
 1

ClusterGUI, an Application to Launch OPNET Simulations within

Resource Managed Environments

Carlos Núñez Castillo, Gonzalo Zarza, Diego Lugones, Javier Navarro, Daniel Franco, Emilio Luque
Computer Architecture and Operating Systems Department,

Universitat Autònoma de Barcelona, Spain.

E-mail: {carlos.nunez, gonzalo.zarza, diego.lugones, javier.navarro}@caos.uab.es, {daniel.franco, emilio.luque}@uab.es

Abstract

This work presents ClusterGUI; an application specialized in the

submission and control of OPNET simulation jobs to the Oracle

Grid Engine (previously known as Sun Grid Engine - SGE)

Resource Manager, using the Distributed Resource Management

Application API (DRMAA) libraries. With a Resource Manager

acting as a middleware between cluster resources and simulation

runs, traditional tools cannot be directly used to launch the

simulations. With ClusterGUI we can send multiple simulations

to a resource manager in a cluster in order to fully use available

resources. We compare simulations results by launching many

standalone runs against a resource-managed distributed

approach, to perform parametric studies more quickly by

launching simulations concurrently.

Introduction

Simulation has become an important technique in the

development of many areas of science and engineering, such as

communication networks, distributed systems, scientific

computation or research and development in general, among

others.

In order to compare systems performance analysis under

different scenarios or between design alternatives, modeling and

simulations techniques provides an efficient environment [1].

Computational resources available to perform complex

simulations are constantly increasing. High Performance

Computing (HPC) clusters and computer farms require the use

of specialized resources administration techniques. These

techniques are necessary because the manual assignment of

several hundreds of jobs into its proper resources would become

unmanageable complex.

OPNET modeler [2] allows the executions of simulations in a

distributed environment. To accomplish this task, the modeler

assumes the whole computing environment is dedicated

exclusively to this task. If others applications try to use those

resources as well, then conflicts arises. Some conflicts can be

caused by different concurrent executions. For example an

application can interfere with other active process that demands

all available resources exclusively. By allowing these two

executions to run simultaneously, one of them would be severely

affected in its results. Other important issue is the way resources

are assigned. As computational resources in HPC systems are

generally large, resources assignment should be done

automatically.

In order to use those resources accordingly and in an automated

manner, specific strategies must be taken into account. Here,

resource management tools must be used, such as Oracle Grid

Engine [3]. This tool takes care of executing jobs and distributes

them across all available computing resources.

The main goal of this paper is to introduce a tool used as a

frontend between a resource managed computing environment

and OPNET simulations.

This paper is organized as follows. In section II we give some

background about OPNET and Distributed Resource

Management Systems. In section III, we describe our

ClusterGUI Architecture and in section IV we give some

ClusterGUI application descriptions. In section V, we show a

basic usage guide of our tool. Concluding remarks are offered in

section VI.

Background

This section gives a general overview of the OPNET modeler

tool, Oracle Grid Engine resource manager, and the API used to

interconnect these two architectures.

OPNET Modeler

Opnet provides a Discrete Event Simulator (DES) engine and

offers a hierarchical modeling environment with an enhanced

C++ language. This suitable environment allows defining

network components behavior by a Finite State Machine

approach (FSM), and it supports detailed specification of

protocols, resources, applications, algorithms, and queuing

policies.

Simulations can be executed in three different ways:

 From the OPNET GUI, using either the Project Editor

or the Simulation Sequence Editor.

 From the command line, using op_runsim.

 Creating an executable file, with op_mksim, and run it

from the command line or Simulation sequence Editor.

Decision about which alternative to use are based on specific

user considerations, such as complex development, maximum

availability of computing resources, debugging among others.

OPNET GUI is the most used option. However, there are

specific situations where the other two alternatives are preferred

because of the options they provide. Also, the flexibility offered

by the alternatives to the GUI makes them the right choice

within complex environments, such as those encountered in

HPC.

