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One sentence summary: OsMADS26 acts as a repressor of resistance against pathogenic 33 

microorganisms and water deficit and its down-regulation results in improved biotic and 34 

abiotic stress tolerance of rice. 35 
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 48 

Abstract 49 

Functional analyses of MADS-box transcription factors in plants have unraveled their role in 50 

major developmental programs (e.g; flowering and floral organ identity), as well as in stress-51 

related developmental processes such as abscission, fruit ripening and senescence. Over-52 

expression of the OsMADS26 gene in rice (Oryza sativa) has revealed a possible function 53 

related to stress response (Lee et al., 2008b). Here we show that OsMADS26 down-regulated 54 

plants exhibit enhanced resistance against two major rice pathogens, Magnaporthe oryzae and 55 

Xanthomonas oryzae. Despite this enhanced resistance to biotic stresses, OsMADS26 down-56 

regulated plants also displayed enhanced tolerance to water deficit. These phenotypes were 57 

observed both in controlled and field conditions. Interestingly, alteration of OsMADS26 58 

expression has no strong impact on plant development. Gene expression profiling revealed 59 

that a majority of genes miss-regulated in over-expresser and down-regulated OsMADS26 60 

lines compared to control plants are associated to biotic or abiotic stress response. Altogether, 61 

our data indicate that OsMADS26 acts as an upstream regulator of stress-associated genes and 62 

thereby as a hub to modulate the response to various stresses in the rice plant. 63 

  64 
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Introduction 65 

 66 

MADS box transcription factors belong to a multigenic family and have been 67 

identified in yeasts, plants, insects, nematodes and lower vertebrates and mammals where they 68 

control different aspects of development and cell differentiation (Shore and Sharrocks, 1995). 69 

For example, the yeast MINICHROMOSOME MAINTENANCE 1 (MCM1) MADS-box 70 

transcription factor is involved in diverse regulatory mechanisms underlying cell viability, 71 

cell-cycle control, mating, minichromosome maintenance, recombination but also 72 

osmotolerance (Messenguy and Dubois, 2003). The MADS-BOX PROTEIN REQUIRED 73 

FOR INFECTIOUS GROWTH 1/RESISTANCE TO LEPTOSPHAERIA MACULANS 1 74 

MADS-box transcription factor is required for pathogenicity of the causal fungal agent of the 75 

rice blast disease, Magnaporthe oryzae (Mehrabi et al., 2008). In plants, analyses of MADS 76 

box transcription factors have mainly revealed a function in flower development, flowering 77 

induction or fruit development (Theissen et al., 2000; Arora et al., 2007; Smaczniak et al., 78 

2012). Expression of other MADS genes in pollen, endosperm, guard cells, roots and 79 

trichomes suggests a function in the differentiation of these organs and tissues (Alvarez-80 

Buylla et al., 2000; Parenicova et al., 2003; Puig et al., 2013). Some plant MADS-box 81 

transcription factors are involved in the control of stress-related developmental programs such 82 

as abscission, fruit ripening and senescence.  For example, in Arabidopsis thaliana, over-83 

expression of AGAMOUS-LIKE 15 (AGL15) was found to delay flowering, senescence, fruit 84 

ripening and floral organ abscission suggesting that this MADS-box transcription factor is a 85 

negative regulator of these processes (Fernandez et al., 2000; Fang and Fernandez, 2002). 86 

Similarly FOREVER YOUNG FLOWER (FYF) represses floral organ senescence and 87 

abscission in Arabidopsis (Chen et al., 2011). SHATTERPROOF1 (SHP1) and SHP2 are 88 

involved in the cell specification of the dehiscence zone in Arabidopsis fruits where they 89 

promote the lignification of cells adjacent to this zone (Liljegren et al., 2000). In Solanum 90 

lycopersicum, the MADS domain protein JOINTLESS is necessary to specify pedicel 91 

abscission zones MADS-RIN and TOMATO AGAMOUS-LIKE 1 (TAGL1) controls fruit 92 

ripening (Mao et al., 2000; Vrebalov et al., 2002, Itkin et al., 2009, Vrebalov et al., 2002). 93 

Nevertheless no MADS box gene has been yet identified in plants to have a function related 94 

to biotic or abiotic stress-response regulation.  95 
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The Oryza sativa genome contains 75 genes encoding MADS-box transcription factors 96 

but the function of only few of them has been determined. Most of the studied genes are 97 

involved in the control of development, including tillering, flower development and flowering 98 

time (Arora et al., 2007; Guo et al., 2013). Some of them are involved in development by 99 

controlling stress-related processes such as OsMADS3 that is involved in reactive oxygen 100 

species homeostasis during anther development and OsMADS29 that controls cell 101 

degeneration during seed development (Hu et al., 2011; Yang et al., 2012). A possible specific 102 

involvement of rice MADS genes in stress response has been reported only for OsMADS26, 103 

the rice ortholog of AGL12 (Lee et al., 2008b; Lee et al., 2011). In Arabidopsis AGL12 104 

regulates cell proliferation in the root apical meristem as well as  flowering transition, and 105 

was suggested to control root secondary cell-wall synthesis (Tapia-Lopez et al., 2008; Montes 106 

et al., 2014). When over-expressed in Catharanthus roseus cell suspension, AGL12 promotes 107 

cell aggregation and stimulates expression of genes involved in the biosynthesis of terpene 108 

indole alkaloids (Montiel et al., 2007). In rice, OsMADS26 over-expression causes a severe 109 

stress phenotype that generally leads to plant death. Expression of OsMADS26 under the 110 

control of a dexamethasone-inducible promoter provokes the differential regulation of genes 111 

involved in jasmonic acid biosynthesis and reactive oxygen species production (Lee et al., 112 

2008b).  113 

In order to precise the involvement of OsMADS26 in stress response in rice, we 114 

succeeded in generating viable plants over-expressing OsMADS26 and plants where 115 

OsMADS26 expression was down-regulated through RNA interference. Our data showed that 116 

OsMADS26 down-regulated plants have no dramatic alteration of their development and were 117 

more resistant to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae, the main fungal 118 

and bacterial pathogens of rice. On the other hand, OsMADS26 over-expression increased 119 

moderately their susceptibility to these pathogens. Enhancement of recovery capacity after a 120 

severe water stress was also observed in OsMADS26 down-regulated plants. These 121 

phenotypes were further confirmed in the field with OsMADS26 overexpression increasing M. 122 

oryzae susceptibility and OsMADS26 down regulation promoting resistance against water 123 

deficit. A transcriptome analysis revealed that genes differentially regulated between control 124 

and over- or down-regulated OsMADS26 plants were enriched with already known biotic and 125 

abiotic stress-related genes. Altogether, these results indicate that OsMADS26 is a major 126 

negative regulator of both biotic and abiotic stress responses in rice. 127 
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Results 130 

OsMADS26 is preferentially expressed in peripheral tissues and regulated by biotic and 131 

abiotic stresses  132 

 Accumulation of OsMADS26 transcripts in roots, leaves and panicles has been 133 

previously reported (Shinozuka et al., 1999; Pelucchi et al., 2002; Arora et al., 2007) and was 134 

found to increase with organ aging (Lee et al., 2008b). To further precise the expression 135 

pattern of OsMADS26 we carried out RT-qPCR and in situ hybridization assays in the organs 136 

of 7 day-old rice seedlings. OsMADS26 was found to be expressed in all the investigated 137 

organs (i.e. leaf blade, stem bases, seminal and crown roots (Figure 1 A), in a consistent 138 

manner with regards to the available expression data (see www.genevestigator.com with 139 

