it, and axis equal to the principal axis of inertia relative to G is also
introduced (see Fig. 1). The Earth and body frames have vector bases
(iE, jE,kE) and (iB, jB,kB), respectively. The components of a vector
in these bases are related by thematrix �R, which contains the kite pith,
roll, and yaw (θ, ϕ, ψ) angles (see Appendix A3). The angular
velocity of the kite (or the body frame), ω ≡ piB � qjB � rkB, is
given by

ω ≡
������
g

L0

r
~ω �

������
g

L0

r
�Ω · _xs (3)

in which �Ω is a dimensionless tensor given in Appendix A4, and the
dot denotes a derivative with respect to the normalized
time τ ≡ t∕

�����������
L0∕g

p
.

A. Kinetic and Potential Energies

Lagrange equations involve some tedious but straightforward
calculations concerning the kinematics of the kite, its potential and
kinetic energies, and the generalized forces. Here, we summarize
some auxiliary calculations and intermediate steps. The vector

position of the center of mass of the kite, rG � OQ
 ��� �QG

 ���
, is

rG�xs; t�
L0

� − ~L�cΓ�cφiE � sφjE� � sΓkE�

− ~l�cδ�cηiB � sηjB� � sδkB� (4)

The system is holonomic (integrable constraints) and rheonomic
because time explicitly appears in Eq. (4) due to the control
laws xc�t�.
The velocity vector of the center of mass vG � �drG∕dt�SE is

found with the help of the Coriolis theorem vG �
�dOQ
 ���

∕dt�SE � �dQG
 ���

∕dt�SB � ω ×QG
 ���

. The velocity vector in the
Earth frame is

vG ≡
���������
gL0

p
~vG �

���������
gL0

p
� �S _xs � �C _xc� (5)

in which the matrices �S and �C, which depend on xs and xc, are given
in Appendix A4.
The kinetic energy of the kite, Ek �

1∕2�mvTG · vG� � 1∕2�ωT · �IG · ω�, is written in terms of the state
and control vectors. Using Eqs. (3) and (5) yields

Ek ≡
1

2
ML2

0
~Ek

� 1

2
ML2

0� _xTs · �Ms · _xs � 2 _xTs · �Msc · _xc � _xTc · �Mc · _xc� (6)

in which �Ms ≡ �ST · �S� �ΩT · ~IG · �Ω, �Msc ≡ �ST · �C, and �Mc≡
�CT · �C. Here, ~IG ≡ �IG∕ML2

0 is the dimensionless inertial tensor
about G (see Appendix A1).
On the other hand, with the aid of Eq. (4), one finds the

gravitational potential energy of the kite:

U�xs; xc� ≡MgL0
~U

� MgL0f ~LsΓ� ~l��cδsηsϕ� sδcϕ�cθ − cδcηsθ�g (7)Fig. 1 Frames of reference and kite configuration.
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B. Wind Velocity and Aerodynamic Forces

The model considers a time-dependent wind velocity contained in
the xE − zE plane, Vw�t� � −

���������
gL0

p
~Vw�τ�iE. The aerodynamic

velocity of the kite is then given by VA � vG − Vw, and its com-
ponents in the Earth frame are

VA ≡
���������
gL0

p
~VA �

���������
gL0

p
� �S _xs � �C _xc � ~Vw�τ�iE� (8)

The aerodynamic force (FA ≡Mg ~FA) and its torque about the
center of mass of the kite (TA ≡MgL0

~TA) are computed with the
following model:

~FA � μ ~V2
A��CX0 � CXαα�iB � CYββjB � �CZ0 � CZαα�kB� (9)

~TA � μ ~V2
A�ϵb�Clββ� Cl ~p ~p�iB � ϵc�Cm0 � Cmαα� Cm ~q ~q�jB

� ϵb�Cnββ� Cn ~r ~r�kB� (10)

in which μ ≡ ρAL0∕2M, ϵb � b∕L0, ϵc � c∕L0, ~p � pb∕2VT ,
~q � qc∕VT , ~r � rb∕2VT , and VT a reference velocity. The attack
and sideslip angles are

α � arctan

�
~VA · kB
~VA · iB

�
; β � arcsin

�
~VA · jB
j ~VAj

�
(11)