OPNET Architecture

A typical OPNET project contains basically models files

(network, nodes, process, etc), files generated with the

 2

configuration for each specific execution (such as Environment

Files), as well as results files (such as Output Vector files).

In this document, we will use CSMA/CD Official OPNET

tutorial project. The network domain used on the tutorial is

shown on Fig. 1. As extracted from the project documentation,

the goal of the CSMA/CD project is to observe how the

performance of the protocols varies as a function of channel

traffic. The interarrival time input parameter was varied in a

series of simulations to produce different levels of traffic and,

therefore, different levels of throughput. Twelve simulations

have been run, each with a different interarrival time value, as

seen on Fig. 2. Each of these simulations has its own particular

configuration, which will be used as input parameters by the

simulation engine.

Fig. 1. CSMA/CD OPNET Tutorial Project.

Fig. 2. CSMA/CD Simulation Sequence Editor.

Environment Files

As mentioned before, one simulation has its own configuration

parameters. OPNET then creates particular files, called

environment Files identified with file extension ―.ef‖, for each

execution in the sequence. As an example, Fig. 3. depicts a basic

relation between input parameters specified in the Project Editor

and the files created it the file system.

We can see from the example that each configuration parameter

―Packet Interarrival Time‖ (exponential (1000), exponential

(200), exponential (150)) is set in each corresponding

―Environment File‖ created. All these files will be later

referenced at the ClusterGUI application, in order to identify

particular simulations runs that will be sent to the queue

manager as a regular job.

Oracle Grid Engine (SGE) Architecture

Oracle Grid Engine[3] is a Distributed Resource Management

platform, basically in charge of queuing and scheduling jobs,

matching jobs to most suitable execution hosts, managing

resources such as licenses and applying resources allocation

polices. It allows the use of a shared infrastructure by many

Fig. 3. Input Parameters. Modeler and corresponding files.

 3

users/jobs. It is typically used on a computer farm or High

Performance Computing (HPC) cluster. Fig. 4 depicts a basic

environment where resources are managed by a distributed

resource manager. Here, there is a server where the software in

charge of managing resources is installed. This server receives

user’s jobs request, and responses from the system when

necessary. After receiving a job, this server dispatches it to the

proper computing resources. Resources in this case could be

anything installed in the cluster. In this example, resources are a

blade server, a main frame or a set of racks of computing nodes

linked together by a local area network.

Fig. 4. Resource Management.

There are two main alternatives available to make resources

available to a particular job through SGE interface. One is the

use of a command line approach, by using directives that

explicitly work with jobs, such as the task of submitting, logging

or managing these jobs. These directives are qsub, qmon, etc.

The other approach is to use some specialized programming

libraries, such as DRMAA, in order to obtain some degree of

process automation or customization. Both approaches start

execution daemons which are properly managed by the

Qmaster/Scheduler, as shown in Fig. 5.

Fig. 5. SGE Architecture.

DRMAA Architecture

DRMAA [4] stands for Distributed Resource Management

Application API, a set of libraries for the submission and control

of jobs to one or more Distributed Resource Management

(DRM) systems. Different API Implementation exists today,

such as Oracle Grid Engine with DRMAA C, Condor with

DRMAA C, GridWaty with DRMAA C/Java among other. Fig.

6 shows DRMAA general architecture.

Distributed Simulations with OPNET

OPNET [2] allows multiple discrete event simulations to be

executed at the same time using one or more computers. This

Modeler feature tries to start a specified number of simulations

on each specified computer, and as each job is finished, Modeler

tries to send another job to be executed. This process continues

until all simulations waiting to be executed have been run. As

stated before, the main limitation of this approach is that OPNET

assumes that all resources are dedicated to its simulations. On

the contrary, in mostly all HPC environments the configuration

is shared. Here, there are many simultaneous simulations trying

to access those resources. Generally, HPC installations have a

resource manager installed. This manager is responsible for

accepting, scheduling, dispatching, and managing the remote

and distributed execution of large numbers of standalone,

parallel or interactive user jobs. Also, licenses control could

make a job to finish beforehand. This happens when a job is

assigned to a computing node, and OPNET then makes proper

licenses control and no licenses available for execution are

found. This forces a submitted and already assigned job to exit

without being executed.