Os.4174.1.S1_at). In seminal roots, the expression of OsMADS26 in the 0.5 cm segment 140 

above the root tip was two-fold higher than in the root tip itself (the 0.5 cm apical part of the 141 

seminal root) (Figure 1 A). In situ hybridization specified RT-qPCR data showing that 142 

OsMADS26 transcripts accumulate in the differentiated epidermis, exodermis, sclerenchyma 143 

and cortical aerenchyma layers but neither in the meristematic zone of the root nor in the root 144 

cap (Figure 2, A to H). OsMADS26 mRNA was not detected in the stele tissues (Figure 2, A 145 

and E). In leaves, OsMADS26 was expressed in the epidermal cells, bulliform cells, phloem, 146 

and xylem associated parenchyma cells (Figure 2, I to L). 147 

 To determine whether OsMADS26 expression is influenced by osmotic stress, rice 148 

seedlings were grown on culture media supplemented with 100 mM mannitol. Under these 149 

conditions, the seedling growth is reduced but not abolished (data not shown). Mannitol 150 

treatment induced the expression level of OsMADS26 both in shoot and in root tissues (Figure 151 

1 B and C).  152 

As available microarray data indicate that OsMADS26 is slightly down-regulated late 153 

after infection (48 hpi) by the FR13 virulent isolate of the blast fungus M. oryzae (Ribot et al., 154 

2008); GEO accession GSE7256), we further investigated its expression time course 155 

following inoculation with virulent and avirulent isolates (FR13 and CL3.6.7, respectively; 156 

(Delteil et al., 2012)) of M. oryzae (Figure 3). We confirmed that OsMADS26 transcription is 157 

slightly repressed late after inoculation (72 hpi) with the virulent isolate FR13 but not the 158 

avirulent isolate CL3.6.7. More strikingly, OsMADS26 was strongly repressed in an early 159 
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phase of infection by both isolates (4 and 8 hpi), before the fungus has penetrated into the leaf 160 

(Figure 3). 161 

  162 

OsMADS26 mis-regulation does not strongly affect plant development 163 

  164 

To precise the function of OsMADS26, we investigated the effect of its over-165 

expression and of its RNAi-mediated down-regulation in rice plants. For over-expression, the 166 

OsMADS26 cDNA was placed under the control of the maize ubiquitin 1 promoter that allows 167 

high level, constitutive expression in rice (Cornejo et al., 1993). We selected two independent, 168 

homozygous single T-DNA copy events, OX1 and OX2, accumulating OsMADS26 transcripts 169 

at a 30- and 20-fold higher level than the control, respectively (Figure 4 A). OsMADS26 over-170 

expression remained stable in further generations (Figure S1 A). For constitutive RNAi-171 

mediated down-regulation (DR) of OsMADS26, two constructs specifically targeting either its 172 

5’UTR (DR5) or the 3’UTR (DR3) regions were prepared. Two independent, homozygous, 173 

single T-DNA copy events were randomly selected for each construct (DR5-1 and DR5-2; 174 

DR3-1 and DR3-2). A wild-type line regenerated from untransformed callus used for the 175 

transformation experiment was kept as control (WT). In addition, one line transformed with 176 

the empty over-expression T-DNA (OX0) and one line obtained by transformation with the 177 

empty RNAi T-DNA (DR0) were used as additional controls. Plantlets of these three control 178 

lines accumulated OsMADS26 transcripts at a similar level (Figure 4 A and B). In all the 179 

RNAi lines, OsMADS26 expression was reduced strongly and stably over the subsequent 180 

generations (Figure 4 B, Figure S1 B) and did not respondanymore to an osmotic stress 181 

(Figure S1 C). 182 

 In order to further establish the influence of OsMADS26 on rice development, the 183 

phenology of the transformed lines was investigated. First, the height of 7 day-old 184 

seedlingsgrown in vitro was scored. All control lines (WT, OX0 and DR0) exhibited similar 185 

development while the height of the OX1, OX2, DR5 and DR3 lines was significantly 186 

reduced (Table I). DR5 and DR3 plantlets were the most affected. However, two months 187 

following transfer in pots in the greenhouse (76 days after germination), the average heights 188 

OX1, OX2, DR5 and DR3 lines were similar to those of control lines, except the DR5-1 line 189 

which still exhibited a reduced size (Table I). At the same time all the down-regulated lines 190 

displayed a reduction in tiller number (Table I; Figure 4 C). This was particularly significant 191 
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for the DR5-2 line which displayed a 45% reduction in number of tillers compared to its 192 

control (DR0) (Table I). The dry weights (DW) of the aerial part of the DR plants, especially 193 

the two DR5 lines, were lower than those of the control and OX plants (Table I). The two 194 

DR3 lines also exhibited significant delay of 3-4 days in flowering (Table I). No significant 195 

difference for these two traits was observed among the rest of the lines. Total weight and 196 

1000-seed weight of the main panicle were comparable in all the lines studied (Table I). In 197 

summary, while the over-expressing and down-regulated OsMADS26 lines exhibited a 198 

retarded growth at early stages of development following germination further transfer and 199 

growth in the greenhouse allowed them to recover and exhibit a performance generally similar 200 

or close to that of control plants. The weak impact of constitutive OsMADS26 over-expression 201 

or down-regulation on plant development was confirmed in the field where we observed only 202 

a reduced height for the OX2 line and a higher biomass and yield for the DR3-1 line in 203 

comparison with their relative controls (Figure S2).  204 

OsMADS26 is required for resistance against blast fungus and bacterial blight  205 

 As OsMADS26 was found to be a stress-related gene in rice (Lee et al., 2008b; Lee et 206 

al., 2011), we further evaluated the response of the OsMADS26 transgenic lines to pathogen 207 

infection.  208 

First, plantlets of the different OsMADS26 lines were inoculated with the moderately 209 

virulent fungal isolate GUY11 of Magnaporthe oryzae (Delteil et al., 2012). This isolate 210 

triggers lesions in the leaf blade of cv. Nipponbare consisting of an average of 50% greyish 211 

lesions surrounded by brown margins that are characteristic of successful invasion of the 212 

fungus (disease). The other are small and dark spots characteristic of unsuccessful invasion 213 

events (see WT, OX0 and DR0 plants in Figure 5 A). Differences in the degree and 214 

development of disease symptoms caused by M. oryzae between transformed and 215 

untransformed plants were clearly visible at 7 days post inoculation (dpi) (Figure 5 A). The 216 

two over-expressing lines (OX1 and OX2) presented more disease symptoms compared with 217 

the controls (WT and OX0). In contrast, all the down-regulated lines, displayed many small 218 

and dark spots characteristic of resistance and very few disease symptoms. These observations 219 

were further confirmed by calculating the percentage of susceptible lesion versus the total 220 

number of observed lesion on each infected leaf (Figure 5 B). Thus, this suggested that 221 
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OsMADS26 negatively regulates blast resistance. In addition, the susceptibility to M. oryzae 222 

of OX0, OX2 and DR3-1 lines was challenged in a nethouse in Vietnam on 10 weeks old 223 

plants inoculated with the VT15 Vietnamese isolate virulent on Nipponbare (Figure S3). In 224 

this experiment the number of susceptible lesions was significantly higher in OX2 line and 225 

slightly lower in DR3-1 line than in the control (OX0), confirming the opposite phenotypes 226 

observed for over-expressing and down-regulated OsMADS26 lines. The expression of a set 227 

of selected major defence-related genes PEROXIDASE 22.3 (POX22.3) (Vergne et al., 2007), 228 

chitinase (CHI7) (Kaku et al, 2006), PATHOGENESIS-RELATED PROTEINS 5 (PR5), 229 

NONEXPRESSOR OF PATHOGENESIS-RELATED (NPR1) HOMOLOGUE 1 (NH1), 230 

Flagellin-receptor (OsFLS2), OsWRKY28 and PROBENAZOLE-INDUCIBLE 1 (PBZ1) 231 

(Delteil et al., 2012) was examined in OX2 lines 2 days following inoculation with M. oryzae 232 