C. Lagrange Equations

The Lagrangian formulation is very appropriate to derive the
equations ofmotion because it provides a compact systemof ordinary
differential equations. The constraints imposed by the bridle lines and
the main tether are automatically included in the model, and the
constraint force at the frictionless pointQ does not appear explicitly.
Lagrange equations in dimensionless form read

d

dτ

�
∂ ~L
∂ _xsi

�
−

∂ ~L
∂xsi
� ~Qi; i � 1; : : : ; 5 (12)

in which ~L � ~Ek − ~U and the generalized forces are given by

~Qi � ~FA ·
∂ ~vG
∂ _xsi
� ~TA ·

∂ ~ω
∂ _xsi

(13)

Because our system is holonomic, the constraint forces (i.e., the
tensions in the bridle and the main tether) do not contribute to the
virtual work (neither to the generalized forces ~Qi).
Using Eqs. (3), (5), (6), and (7) in Eq. (12) yields

Msij �xsj�Mscij �xcj�
∂Msij

∂xsk
_xsk _xsj�

∂Mscij

∂xsk
_xsk _xcj�

∂Msij

∂xck
_xck _xsj

�∂Mscij

∂xck
_xck _xcj−

1

2

�
∂Msjk

∂xsi
_xsj _xsk�2

∂Mscjk

∂xsi
_xsj _xck�

∂Mcjk

∂xsi
_xcj _xck

�

� ∂ ~U
∂xsi
�SjiRjk

~FAk� ~TAjΩji (14)

with i � 1; : : : ; 5. Here, we used Einstein notation, that is, when an
index variable appears twice in a single term, it implies summation of
that term over all the values of the index. We also took into account
that matrices �Ms, �Msc, and �Mc depend on xs, but not on _xs.
Introducing the vector u � � _xs xs �, and provided that matrix �Ms

can be inverted, system (14) takes the form of a nonautonomous
system of ordinary differential equations:

du

dτ
� f�u; τ� (15)

System (14) is a completely self-contained and closed model.
Given a set of initial conditions u0, dimensionless parameters, and

control laws xc�τ�, it can be integrated numerically to find the kite
trajectory. Although cumbersome, it can be easily implemented in a
numerical flight simulator. This implementation should be modular
and constructed from the bottom to the top. For instance, one may
start by writing four simple programs or modules that receive xs and
xc, and compute �Ω, �R, �S, and �C (see Appendix). These modules are
called by other subroutines that find �Ms, �Msc, and �Mc. Separate
subroutines for the derivatives of these tensors with respect to xs and
xc, as well as the terms ∂ ~U∕∂xsi, ~FAk, and ~TAk, must also be written.
Explicit expressions for all these terms are found analytically by
using the results of Sec. II and Appendix. All these subroutines are
called by a program that computes the right-hand side of Eq. (15), and
is the core of a numerical integrator. Some tests to check the correct
implementation of the simulator are given in Sec. III.

III. Constraint Forces and Energy Balance

Once the evolution of the state vector xs�τ� is known, by
integrating system (15), the forces of constraint can be computed. In
particular, the resultants of the tension forces at the attachment points
A,B,C are found from the equation ofmotion of the center ofmass of
the kite:

~FT ≡
FT

Mg
�

�
d ~vG
dτ

�
E

− kE − ~FA (16)

in which ~FT ≡ ~tAuA � ~tBuB � ~tCuC is the total dimensionless
tension force acting on the kite, and uν, ν � A;B; C are the unit
vectors along the bridle lines (see Appendix A2). After computing a
trajectory, one may check that ~tα > 0. (The bridle line is under
traction.) Otherwise, the model would fail because the line would
collapse. Givenu�τ� � �xs; _xs� and xc�τ�, the components d ~vGi∕dτ in
Eq. (16) are obtained from a simple kinematics calculation:

d ~vGi

dτ
� Sijfj �

∂Sij
∂xsk

_xsk _xsj �
∂Sij
∂xck

_xck _xsj � Cij �xc �
∂Cij

∂xsk
_xsk _xcj

� ∂Cij

∂xck
_xck _xcj; i � 1; 2; 3 (17)

Regarding the tether, Newton’s third law shows that the
dimensionless force at point Q acting on the tether is − ~FT . Because
the tether is taken as a rigid massless bar, the tension force is constant
through it. At the ground attachment point O, one has F0≡
Mg ~F0 � −Mg ~FT . Obviously, this force is directed alongOQ