ClusterGUI Architecture

ClusterGUI application is designed with integration in mind.

ClusterGUI main goal is to become an interface between

OPNET modeler and the Distributed Resource Management

installed. With this tool all OPNET simulations can be safely

sent to a shared cluster. In cooperation with the DRM,

ClusterGUI can monitor and manage all running jobs, giving the

user full flexibility in order to control simulations.

ClusterGUI application is based on the Oracle Grid Engine [3]

with DRMAA Java API. As being based on the Java API [5],

[6], this implementation allows a high degree of inter-platform

portability. ClusterGUI provides a front end to OPNET users in

order to launch simulations jobs. Recall that all OPNET

simulations must be modeled/tested within OPNET Modeler

Fig. 6. DRMAA Architecture

 4

GUI interface first. ClusterGUI does not provide a GUI interface

to perform these activities.

ClusterGUI follows the defined OPNET standard to run

simulations. It can execute the executable program generated by

op_mksim, and also can use the program op_runsim in order to

launch simulations. op_runsim and simulation executables

created by op_mksim work similarly. The only difference is that

op_runsim dynamically rebuilds the network repository and

op_mksim will link static library information into the simulation

executable. ClusterGUI basically perform five basic steps. In the

first step it opens and loads the OPNET project file. Then, the

second step begins and ClusterGUI loads all the configuration

files available to this project. These are the ―environmental files‖

as showed in Fig. 3. Once all the environmental files are

correctly loaded, the user can select which ones will be

executed. The third step is related to the process of generating

the proper executable simulation files. In order to perform this

step the program op_mksim is invoked with the correct input

parameters. If no errors are found after the execution of

op_mksim, then proper executable sim files are created in the

output directory. Step four could then be performed. This step

allows ClusterGUI to submit simulations to the DRM as regular

jobs. When all simulations are already sent to the DRM´s queue

by ClusterGUI, then the monitoring process starts. This

corresponds to the fifth and last step of ClusterGUI application

execution. While in this fifth step, an application listener is

active and regularly collects status information about running

jobs. Also, complete control of sent jobs is achieved. Any job

can be stopped or killed from ClusterGUI main screen at any

time.

These steps explained above allow the execution of many

simultaneous simulations to be performed, under the presence of

a DRM system. All results are collected properly. The directory

containing the model being simulated must be shared by the

local and remote computers. The output (.ov) files produced by

the simulation are created in the shared model directory. OPNET

requirements, such as licenses required based on the

architecture/platform used, are still maintained.

ClusterGUI Description

Cluster GUI main application screen is shown in Fig. 7. From

this screen all the simulations options can be modified/verified

before sending a job to the queue manager. It is basically

composed of a number of tabs, specifically distributed in order

to show related information in an ordered manner. Each of the

tabs will be described below.

Fig. 7. Main Screen.

OPNET Project Tab

Basically, this tab allows the execution of simulations. Three

steps are at minimum required in order to send jobs to the DRM.

These steps are explained here:

1) The first step allows the user to select the project to be

loaded.

2) The second step, allows the execution of the op_mksim

program, which is a utility that binds a simulation

together from its components: the simulation object

code file, the associated model archive, and the

Simulation Kernel libraries.

3) Once all the previous steps have been performed

correctly, then the simulations are ready to be sent to

the DRM as regular jobs in the third step.

This tab has an output log viewer, where all logs from the

application itself as well as the simulations will be printed.

Beside action buttons, there are hints texts which indicate each

task final status.