GY11 isolate or mock treatment (Figure 6). This showed that in mock-treated and inoculated 233 

plants, the expression of most of these genes (POX223, CHI7, PR5, NH1, FLS2 and 234 

WRKY28) was significantly reduced in the OX2 line in comparison with OX0, before and/or 235 

after infection. This results suggests that OsMADS26 acts as a negative regulator of defense-236 

gene expression. 237 

Secondly, in order to evaluate whether constitutive deregulation of OsMADS26 affects 238 

the susceptibility to a bacterial pathogen, we challenged the over-expressing and down-239 

regulated OsMADS26 lines with Xanthomonas oryzae pv. oryzae. Similar data were obtained 240 

for resistance to bacterial blight X. oryzae pv. oryzae as with M. oryzae. In this case the length 241 

of the necrotic and yellowing zone extending from the wounded extremity of the infected 242 

leaves was measured 14 days after inoculation. The symptoms had a significantly higher 243 

severity for OX1 and OX2 lines, compared to the control lines (Figure S4 A and B). 244 

Conversely, the symptoms developed by down-regulated lines (DR5-1, DR5-2, DR3-1 and 245 

DR3-2) were limited to a short necrosis just below the inoculation zone (Figure S4 A and B), 246 

suggesting that these lines were strongly resistant to X. oryzae pv. oryzae and supporting a 247 

negative role of OsMADS26 on blight resistance.  248 

 Finally, we tested whether the response to the Rice Yellow Mottle Virus (RYMV, 249 

Kouassi et al., 2005) could be affected by OsMADS26 over-expression or down-regulation. 250 

We did not observe any difference in the development of symptoms or in virus accumulation 251 
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between the over-expressing lines, the down-regulated lines and their respective controls 252 

(Figure S5), suggesting that mis-regulation of OsMADS26 expression had no impact on the 253 

resistance against RYMV.  254 

OsMADS26 inhibition favours plant tolerance against drought stress  255 

 Because mannitol stress induces the expression of OsMADS26 (Figure 1 B and C) we 256 

investigated the tolerance of over-expressing and down-regulated lines to the drought stress. 257 

Following the drought stress, plants were re-watered for a period of two weeks to allow 258 

recovery. While plants of all the control and OsMADS26 over-expressing lines were mostly 259 

wilted and died, OsMADS26 down-regulated plants fully recovered from the water stress 260 

(Figure 7 A). 261 

 All the lines exhibited at the beginning of the experiment a similar Relative Water 262 

Content (RWC, nearly 95%) that decreased to around 85% following 11 days of water deficit 263 

(Figure 7 B). However, 15 days after water deprivation, the leaf RWC of all the control and 264 

OsMADS26 over-expressing lines dropped to a 47 to 62 % range while the two OsMADS26 265 

down-regulated lines maintained a significantly higher RWC falling within a 81 to 84% 266 

range. This suggests that the inhibition of OsMADS26 expression enhances the capacity of the 267 

rice plant to maintain its water content under water deficit. 268 

 The expression of two drought-responsive genes was analyzed:  RESPONSIVE TO 269 

ABA21 (RAB21), a rice dehydrin and SALT-STRESS-INDUCED PROTEIN (SALT) (Claes et 270 

al., 1990; Oh et al., 2005). Their expression levels were similar in all lines before or 5 days 271 

following the water stress. Following 11 days of water stress however, their expression was 272 

significantly higher in the two OsMADS26 down-regulated lines compared to control and 273 

OsMADS26 over-expression lines (Figure 7 C and D). This suggests that OsMADS26 may 274 

play a negative role in the regulation of some drought stress-responsive genes in response to 275 

water deficit.   276 

 In addition we challenged in the field the capacity of  OX0, OX2, DR0 and DR3-1 277 

lines to tolerate water deficit. The DR3-1 line presented a much better tolerance to water 278 

deficit conditions associated with a slower decrease of chlorophyll a content and a better 279 

capacity to maintain yield under drought than the other lines (Figure 8). Other measurements 280 

(leaf rolling, chlorophyll content, biomass) confirmed that DR3-1 plants had an increased 281 
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capacity to sustain drought stress (Figure S6). This confirmed that a constitutive down 282 

regulation of OsMADS26 increases the capacity of the plant to tolerate water deficit. 283 

Transcriptome profiling of OsMADS26 over-expressing and down regulated lines 284 

 Preliminary evidence of altered expression of stress related genes in OsMADS26 over-285 

expressing and down regulated lines led us to further identify the pathways potentially 286 

regulated by OsMADS26, through transcriptome profiling. Transcriptome profiles were 287 

established from two independent biological replicates per line. Genes significantly and 288 

reproducibly induced or repressed (fold change > 2 and p-value, P ≤ 0.05) across lines and 289 

replicates compared to their values in the appropriate controls were selected for further 290 

analysis (see material and methods for more information).  We finally selected genes at least 291 

one time inversely regulated in OX compared to DR lines or reproducibly over-expressed or 292 

repressed in OX or control lines. In order to compare our results to other available data, we 293 

converted the rice probes into MSU transcriptional units (Table S1). This represented a total 294 

of  400  non-redundant genes. A total of 71 non-redundant genes presented an inverted 295 

regulation profile in OX and DR lines (Figure 9, Table S1). Overall, 212 genes were down-296 

regulated in DR lines and/or up-regulated in OX lines. These genes should belong to 297 

pathways induced by OsMADS26. On the contrary, 200 genes were up-regulated in DR lines 298 

and/or down-regulated in OX lines. These genes should belong to pathways inhibited by 299 

OsMADS26. 300 

We then looked for overlaps between a set of >6800 probes that were known to be 301 

transcriptionally regulated upon pathogen infection (Vergne et al., 2008) and the 400 genes 302 

that were significantly mis-regulated in DR and/or OX lines (Table S1). We found that 53% 303 

of the 200 genes up regulated in DR and/or down-regulated in OX lines are known to be 304 

transcriptionally regulated during pathogen challenge whereas only 30% were expected by 305 

chance in a random selection of 2000 genes (P <0.001 as evaluated with a Chi square test; 306 

Vergne et al, 2008). In contrast there was no such enrichment in the 212 genes up-regulated in 307 

DR lines and/or down-regulated in OX lines. Thus OsMADS26 seems to down-regulate the 308 

transcription of a large number of genes known to be involved in disease resistance. Similarly, 309 

a large proportion (41%) of genes mis-regulated in OsMADS26 lines was found in previous 310 

published drought dataset (Minh-Thu et al., 2013). The extent of this overlap is proportinal to 311 
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the one observed with genes found to be deregulated in DEX-inducible OsMADS26 lines 312 

(39%) (Lee et al., 2008b). Our analysis thus resulted in a list of putative OsMADS26 target 313 

genes that may be involved in the regulation of biotic or abiotic stress resistance.  314 

Discussion 315 

Alteration of OsMADS26 expression does not deeply affect Nipponbare plant development 316 