 ���
, and it

can be written as ~F0 � ~F0OQ
 ���

∕jOQ
 ���j. This fact can be used as a first

check of the correct implementation of the simulator.
The kite energy balance is found by first writing the equation for

the angular momentum, ~LG ≡ �IG · ~ω:

d ~LG

dτ
� ~TA � ~TT (18)

in which ~TT ≡ ~tA�GA
 ��

∕L0� × uA � ~tB�GB
 ���

∕L0� × uB�
~tC�GC
 ���

∕L0� × uC is the normalized moment of the tension forces
about the center of mass of the kite. The sum of the scalar product of
~vG with Eq. (16) and the scalar product of ~ω with Eq. (18) yields

Δ� ~Ek � ~U� � ~WA � ~WT (19)

in which ~WA and ~WT are the normalized works of the aerodynamic
force and the tensions in the bridle

~Wν �
Z

T

0

�� ~Fν · ~vG� � � ~Tν · ~ω�� dt; ν � A; T (20)

For a periodic orbit, u�t� τ� � u�τ�, the left-hand side of Eq. (19)
vanishes over one period. Equation (19) can be used as a second test
of the simulator.
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During the reel-out phase of the tether, electrical energy is gen-
erated on ground. However, energy is consumed by the kite system
during the reel-in phases of the tether and the bridle lines. For a
periodic trajectory of (dimensionless) period τ0, the net dimen-
sionless electrical power is

_~Wele �
1

τ0

�Z
τout

~F0
_~L dτ−

����
Z
τin

~F0
_~Ldτ�

X
ν�A;B;C

Z
τinν

tν
_~lν dτ

����
�

(21)

in which the integral limit τout (τin) covers the time with _~L > 0
( _~L < 0). Similarly, τinα refers to the time with _~lα < 0 (reel-in phase of
the bridle line named α). Here, _~lα is the τ derivative of the length of the
bridle lines, lν ≡ jνQj, with ν � A;B; C (see Appendix A2).

IV. Airborne Wind Energy

If the proposed control laws are periodic in time, xc�t� �
xc�t� T�, system (15) can exhibit periodic solutions of period T. If
stable, these trajectories are good candidates for electrical wind-
energy generation. Both aspects, existence and stability, are here
studied with the shooting algorithm presented in [20]. It corrects the
initial condition u0 of the periodic orbit until its error,
u�τ � τ0� − u0j, is below certain tolerance (10−8 in our calculations).
It also provides the eigenvalues of the monodromy matrix, λj, with
j � 1; : : : ; 10. We recall that the orbit is unstable if one of these
multipliers has modulus greater than one. Once an orbit is found, we
checked that the tether and the bridle lines are under traction through
the trajectory, and the angle of attack is always positive. We then
compute _~Wele from Eq. (21).
The typical inertial and aerodynamic parameter values of a kite

power system are shown in Table 1. They mostly correspond to the
already constructed and tested kite system at Delft University of
Technology [13,16]. Using these values in the model presented in
Appendix A1 yields A � 8.7 m2, hG � 2 m, and
�Ixx; Iyy; Izz� ≈ �15.86; 3.50; 13.49� kg · m2. The characteristic time,
velocity, energy, and power are

�����������
L0∕g

p
≈ 4.51 s,���������

gL0

p
≈ 44.29 m∕s, MgL0 ≈ 5886 J, and M

�����������
L0g

3
p

≈ 1300 W.
One also finds μ ≈ 587. We now consider a constant wind velocity
equal to 14 m∕s that yields ~Vw � 14∕44.29 ≈ 0.316 in Eq. (8).

A. Energy Generation with Longitudinal Control

The simplest control laws for wind-energy generation just involve
a longitudinal motion of the kite. Bridle and tether control laws may
produce a reel-out phase with high angles of attack and a fast reel-in
phasewith low angles of attack. This concept is a pumpedmill with a
single kite [4]. To illustrate the maneuver, we take the control vector,
xc�τ� � � ~L; ~l; δ; η�, equal to ~l � 0.05:

δ�τ� � δ0 � δ1 exp

	
−
�
~ωδ

�
τ

τ0
− ϕ0

��
n



(22)

and η � 0. For the normalized length of the tether, ~L�τ�, we
approximate the sawtooth function:

1� ϵL

	 τ
τ1

0 ≤ τ ≤ τ1
τ0−τ
τ0−τ1

τ1 < τ ≤ τ0
(23)

by its first six Fourier components.
The preceding control laws yield a time-periodic control vector

with period equal to τ0, xc�τ� � xc�τ� τ0�. Examples of these
control laws are shown in Figs. 2a and 2b. Here, we took the values
τ1 � 0.85τ0, ϵL � 0.1, δ0 � 75 deg, δ1 � 15 deg, n � 12, and
~ωδ � 2.5. Periodic orbits were computed for phase shifts for the
angle δ, ϕ0 � 0.4, 0.45, and 0.5, and the period τ0 was used as a
bifurcation parameter. Neither these values for the open-loop control
laws, nor the environmental parameters and the properties of the kite
were selected after a thorough optimization analysis. They are just
characteristic values aimed at providing the performance of the
model and how it can be used to estimate the power generated by the

kite and the stability of the orbit. Therefore, the power generated by
the kite reached low values. An analysis of optimized control laws is
beyond the scope of this work.
Figure 3 shows the electrical power generated by the kite, _Wele, vs

the period of the pumping cycle. The solid, dashed, and dotted lines
correspond to phase shifts ϕ0 � 0.4, 0.45, and 0.5 in Eq. (22). A
maximum appears at ϕp ∼ 0.45 and period about 67 s (τ0 ∼ 15).
Interestingly, this branch of solutions is also the most stable; the
(dimensionless) maximum modulus of the char-
acteristic multiplier in the studied τ0 range is less than 0.43, 0.2,
and 0.35 for ϕ0 � 0.4, 0.45, and 0.5, respectively. For these three
cases, the maximum tether tension happens for ϕ0 � 0.5, and it is
about 125 N.
Figure 4 shows the elevation angle of the tether, Γ, and the angle of

attack of the kite, α, for an orbit close to the optimum in Fig. 3
(τ0 � 15 and ϕ0 � 45). During the traction or reel-out phase, 0 <
τ < τ1 (see Fig. 2a), Γ decreases, and the angle of attack is relatively
high (about 15 deg). In the passive or reel-in phase, τ1 < τ < τ0, the
angle of attack is small. As a result, a net electrical power is obtained.

B. Energy Generation with Longitudinal and Lateral Control

Kite performance is enhanced if the kite flies along a figure-eight
path in crosswind conditions. This is achieved in the simulator by
imposing the following open-loop control law for the bridle angle η:

η�τ� � η0 sin

�
2π

τ0
τ

�
(24)

Table 1 Kite parameters used in the simulations

Symbol Value Symbol Value

L0 100 m g 9.81 m∕s2
c 1.5 m ρ0 1.225 kg∕m3

b 5.8 m VT 7 m∕s
h 3.2 m M 3 kg
CX0 −0.065 Cl ~p −0.15
CXα 0.176 Cm0 0.133
CYβ −1.57 Cmα −0.763
CZ0 0.116 Cm ~q −0.165
CZα −2.97 Cnβ −0.027
Clβ −0.49 Cn ~r −0.002

Fig. 2 Example of control laws: a) tether length, and b, c) bridle angles.
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To illustrate the kite behavior under lateral control, we here
consider Eq. (24), the longitudinal control laws used in Sec. IV.Awith
ϕ0 � 0.45 and τ0 � 15, and η0 as a bifurcation parameter. Figure 2
shows an example of the time evolution of the tether and bridle angles
L�τ�, δ�τ�, and η�τ�with η0 � 10 deg. Similarly to the pumpedmill,
the predictor–corrector algorithm was used for each value of the
parameters to determine the periodic orbit and its stability. An η0
family of stable periodic orbits is shown in Fig. 5. The control
parameter η0 was varied between 0 and 12.68 deg. For the maximum
η0, the lateral angle of the tether φ reached a maximum value about
65 deg. The parameter η0 was not increased beyond 12.68 deg
because the family of periodic orbit goes through a cyclic-fold
bifurcation. A real Floquet characteristicmultiplier approaches to�1
as η0 → 12.68 deg (see Fig. 6). It suggests that a branch of unstable
periodic orbits exists for η0 < 12.68 deg. The computation of this
branch is beyond the scope of this work. It is also remarkable that the
tension in the tether is instantaneously negative for periodic orbits
within a range very close to the bifurcation point, 12.65 < η < 12.68
(not shown). Therefore, the solutions in this η0 range are not physical.
The useful electrical power _Wele generated by the kite system

increases with the control angle of the bridle η0 (see Fig. 7). For this
nonoptimized case, it reaches about 300 W. Clearly, flying in
crosswind conditions makes the kite more efficient from an energy-
generation point of view. Unfortunately, the analysis shows that the
orbit becomes less stable as the amplitudes of the figure-eight paths
are enhanced (see Fig. 6).