Environmental files Tab

This tab shows all the environmental files available from this

project. Environmental files contain simulation execution

parameters, such as duration, output files, seed, etc. These files

are created for every run generated during parametric

simulations, while in OPNET editor. Here, each file has a

contiguous check box available, in order to decide whether it is

to be included or not for submission to the DRM. File names

corresponds to different runs available in the selected project.

Double click in each file will show its contents.

Config op_mk_sim Tab

The purpose of op_mksim is to bind (link) together process

model object code files and the simulation kernel into an

executable simulation program. The simulation repository

associated with the indicated network model is always

reconstructed before it binds the simulation. This tab permits

changes to the default preferences of op_mksim. Default

preferences are Standard, Diagnostics, Development and

Licensing, according to official OPNET documentation.

This tab is useful when some particular features must be

changed, such as for example:

 5

 optional binder flags used when making a static 32-bit

executable

 libraries appended to binder command when making a

static 64-bit executable

 binder program used to create executables

 optional flags passed when compiling for a 32/64-bit

kernel

 C/C++ compiler program

The lower panel outputs op_mksim –help command, showing

available preferences that can be changed.

Configure sim jobs Tab

Once the op_mksim command is executed successfully, then a

new sim job file is created. Simulation execution preferences

available are shown in the lower panel.

Preferences Tab

Available ClusterGUI preferences are managed in this tab.

Output directories can be set, also information about the queue

manager and opnet licenses available are shown. Some utilities

to manage .sim files job can be started from this tab, as shown in

Fig. 8.

Fig. 8. Preferences Tab.

ClusterGUI Basic Usage

In order to use ClusterGUI to send OPNET simulations to a

DRM, a few easy steps are needed, which are mentioned here.

We will use CSMA/CD Official OPNET tutorial project.

1) Launch the ClusterGUI application.

2) Click on ―Step 1 Select Project File‖ to browse the .prj

file in the file system, as shown in Fig. 9. Once loaded,

the output log shows a summary of what is available in

this project.

Fig. 9. Browse and Open a Project.

3) Change to ―Environmental files‖ Tab and select the

proper .ef files to be included, as shown in Fig. 10.

Fig. 10. Select files to be included in this run.

4) Back into the main screen, click on ―Step 2:

op_mksim_command‖ to start the compilation process.

This should take some time according to the selected .ef

files from previous step. Assuming there were no errors

during the op_mk_sim process, an information box

appears and it notifies that the process ended correctly,

as shown in Fig. 11. Now, proper simulation files (.sim)

are created and they are ready to be sent to the DRM.

 6

Fig. 11. Running op_mk_sim command.

5) Click on ―Step 3: Submit Simulations‖ to effectively

send the .sim files to the DRM. The output log should

show the sending job status. Once a job is correctly

sent, the ClusterGUI application can be safely closed.

Jobs are now waiting for resources and its execution is

ruled by DRM policies, as shown in Fig. 12.

Fig. 12. Submit a Simulation.

When a job finishes its execution, ClusterGUI application writes

two output files in the home directory (or where output dir

preferences were set). One file contains the DRM errors, if any,

and the second contains the output of the simulation. Both files

differ only in a suffix. They are identified by the name of the job

+ ―extension‖ + PID of the job. ―Extension‖ could be ―.e‖ for the

former (error) and ―.o‖ for the latter (output).

6) When all simulations ends and no errors were

produced, the output vector files will be generated

properly, according to the model settings. Now, we can

go back to OPNET modeler to visualize our results, as

if they were executed from this GUI, as shown in Fig.

13.

Fig. 13. Results Browser in OPNET GUI.

Jobs Control

ClusterGUI continuously monitors the status of all simulations

jobs executed via its GUI. A DRM manages jobs from different

sources, and ClusterGUI filters this information to show only

those jobs started from the application. A typical output of qstat,

the command line program to show cluster queue summary in

SGE, is shown in Fig. 14. From the console at this figure, we can

see that other user is also using the cluster. The DRM has

queued our jobs until all resources demanded, including OPNET

licenses, are available. This figure also depicts ClusterGUI

output log. Here, job statuses are indicated for each job. In this

example, all simulations finished normally.