 The OsMADS26 over-expressing lines presented a delayed development at the 317 

seedling stage but their development in the greenhouse and field was almost similar to the 318 

development of control plants, aside a slight reduction in tiller number (Table I). This 319 

contrasts with the previous study of Lee and co-workers (2008b) who reported that over-320 

expression of OsMADS26 driven by the same constitutive promoter triggered several 321 

dramatically abnormal developmental phenotypes, including anthocyanin accumulation or 322 

lethality. A tentative explanation might lie in the use of different genetic backgrounds 323 

(Nipponbare vs. Dongjin) for expressing OsMADS26. To our knowledge, there is at least one 324 

report where over-expression in different rice genetic background resulted in the opposite 325 

effects (Tao et al., 2009). Alternatively, it is possible that our transformation procedure 326 

(Sallaud et al., 2003) that differs from that used by Lee and colleagues, has counter selected 327 

plants presenting a severe reduction of their development or lethality due to very high levels 328 

of expression. Although we cannot explain the strong phenotypic differences between our 329 

over-expressing lines and the lines analyzed by Lee et al (2008b), these differences may 330 

explain at least in part why we found little overlap between our and their micro-array 331 

experiments (16 genes in total, see below). Similarly, except for a delay in development 332 

observed at early stages, the overall development of the down regulated lines was not strongly 333 

modified (Table I). 334 

OsMADS26 is a negative regulator of both biotic and abiotic stresses 335 

 Our data showed that OsMADS26 down-regulated lines displayed decreased 336 

susceptibility to two major pathogens of rice (Figures 5, S3 and S4) as well as an increased 337 

water deficit tolerance and a better recovery capacity following a drought stress (Figures 7, 8 338 

and S2). The observation of consistent phenotypes in the OsMADS26 down-regulated lines 339 
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obtained with two independent constructs targeting 5’ or 3’ UTR, reduces the risk of 340 

misinterpretation related to trans-interference with transcripts of other genes. As the observed 341 

phenotypes are similar between the different down-regulated lines we can assume that they 342 

are the consequence of a specific degradation of OsMADS26 mRNAs.  343 

Up to 60% and 40% average disease symptom reductions were observed in down-344 

regulated lines inoculated with X. oryzae pv oryzae and M. oryzae respectively (Figures 5 and 345 

S4). This corresponds to a high level of disease reduction when compared to the range 346 

attained in transgenic lines obtained through mis-regulation of a set of defense-associated 347 

genes (Delteil et al., 2010). Consistently, an increased susceptibility of OsMADS26 OX lines 348 

to M. oryzae was also observed in the nethouse experiments whereas the tested OsMADS26 349 

down-regulated lines presented a reduction of susceptible lesions in comparison with the DR0 350 

control (Figure S3). This shows that the negative regulation of OsMADS26 on the resistance 351 

mechanisms to M. oryzae can be observed at different developmental stages, with different 352 

virulent isolates and independently of the growth conditions. It is interesting to stress that 353 

there is a coincidence between the tissue localization of OsMADS26 transcripts and the cell 354 

barriers that pathogens have to cross in the plant (Figure 2). For instance, OsMADS26 is 355 

expressed in the epidermis, a barrier that M. oryzae has to cross to perform its life cycle. 356 

Transcripts of OsMADS26 also accumulated in cells around the vessels where X. oryzae pv 357 

oryzae develops. To our knowledge this is the first report of the involvement of a MADS gene 358 

in disease resistance in plants. The resistance of rice against RYMV was not affected by 359 

OsMADS26 down-regulation. Resistance against bacteria and fungi on the one hand and virus 360 

on the other hand involves different mechanisms, such as RNA silencing for the latter and 361 

pathways producing antimicrobial molecules for the former. Thus OsMADS26 negatively 362 

participates in resistance to a wide range of rice pathogens but not to RYMV. 363 

 Besides this strong effect on biotic stress resistance, the OsMADS26 down-regulated 364 

lines showed an increased ability to maintain their RWC under soil water deficit and to 365 

recover from a severe drought stress as well as a better capacity to maintain yield in drought 366 

condition in the field (Figure 7, 8, S6) The preferential localization of OsMADS26 transcripts 367 

(Figure 2) in peripheral tissues such as epidermis and bulliform cells in leaves and exodermis 368 

in roots supports a role for this transcription factor in the response mechanism to 369 
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environmental clues. To our knowledge, OsNAC6 and OsNAC10 are the only transcription 370 

factors for which the deregulation had a joint benefit on both biotic and abiotic stresses 371 

tolerances (Nakashima et al., 2007; Sun et al., 2012). OsNAC6 over-expressing rice plants 372 

showed an improved tolerance to dehydration and high-salt stresses as well as increased 373 

tolerance to blast disease. However, constitutive overexpressers also exhibit growth 374 

retardation and low reproductive yields, in contrast to OsMADS26 down-regulated lines that 375 

presented only discrete developmental changes.  376 

OsMADS26 alters the transcription of a wide range of biotic and abiotic stresses-related 377 

genes 378 

 We showed that the expression of a set of defense genes is lower in OX OsMADS26 379 

lines than in the control before and after inoculation with a virulent isolate of M. oryzae 380 

(Figure 6). This was confirmed by micro-array analysis (Table S1) where several other genes 381 

coding for Pathogenesis-Related proteins were down regulated in OX OsMADS26 lines. 382 

Similarly the expression of a set of drought resistance related genes is higher in OsMADS26 383 

DR lines after the application of a water deficit (Figure 7). This suggests a direct or indirect 384 

involvement of OsMADS26 as a repressor of stress responsive genes.  385 

 By using transcriptome analysis, we investigated whether the modified response to 386 

biotic and abiotic stresses was associated to a more global differential expression of stress-387 

related genes before application of the stress itself. Using the Archipelago database 388 

referencing genes in rice involved in disease resistance (Vergne et al., 2008) or the drought 389 

responsive genes dataset (Minh-Thu et al., 2013), we could establish that a large proportion of 390 

the genes differentially regulated in down-regulated and over-expressing lines are known to 391 

be regulated by biotic (53%) or abiotic (41%) stresses. This was similar (49% and 39% 392 

respectively) to what was found by Lee and colleagues (2008b) following DEX-induced over 393 

expression of OsMADS26. Thus these transcriptome analyses demonstrate that OsMADS26 394 

participates in the transcriptional regulation of defense-related genes. The low overlap with 395 

the data set obtained by Lee and colleagues 2008b probably reflects the fact that we 396 

determined the genes regulated at steady-state levels after constitutive over-expression or 397 

down-regulation of OsMADS26 expression whereas Lee and colleagues 2008b identified the 398 

genes deregulated upon a sudden increase of OsMADS26 transcription triggered by the 399 
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dexamethasone induction treatment. Based on their transcriptome analysis, Lee and 400 

colleagues (2008b) stressed that OsMADS26 may be involved in the regulation of genes 401 

involved in jasmonate and ethylene stress hormone biosynthesis. Here we found that OsLOX8 402 

(Os08g39840) is consistently up-regulated in DR lines and down-regulated both in OX 403 

OsMADS26 lines and dexamethasone-induced OsMADS26 lines (Lee et al., 2008b). This gene 404 

was reported to be regulated during the early stage of M. oryzae infection (Peng et al., 1994; 405 

Agrawal et al., 2004), by wounding (Marla and Sing, 2012) and during the senescence process 406 

(Kong et al., 2006). Two genes involved in ethylene biosynthesis OsACO3 (Os09g27750) and 407 

OsARD1 (Os10g28350) are down regulated in OX OsMADS26 lines. OsACO3 and OsARD1 408 

are strongly up regulated by ethylene and contribute to maintain elevated ethylene rate in 409 

stressed plants (Rzewusky and Sauter, 2009). Similarly the ethylene responsive ERF063 410 

transcription factor (Os09g11480) (Ma et al., 2013) was found to be down regulated in OX 411 