V. Conclusions

The implementation of airborne wind-energy systems based on
pumping maneuvers needs kite flight simulators with different
degrees of complexity. System design, including the properties of the
kite, the bridle, the tether, and the control laws, might be found from a
thorough analysis that should involve an iterative process among
them. Themodel presented in this work has amoderate complexity. It
provides the most important figures of merit of the system like
generated electrical power, line tensions, kite trajectory, and stability.
However, it still neglects other effects like kite flexibility or tether
inertia. It extends a previous model [12] to include time-dependent
bridle geometry, and it keeps some important advantages like a
compact formulation and the explicit elimination of the constraint
forces in the equation of motion. Equation (14), which is the main
result of this work and just involves some matrices and their
derivatives (see Appendix), can be easily programmed. Some tests
proposed in Sec. IIImay help to guarantee its correct implementation.
Most of past work proposed kite and control-law designs based on

the maximization of the generated power (objective function).
Closed-loop controls, which require feedback and sensors, were
analyzed. Here, a different strategy was followed. The pumping
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Fig. 4 Evolutions of a) tether elevation angle, and b) angle of attack.
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maneuvers were placed within the framework of periodic orbits of a
dynamic system, and an open-loop control was implemented. This is
advantageous because stable periodic maneuvers with open-loop
control do not require sensors and may yield simple and reliable
operations. Even if a closed-loop control is desired, the computation
of the orbit stability is interesting. In addition to the generated power,
the objective functions could also contain information about the
stability of the orbit (Floquet characteristic multipliers), thus im-
proving the reliability of the system.
The results indicate that the angle η0, which is determined by the

lengths of the bridle lines, is very appropriate to control the kite lateral
dynamics. This control could be done by an airborne kite control unit
suspended at point Q in Fig. 1. The simulator demonstrated that
modest variations of η0 (∼10 deg) yield a very high lateral dis-
placement of the tether (∼65 deg). As shown in Fig. 7, the generated
electrical power also increases very rapidly with η0. Therefore,
parameters variation close to these values should be the subject of a
deep numerical survey that may provide higher energy generation.
Unfortunately, a real characteristic Floquet multiplier approaches to
�1 as η0 increases. It suggests that a balance between efficiency
(generated energy) and reliability (stability of the orbit) should bemet
by the control design. A thorough analysis varying other control
parameters, like the period of the orbit τ0 or the phaseϕ0, may help to
improve both issues simultaneously.
As already mentioned, the most important effects neglected in the

model are the flexibility of the kite and the inertia and flexibility of the
tether. Regarding the former, a tradeoff analysis is required. Long
tethers are needed to fly the kite at high altitudes, where the wind is
very strong, but the dynamic behavior of the system would be
severely affected. In this case, it would be necessary to adapt the
simulator and solve self-consistently the partial differential equations
that govern the tether dynamics. The dimension of the state vector of
the simulator would be increased, and the computation of periodic
orbit would become a challenging numerical problem. However,
because the main advantage of the systems is, precisely, operation at
high altitude, a detailed flight simulator cannot ignore it. Therewill be
also operational constraints (such as air-traffic interaction), which
should be considered in the future. A kite simulator with time-
dependent bridle geometry and tether dynamics will be presented in a
forthcoming work.