Fig. 14. Command line vs. Cluster GUI Monitoring .

 7

ClusterGUI Experience

ClusterGUI tool has also been successfully tested with other

models projects implemented with OPNET. One of them is the

Distributed Routing Balancing, DRB [7] , which is a method to

uniformly balance communication traffic over the

interconnection network. Other model executed with ClusterGUI

is FT-DRB [8], a novel fault-tolerant routing method provided

with a new deadlock avoidance technique designed to solve an

unbounded number of faults appearing at random during system

operation. MD-DRB [9], an extension to DRB was used with

ClusterGUI as well. MD-DRB provides switches with capabilities

such as escape paths and fast acknowledges generation mechanisms

that lead to faster response time, when network is becoming

congested. PR-DRB [10] was also used with ClusterGUI. PR-

DRB uses speculative routing based on application

repetitiveness. Also, it monitors messages latencies on routers

and logs solutions to congestion, to quickly respond in future

similar situations.

Conclusion

In this paper we presented ClusterGUI, an interface between

OPNET simulations and a Distributed Resource Management

(DRM) system. ClusterGUI is a tool capable of execute

simulations in HPC like environments, where resources are

generally shared among many users and jobs. ClusterGUI allows

the execution of parametric simulations using all available

resources, which are managed by a management entity.

Acknowledgments

This research has been supported by the MEC-MICINN Spain

under contract TIN2007-64974. Furthermore, we thank OPNET

Technologies, Inc. for providing us the OPNET Modeler

licenses to perform the experimental evaluation of this work.

References
[1] R. Jain, ―Book review: The art of computer systems

performance analysis: Techniques for experimental design,

measurement, simulation, and modeling by raj jain (john wiley

& sons 1991),‖ SIGMETRICS Perform. Eval. Rev., vol. 19, pp.

5–11, September 1991, reviewer-Al-Jaar, Robert Y.

[2] T. OPNET, ―Opnet modeler accelerating network r&d,‖

http://www.opnet.com, June 2008,OPNET.

[3] O. Corporation, ―Oracle grid engine,‖

http://www.oracle.com/technetwork/oem/grid-engine-

66852.html.

[4] O. G. Forum, ―Distributed resource management aplication

api - drmaa,‖ http://drmaa.org/, 2011.

[5]O. Corporation, ―Java SE

overview,‖www.oracle.com/technetwork/java/javase/overview/i

ndex.html, April 2011.

[6] ——, ―Java SWING. Creating a gui with jfc/java.‖

download. oracle.com/javase/tutorial/uiswing/, April 2011.

[7] D. Franco et al., ―A new method to make communication

latency uniform: distributed routing balancing,‖ in ICS ’99:

Procs of the 13
th

 int. conf. on Supercomputing. USA: ACM,

1999, pp. 210–219.

[8] G. Zarza, D. Lugones, D. Franco, and E. Luque, ―Fault-

tolerant routing for multiple permanent and non-permanent

faults in hpc systems,‖ in International Conference on Parallel

and Distributed Processing Techniques and Applications

(PDPTA’10), Las Vegas, NV, USA, July 2010, pp. 144–150.

[9] D. Lugones et al., ―Dynamic and distributed multipath

routing policy for high-speed cluster networks,‖ in CCGRID

’09: Procs of the 2009 9th IEEE/ACM Int. Symp. on Cluster

Computing and the Grid, USA, 2009, pp. 396–403.

[10] C. Núñez, D. Franco, ―Predictive and distributed routing

balancing. PR-DRB.‖ Master’s thesis, Universitat Autònoma de

Barcelona, July 2010.

http://www.oracle.com/technetwork/oem/grid-engine-66852.html
http://www.oracle.com/technetwork/oem/grid-engine-66852.html