OsMADS26 lines suggesting that these lines are impaired for ethylene biosynthesis and 412 

response.  413 

Other stress related transcription factors were found to be differentially regulated in 414 

OX and/or DR OsMADS26 lines. OsNAC103 (Os07g48450) known to be up regulated by 415 

water deficit treatment, salt stress and jasmonate (Murruzaman et al., 2012; Fang et al., 2008) 416 

was found to be up and down regulated in DR and OX lines, respectively. OsNAC045 417 

(Os11g03370) down regulated in OX lines is up regulated in response to salt or cold stress 418 

(Fang et al., 2008). OsWRKY24 (Os01g61080) represses ABA and GA signaling in aleurone 419 

cells (Xie et al., 2005; Zhang et al., 2009) and is induced by chilling stress (Yun et al., 2010). 420 

It is up regulated in DR lines and down regulated in OX lines. OsWRKY53 (Os05g39720), 421 

down regulated in OX lines is induced by elicitors, jasmonate, M. oryzae infection and during 422 

the Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae. Its overexpression enhances 423 

rice resistance to M. oryzae (Chujo et al., 2007; 2014). Interestingly, we identified that RH1 424 

(Os05g30500) is up regulated in OX line. RH1 is an NRR homologue that can interact with 425 

and inhibit NH1/OsNPR1 that is a master regulator of defence genes and systemic acquired 426 

resistance (Chern et al., 2012). The Wall-Associated kinase WAK25 (Os03g12470) was down 427 

regulated in OX plants. This is consistent with the published function of this gene as a 428 

positive regulator of Xanthomonas resistance (Seo et al., 2011). Finally, the OsRMC 429 

(Os04g56430) Receptor-like kinase known to be highly induced by salt treatment (Serra et al., 430 
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2013) was up-regulated in DR plants and down-regulated in OX plants. Whether OX or DR 431 

OsMADS26 plants are more resistant to salt stress remains to be established.  432 

Taken together this shows that OsMADS26 contributes to the regulation of several 433 

stress-related transcriptional and regulatory pathways and that its over-expression or down 434 

regulation impact on the expression of a wide range of biotic and abiotic defense related genes 435 

and which  is consistent with the observed phenotypes of DR and OX lines.  436 

OsMADS26 a hub for stress resistance regulation in plants? 437 

 Our data indicate that OsMADS26 probably mainly acts as a negative regulator of 438 

stress response. This has also been reported for OsMADS22 and OsMADS55 which act as 439 

negative regulators of the brassinosteroid response (Lee et al., 2008a).  Whereas the down-440 

regulation of OsMADS26 transcription upon rice blast infection (Figure 3), irrespective of the 441 

virulence of the isolate, can constitute a basal defense response, its up-regulation during 442 

osmotic stress (Figure 1) is more difficult to interpret. We propose that this up-regulation of 443 

OsMADS26 could be part of a negative feed-back loop that would dampen abiotic stress 444 

response.  445 

 Nevertheless, it cannot be excluded that OsMADS26 might have both activating and 446 

inhibiting activity on stress response genes depending on post-translational modifications or 447 

interaction with other regulatory proteins. Indeed, MADS box proteins are combinatorial 448 

transcription factors and their regulatory specificity is affected by the interaction with other 449 

DNA binding or accessory factors (Messenguy and Dubois, 2003). In this context 450 

OsMADS26 could be a hub that integrates different signals and contributes to a short term 451 

activation of defense mechanisms and becomes afterwards partly responsible for their 452 

cancellation. In this respect, it will be interesting to identify the proteins that can interact in 453 

vivo with OsMADS26.  454 

Conclusion: 455 

 Our data show that OsMADS26 is a negative regulator of different stresses of major 456 

agronomical importance in rice. It also represents the description of a new range of functions 457 
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for MADS genes in plants and opens the door towards the achievement of drought tolerant and 458 

disease resistant plants. To reach this goal, it will be very interesting to identify in rice tilling 459 

population plants with OsMADS26 null alleles and to test their resistance against stresses. 460 

These alleles could be introduced in future breeding programs. 461 

Materials and methods 462 

Plant material and growth conditions 463 

 Dehulled and surface sterilized seeds of Oryza sativa, cv. Nipponbare were incubated 464 

in sterile distilled water in a growth chamber (16 h of light per day, 500 µE m-2 s-1, 28°C/25°C 465 

day/night) for 2 days at 25°C. Imbibed seeds were transferred in square Petri dishes (245 mm 466 

x 245 mm, CORNING, 7 seeds per dish) containing 250 ml of half strength Murashige and 467 

Skoog (DUCHEFA) standard medium (MS/2) solidified with 8 g L-1 of agarose type II 468 

(SIGMA). These dishes were transferred and placed vertically in a growth chamber at 28°C 469 

under 16h light. Roots and shoots of 7 day-old seedlings were collected and used for in situ 470 

hybridization and RNA isolation for RT-qPCR or transcriptome analyses. Salt and osmotic 471 

stresses were applied by supplementing the culture medium with 150 mM NaCl (DUCHEFA) 472 

or 100 mM mannitol (DUCHEFA), respectively.  473 

Plants were grown in 3L pots filled with EGO 140 soil substrate (TREF, 474 

www.Trefgroup.com) in a containment greenhouse (16-h-light/8-h-dark cycles, at 28°C to 475 

30°C). For plant phenotyping, the plants belonging to the different lines were randomly 476 

distributed in the greenhouse. Twenty days after germination (DAG), plant height and tiller 477 

number were measured once a week until the early flowering stage. The latter stage was 478 

defined as the date when the first spike emerges from the flag leaf sheath on a plant. The 479 

flowering date corresponds to the date when spikes are observed on 50% of the tillers of a 480 

plant. After harvesting, the dry weight of the aerial part of the plant part was determined 481 

following drying the plant tissues at 70°C for 96 h. Panicles of each plant were also 482 

individually weighted following a drying treatment at 37°c for 3 days. The 1000 seed-weight 483 

was evaluated using seeds borne by the master tiller panicle. This experiment was repeated 484 

twice using three plants per line.  485 
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 Specific culture conditions used for evaluation of pathogen and drought tolerance are 486 

detailed in the corresponding sections. 487 

Plasmid construction for plant transformation  488 

 The isolation of OsMADS26 (Os08g02070) cDNA from O. sativa cv Nipponbare was 489 

achieved by RT-PCR. Total RNA was extracted from 100mg of leaf tissue of 7 day-old 490 

seedlings grounded in liquid nitrogen using 1ml of TRIzol (INVITROGEN) following the 491 

recommendation of the supplier. A PCR amplification was performed with a couple of 492 

specific primers designed in the 5’ and 3’ UTR of OsMADS26 (Figure S7). The amplified 493 

cDNA was cloned using the pGEM-T easy cloning kit of Promega. From the cDNA further 494 

PCR reactions were done using specific primers to amplify a 215 bp fragment located in the 495 

5’ UTR of OsMADS26, named GST1 and a 321 bp fragment comprising the end of the last 496 

exon and the major part of the 3’ UTR region, named GST2 (Figure S4). PCR cycling 497 

conditions were: 94 °C for 4 min (1 cycle) and 94 °C for 1 min, an annealing step at various 498 

temperatures depending on the Tm of the primers used (typically Tm -5 °C), for 1.5 min, and 499 