Appendix A: Auxiliary Calculations

A1 Kite Inertial Model

Let us consider a kite of semi-elliptical cross section, semiminor
axis h, major axis b, chord c, and constant areal density σ ≡m∕A. We
take a frame of reference S 0 with axis parallel to frame SB and origin

O 0 in the intersection of the two planes of symmetry of the kite and
the plane normal to the semi-elliptical cross section that passes
through the focal points. A point of the kite is given by r 0p�x 0; θ� �
�b∕2�cos θ�;−h sin θ; x 0� with −c∕2 ≤ x 0 ≤ c∕2 and 0 ≤ θ ≤ π.
Taking into account that the kite is a ruled surface, its area is

A � bc

2

Z
π

0

f�θ� dθ (A1)

with f�θ� ≡
�������������������������������������������������
sin2 θ� �2 h∕b�2cos2 θ

p
. The distancehG between the

planes x 0y 0 and xByB is

hG � jz 0Gj �
1

m

Z
jz 0Gj dm �

bch

2A

Z
π

0

sin θf�θ� dθ (A2)

in which we used dm � mbf�θ�dx 0dθ∕2A. We then find
zB � hG � z 0. In the body frame, the inertial tensor about G, �IG, is
diagonal with elements:

I11 �
Z
�y2B � z2B� dm

� σb3c

8

Z
π

0

�
cos2 θ�

�
2hG
b

−
2h

b
sin θ

�
2
�
f�θ� dθ (A3)

I22 �
Z
�x2B � z2B� dm

� 1

12
mc2 � σbc

2

Z
π

0

�hG − h sin θ�2f�θ� dθ (A4)

I33 �
Z
�x2B � y2B� dm �

1

12
mc2 � σb3c

8

Z
π

0

cos2 θf�θ� dθ (A5)

A2 Bridle Lengths and Control Parameters

The normalized length of a bridle line, say ~lA ≡ jAQ ���j∕L0, is found

by writing jAQ ���j � jAG �� �GQ
 ���j. Noting that jGA

 ��j �
�c∕2��iB� � �b∕2��jB� � hGkB, one finds

~lA �
������������������������������������������������������������������������������������������������������������
~lcδcη −

c

2L0

�
2

�
�
~lcδsη −

b

2L0

�
2

�
�
~lsδ −

hG
L0

�
2

s

(A6)

Following a similar procedure yields

~lB �
�������������������������������������������������������������������������������������������������������������
~lcδcη −

c

2L0

�
2

�
�
~lcδsη� b

2L0

�
2

�
�
~lsδ −

hG
L0

�
2

s

(A7)

~lC �
��������������������������������������������������������������������������������������������������������
~lcδcη� c

2L0

�
2

� � ~lcδsη�2 �
�
~lsδ� h

L0

−
hG
L0

�
2

s
(A8)

Section III used the unit vectors uA ≡ AQ
 ���

∕jAQ ���j, uB ≡ BQ
 ���

∕jBQ ���j,
and uC ≡ CQ

 ���
∕jCQ ���j. The τ derivative of the bridle lengths as a

function of the control vector and its derivative, appearing in Eq. (21),
is found from Eqs. (A6–A8).

Fig. 7 Electrical power vs η0.
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A3 Body/Earth-Frame Rotation Matrix

Earth and body coordinates are related by
�xE; yE; zE�T � �R�xB; yB; zB�T , in which the rotation matrix is

R �
0
@ cψcθ cψsθsϕ − sψcϕ cψsθcϕ� sψsϕ
sψcθ sψsθsϕ� cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

1
A (A9)

A4 Kite Kinematics

The angular velocity of the kite projected in the body frame is
ω � �Ω _xs, with

�Ω �
0
@ 0 0 0 −sθ 1

0 cϕ 0 cθsϕ 0

0 −sϕ 0 cθcϕ 0

1
A (A10)

The velocity of the center of mass projected in the Earth frame is
vG � �S _xs � �C _xc, in which

�S� ~L ·

0
@sΓcφ 0 cΓsφ 0 0

sΓsφ 0 −cΓcφ 0 0

−cΓ 0 0 0 0

1
A

� ~l · �R ·

0
@0 −sδcϕ−cδsηsϕ 0 cθ�cδsηcϕ−sδsϕ� 0

0 cδcηsϕ 0 −cδcθcηcϕ−sδsθ sδ

0 cδcηcϕ 0 cδ�sηsθ�cηcθsϕ� −cδsη

1
A (A11)

�C �

0
BB@− cos Γ cos φ 0 0 0

− cos Γ sin φ 0 0 0

− sin Γ 0 0 0

1
CCA� �R

·

0
BB@ 0 −cδcη ~lsδcη ~lcδsη
0 −cδsη ~lsδsη − ~lcδcη
0 −sδ − ~lcδ 0

1
CCA (A12)
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