72 °C for 1 min (35 cycles) with a 5 min final extension step at 72 °C. PCR was performed in 500 

a final volume of 25 µL with 0.25 u of Taq polymerase in MgCl2-free buffer (PROMEGA), 2 501 

mM MgCl2, 200 nM each dNTP, appropriate oligonucleotides (1µM) and cDNA (2 µL) or 502 

pGEMT-PC8 plasmid (10 ng). The BP tailed OsMADS26 amplified cDNA was cloned with 503 

the BP recombinase (INVITROGEN) in a modified pCAMBIA 1300 binary vector for over-504 

expression named PC5300.OE where the Ccdb gene surrounded by the BP recombination 505 

sites were cloned between the constitutive promoter of ubiquitin gene from maize and the 506 

terminator of the nopaline syntase gene from Agrobacterium tumefaciens (J.C. Breitler, 507 

CIRAD, unpublished). After cloning, the presence of the OsMADS26 cDNA in frame was 508 

ascertained by sequencing. The plasmid named PC5300.OE-PC8 was transferred into A. 509 

tumefaciens strain EHA105. For RNA interference, the BP tailed amplified GST1 or GST2 510 

were cloned by BP recombination in the pDON207 entry plasmid (INVITROGEN) and 511 

transferred with the LR recombinase (INVITROGEN) in the siRNA binary plasmid pANDA 512 

(Miki and Shimamoto, 2004). The insertion of the GSTs in pANDA was controlled by 513 

sequencing. The resulting plasmids, named pANDA-DR5 and pANDA-DR3, were mobilized 514 

into A. tumefaciens strain EHA105 for plant transformation. 515 
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Transgenic plants were obtained by co-culture of seed embryo-derived callus with A. 516 

tumefaciens strain EHA105 carrying the adequate binary plasmids following the procedure 517 

detailed in (Sallaud et al., 2003). Single locus and homozygous T2 lines were selected on the 518 

basis of the segregation of the antibiotic resistance gene carried by the T-DNA and Southern 519 

blot analysis.  520 

 The expression of OsMADS26 in selected transgenic lines was analyzed by RT-qPCR 521 

using specific primers (Table SI).  522 

Real-time quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) analysis 523 

Total RNA were extracted from 100 mg of grounded leaf tissues with 1ml of TRIzol 524 

(INVITROGEN) following the recommendation of the supplier. Two µg of RNA were treated 525 

by RQ1 DNAse (PROMEGA) to remove residual gDNA. The first strand cDNA synthesis 526 

was performed in 20 µl of final volume using the kit Superscripts III (INVITROGEN) 527 

following the manufacturer’s instructions.  528 

 For RT-qPCR analysis, specific forward (F) and reverse (R) primers were designed to 529 

amplify a fragment of 200-400 bp in the 3’ untranslated region (3’-UTR) of each studied gene 530 

using the Vector NTI (version 10.1) software with default parameters. Primer sequences are 531 

given in Table SII. RT-qPCR was performed with a LighCycler 480 (ROCHE) using the 532 

SYBR green master mix (ROCHE). The reaction was carried out in 96-well optical reaction 533 

plates (ROCHE). The reaction mix contained 7.5 µL SYBR Green QPCR Master Mix 534 

(ROCHE), 250 nM of each primer (F and R), and 3µL of 10 fold diluted cDNA template. All 535 

reactions were heated to 95°C for 5min, followed by 45 cycles of 95°C for 10s and 60°C for 536 

30s. Melt curve analysis and gel electrophoresis of the PCR products were used to confirm the 537 

absence of non-specific amplification products. The primer efficiencies observed for the 538 

couples of primers used was ranged between 1.86 and 2.05. Transcripts from the EXP 539 

(Expressed Protein, Os06g11070) or actin (Os03g50890) genes were also detected and used 540 

as an endogenous control to normalize expression of the other genes. EXP or actin was chosen 541 

as reference genes because their expression appeared to be the most stable in different tissues 542 

and physiological conditions (Caldana et al., 2007). We verified that in all our experiments, 543 

the Ct (threshold cycle) value of the EXP and Actin genes remained stable irrespective of the 544 

treatment applied to the plants and ranges between 26 and 28.. Relative expression level was 545 
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calculated by subtracting the Ct values for EXP or Actin from those of the target gene (to give 546 

ΔCt), then ΔΔCt and calculating 2-Δ∆Ct (Giulietti et al., 2001). Reactions were performed on 547 

technical triplicates from duplicated biological experiments. 548 

In situ hybridization 549 

 For OsMADS26 probe preparation, we used the same primers designed for 550 

OsMADS26 RT-qPCR amplification (Table S1). A 18S ribosome coding sequence was used 551 

as positive hybridization control and PCR amplified from cDNA using the primer couple: 552 

Rib-Up (5’-CCGACCCTGATCTTCTGTGAAGGG-3’) and Rib-Down (5’-553 

CAAGTCAGACGAACGATTTGCACG-3’). Primers containing the above specific 554 

sequences but extended at their 5’ ends with the T7 RNA polymerase promoter sequence (5’-555 

GCGAAATTAATACGACTCACTATAGGGAGA-3’) were also designed and were named 556 

OsMADS26-T7-Up, OsMADS26-T7-Down, RibT7-Up and RibT7-Down. Finally, one primer 557 

corresponding to the T7 end was also designed and named E-T7 (5’-558 

GCGAAATTAATACGACTCAC-3’). To generate sense and antisense probes, specific 559 

cDNAs were amplified by PCR with one primer Up and one primer T7-Down or with one 560 

primer Down and one primer T7-Up respectively. These cDNAs were used to generate sense 561 

or antisense digoxigenin-labeled RNA probes by in vitro transcription using the T7 primer 562 

(T7 MAXIScript Kit; AMBION). Plant samples were fixed in 4% (v/v) paraformaldehyde 563 

in phosphate buffer (0.2 M, pH 7.5), inclusion, section preparation and hybridization were 564 

done as previously described (Jabnoune et al., 2009). Sections were observed with a DM6000 565 

(LEICA) microscope under white light. Photographs were taken with a Retiga 2000R camera 566 

(QIMAGING), and images were processed through Volocity 4.0.1 (IMPROVISION). In situ 567 

hybridization experiments have been conducted on the Plate-Forme d’Histocytologie et 568 

d’Imagerie Cellulaire Végétale (http://phiv.cirad.fr/) using microscopes of the Montpellier Rio 569 

Imaging platform (www.mri.cnrs.fr). 570 

Microarray hybridization and analysis 571 

 For microarray hybridization experiments, total RNA was extracted from 100 mg of 572 

frozen leaves and roots after removal of the remaining seeds from 7-day-old seedlings using a 573 

RNeasy Plant Mini Kit (QUIAGEN) according to manufacturer’s instructions. Residual 574 
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genomic DNA was removed with the RNAse-Free DNase Set (QUIAGEN) during RNA 575 

purification. Two independent biological experiments were used for each studied plant line.          576 

 Microarray hybridization and data processing were carried out with Affymetrix 577 

custom service (AFFYMETRIX) by following the standard protocol for Affymetrix DNA 578 

chip as previously described (Coudert et al., 2011). The complete transcriptome data are 579 

accessible through GEO Series accession number GSE52640 580 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52640). Expression values were 581 

normalized with the robust Multi-Array average method (Irizarry et al., 2003). Differential 582 

analysis and extraction of mas5 FLAG calls were done with linear models and empirical 583 

Bayes and TREAT methods within affy and limma R packages (www.r-project.org, Gautier et 584 

al., 2004; Smyth, 2004; Smyth et al., 2005; McCarthy and Smyth, 2009). Raw P-values were 585 

adjusted with the Benjamini-Hochberg (BH) method to control the false discovery rate 586 

(Benjamini and Hochberg, 1995). Empirical Bayes method with the Benjamini-Hochberg 587 

correction was kept for further analysis as it allowed to confirm the respective down- and up- 588 

regulations of OsMADS26 in the two replicates in the down- and over- expressing lines. 589 

Orygenes DataBase (http://orygenesdb.cirad.fr/; Droc et al., 2006) was used to retrieve gene 590 

annotation corresponding to selected Affymetrix probes. Microarray control probesets and 591 

probesets without annotation were discarded for further analysis. Only probesets with 592 

“Present” Detection Call were kept for subsequent analysis. The 2 biological repetitions for 593 

each type of down- or over- expressing transgenic lines were compared to the corresponding 594 

controls. A gene was considered significantly regulated if it present a fold change ≥2 and a 595 

BH corrected p-value P ≤0.05 in at least two out of the four different contrasts. Genes 596 

showing inconsistent regulations such as i) inverse regulation in two biological repeats of the 597 

same type of down- or over- expressing line or ii) similar regulation in the two different types 598 

of down- and over- expressing line were discarded. A set of up-regulated genes from DNA 599 

chip analysis were confirmed by RT-qPCR analysis as previously described  using specific 600 

primers (Table SI). 601 

Disease resistance assays 602 

 The GUY11 (CIRAD collection, Montpellier, France) or VT15 (LMI RICE collection, 603 

Hanoi, Vietnam) isolates of Magnaporthe oryzae were used for inoculation. GUY11 and 604 
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VT15 isolates are compatible with O. sativa cv Nipponbare and generate moderate 605 

susceptibility symptoms. For gene expression studies (Figure 3), we used the fully virulent 606 

FR13 isolate and the avirulent isolate CL3.6.7 (Delteil et al., 2012). In laboratory, 607 

inoculations were performed on 4-5 leaf stage plantlets as described in (Berruyer et al., 2003), 608 

O. sativa japonica cv Maratelli was used as a susceptible control in the experiments in 609 

addition to the studied transgenic lines. The data presented are representative of data obtained 610 

from three independent replicated experiments. For gene expression studies (Figure 3), we 611 

used the fully virulent FR13 isolate and the avirulent isolate CL3.6.7 (Delteil et al., 2012). 612 

Leaves were collected before and after inoculation in liquid nitrogen and used for RNA 613 

extraction and RT-qPCR analysis to measure the expression level of different defence genes 614 

using specific primers (Table SII). 615 

For nethouse experiments in Vietnam plants were grown in pots (28 l) filled with 616 

organic soil (10 kg by pots) and supplemented with nitrogen (2g by pots) 3 and 9 weeks after 617 

planting. After germination in water plants were planted (5 plants by pots, 1 pot by line) 618 

following a randomized design where OE, DR and control lines were interspersed with 619 

Maratelli and Sariceltick susceptible lines. Plants were grown in a nethouse, in natural 620 

conditions and irrigated permanently to saturation. After 6 weeks of growth plants were 621 

sprayed twice a week during 6 weeks using a fresh M. Oryzae VT15 isolate spore solution (50 622 

0000 spore by ml, 1% w:v gelatin). Symptoms were observed 15 weeks after sowing. Leaves 623 

were collected and scanned and the number of susceptible lesions was numbered according to 624 

Berruyer et al., 2003.  625 

 Resistance assays against X. oryzae pv. oryzae were carried out on 8 week-old rice 626 

plants. The Xoo strain PXO99A (Salzberg et al., 2008) was inoculated using the leaf-clipping 627 

method as previously described (Kauffman, 1973). The data presented are representative of 628 

two independent experiments. Before inoculation and after symptom development, infected 629 

leaves were collected in liquid nitrogen and used for RNA extraction and RT-qPCR analysis 630 

to measure the expression level of different defense genes using specific primers (Table SII). 631 

 For resistance assay against Rice Yellow Mottled Virus (RYMV), ten plants per line 632 

were inoculated by finger rubbing the leaves in presence of Carborundum (600 mesh) with 633 

purified RYMV particles at a concentration of 100 μg mL-1 as previously described (Quilis et 634 

al., 2008). Virus accumulation in tissues was measured by ELISA analysis using an antibody 635 
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against the RYMV coat protein (N’Guessan, 2000). Presented data are representative of two 636 

independent replicated experiments.  637 

Resistance assay to water deficit  638 

 Plants were germinated directly in soil and grown in the greenhouse. Each pot was 639 

filled with EGO 140 soil substrate (TREF, www.Trefgroup.com), planted with 5 seedlings 640 

and watered with the same volume of water. After one month, plants were subjected to 18 641 

days of withholding water followed by 15 days of re-watering. Drought tolerance was 642 

evaluated by determining the percentage of plants that survived or continued to grow after the 643 

period of recovery. This experiment was performed using 20 plants per line and repeated three 644 

times.  645 

 During the water stress period, the relative water content (RWC) of plants was 646 

monitored using a 7 cm-long segment of the last expanded leaf in a random set of five plants 647 

per line according to (Barr and Weatherley, 1962). The other leaves were also harvested, 648 

frozen in liquid nitrogen and stored at -80°C for RNA extraction and RT-qPCR analysis of 649 

stress related genes expression using two plants per line exhibiting closest RWC. RT-qPCR 650 

analysis was conducted as described earlier with specific primers of genes identified as 651 

drought and high salinity stress markers in rice: RAB21, a rice dehydrin (AK109096) and 652 

SALT-STRESS-INDUCED PROTEIN (SALT, AF001395) genes (Claes et al., 1990; Oh et al., 653 

2005). The primer sequences used are given in Table SI. 654 

Upland field experiments were carried out under confined rain-out shelter field 655 

facility, at the International Center for Tropical Agriculture (CIAT, Palmira, Colombia). This 656 

field trial was laid out in a randomly complete block design with three replicates. Drought 657 

stress was imposed from panicle initiation (56 days after direct seeding) and continued around 658 

3 weeks (or) until severe leaf rolling & wilting appeared in non-transgenic control. Then the 659 

plants were rewatered til physiological maturity. The intensity of drought was monitored 660 

through volumetric soil water. Leaf rolling (LR) scores were recorded on a 1-9 IRRI scale 661 

standardized for rice. The following agronomic traits were scored according to the criteria 662 

established in the Standard Evaluation System for Rice (SES) (IRRI, 2002): plant height (cm), 663 

single plant dry biomass (g) and single plant yield were recorded. The degree of relative 664 

chlorophyll content in the fully expanded flag leaf was determined using a SPAD-502 665 
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chlorophyll meter (Minolta Co., Tokyo, Japan) under stress at different stages of crop 666 

development. Chlorophyll-a fluorescence parameters were also measured using a fluorpen 667 

FP100 chlorophyll fluorometer. Fv/Fm represented the maximal photochemical efficiency. 668 

Leaves were kept in the dark for 20 min before measurement. Fv/Fm was calculated with the 669 

following formula: Fv/Fm=(Fm–Fo)/Fm, where Fo is initial fluorescence, Fm is maximum 670 

fluorescence, and Fv is variable fluorescence (any reference to the technique?). 671 
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Figure legends: 677 

Figure 1. OsMADS26 is expressed in shoots and roots and is induced by osmotic stress.  678 

A, expression of OsMADS26 in different organs of 7-day-old rice seedlings cultivated in 679 

standard condition (MS/2). L: leaf, S: stem base, CR: crown root, SR-A: seminal root without 680 

apex, SR+A: seminal root apex. B-C, expression patterns of OsMADS26 in root (B) and shoot 681 

(C) in standard condition (c) or under osmotic stress (OS: MS/2 + 100 mM Mannitol). Mean 682 

and standard error were calculated from two independent experiments consisting of three 683 

technical replicates each. A Student t-test was used to compare the relative expression level 684 

observed in standard andstress conditions; *: significant difference with p<0.05. 685 

Figure 2. OsMADS26 is expressed in differentiated peripheral tissues.  686 

In situ hybridizations were revealed with the VectorBlue Kit III. Antisense (A, E, I) and sense 687 

(B, F, J) OsMADS26 probe hybridizations on a longitudinal section of the root tip (A, B), 688 

transverse section in the seminal root (E, F) and transverse section in the third leaf (I, J) of 7-689 

day-old rice seedling. Hybridization with antisense (C, G, K) and sense (D, H, L) 18S 690 

ribonucleic RNA probe were used as a positive and a negative control, respectively. ep, 691 

epidermis; ex, exodermis sc, sclerenchyma; ae, aerenchyma; st: stele; ph, phloem; xy, xylem; 692 

abe, abaxial epidermis; ade, adaxial epidermis; bc, bulliform cells; fib, fiber; bds, bundle 693 

sheath. Scale bars = 70 µm.   694 

Figure 3. OsMADS26 expression is regulated by Magnaporthe oryzae infection.  695 

Three-week-old rice seedlings of Nipponbare were challenged with two isolates of M.oryzae 696 

virulent FR13 and avirulent CL3.6.7 or mock treated. The expression of each gene was 697 

normalized using the actin gene as control. The mean and SD were calculated from three 698 

independent experiments. A Student T-test (*: P<0.05; **: P<0.01) was done to establish 699 

whether the relative expression level in inoculated condition was different from mock treated. 700 

Figure 4. Over-expression and down-regulation of OsMADS26 do not interfere with overall 701 

plant development.  702 
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A, OsMADS26 relative expression levels in 3-weeks-old T2 overexpressing (OX1, OX2, dark 703 

bars) and controls (WT, OX0, white bars) plants cultivated in greenhouse. B, OsMADS26 704 

expression levels in RNA down-regulated (DR5-1, DR5-2, DR3-1, DR3-2, grey bars) and 705 

control (WT, DR0, white bars) plants cultivated in greenhouse.  Mean and standard error were 706 

obtained from two individual plants of each line. C, Control and transgenic OsMADS26 T2 707 

plants cultivated in greenhouse observed at flowering stage. A Student t-test was done to 708 

establish whether the relative expression level in transgenic line was different from 709 

corresponding null segregant line; *: significant difference with p<0.05; **: significant 710 

difference with p<0.01; ***: significant difference with p<0.001.  711 

Figure 5. OsMADS26 negatively regulates resistance against Magnaporthe oryzae.  712 

Plants overexpressing (OX1, OX2, black bars), down-regulated (DR5-1, DR5-2, DR3-1, 713 

DR3-2, grey bars) OsMADS26 lines and corresponding control lines transformed with empty 714 

vectors or untransformed line (OX0, DR0 WT, white bars) and Maratelli, a highly susceptible 715 

cultivar, were tested. A, symptom severity in leaves of transgenic and control plants 716 

inoculated with the GUY11 strain of M. oryzae. Photographs were taken 7 days post 717 

inoculation. B, percentage of susceptible versus total lesions observed in Mo-infected leaves 7 718 

days after inoculation. Mean and standard error were from ten inoculated plants for each line. 719 

Results shown are from one of two independent experiments that produced similar results. A 720 

Student t-test was done to establish whether one given transgenic line was different from its 721 

corresponding null segregant line; *: significant difference with p<0.05; **: significant 722 

difference with  p<0.01.  723 

Figure 6. Expression of defense genes is down regulated in OsMADS26 over-expressing 724 

before and after infection by Magnaporthae oryzae.  725 

Three-week-old rice seedling of OsMADS26 over-expressing (OX2) line and control line 726 

(OX0) were challenged with the moderately virulent isolates of M. oryzae GY11 (black bars) 727 

or mock treated (grey bars). The RNA were extracted at post-inoculation. The expression of 728 

each gene was normalized using the actin gene as control. The POX223, PBZ1, CHI7 and 729 

PR5 genes are coding for Pathogenesis-related proteins used as classical markers of defense. 730 

The NH1, OsFLS2 and WRKY28 genes are coding for regulator proteins of defense in rice. 731 
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The mean and SD were calculated from three independent experiments. A Student T-test (*: 732 

P<0.01) was done to establish whether the relative expression level in the OX2  lines was 733 

different with the line used as control.  734 

Figure 7. OsMADS26 negatively regulates water stress tolerance 735 

Six independent lines: over-expressing (OX2) or down-regulated (DR5-2, DR3-1) 736 

OsMADS26 and corresponding control lines transformed with empty vectors (OX0, DR0) or 737 

wild type (WT) were used for this experiment. A, Drought stress was applied on twenty days 738 

old plants growing in greenhouse in pots, by stopping watering during 18 days followed by 15 739 

days of rewatering. The pictures were taken 15 days after rewatering.  B, Relative water 740 

content (RWC) of plants was measured on the last expanded leaf before and at 5 days, 11 741 

days and 15 days after watering stopping. Mean value and standard error were calculated from 742 

five individual plants for each line. C and D, RT-qPCR expression analysis of drought- and 743 

salt-responsive rice genes RAB21 (C) and SALT (D) in control and transgenic plants before 744 

and during drought stress. RNA were extracted from leaves of two plants of each line that had 745 

closest relative water content (RWC). We did not measure gene expression 15 days after the 746 

water deficit period since the control and MADS26 overexpressing plants were already highly 747 

damaged. Mean and standard error were from two individual plants for each line. A Student t-748 

test was done to establish whether the RWC or the gene expression level in transgenic lines 749 

was different from corresponding control line; *: significant difference with p<0.05; ** : 750 

significant difference with p<0.01; *** : significant difference with p<0.001.  751 

Figure 8. OsMADS26 down-regulation confers tolerance to water deficit under field 752 

conditions.  753 

Plants were grown in the field in CIAT (Colombia) and a drought stress was applied (see 754 

Methods). The shape of the plant 17 DAS (DAS= days after stress) is shown (A) and the 755 

chlorophyll fluorescence (B) was measured at the indicated times after stress in three 756 

independent blocks on three plants. Yield was measured at the end of the experiment (C). The 757 

mean and SD are shown and a T-test (n=9;***: P<0.001) was used to evaluate statistical 758 

difference between the over-expressing OX2 and down-regulated DR3-1 transgenic lines with 759 

their respective controls OX0 and DR0.  760 
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Figure 9. Genome wide gene expression regulations in OsMADS26 over-expressing or down 761 

regulated lines.  762 

Number of genes significantly differentially expressed in the microarray experiment. 71 (32 + 763 

39) genes presented an inverted regulation profile in OE and DR lines. Green and red colors 764 

depict respectively genes induced or repressed by OsMADS26 expression.  765 

Tables 766 
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 767 

 768 

Table I: Plant phenotype of control and transgenic OsMADS26 lines after 7-day of in vitro culture (MS/2), 72 days after germination in 769 

greenhouse and from flowering to harvest. 770 

 771 
 772 

Line name HTG_7 (cm) HTG_76 (cm) TIL_76 BEG (DAG) FD (DAG) DW (g) PW (g) P1000 (g) 
WT 6.06 ± 1.51 97.53 ±0.59 12.33 ± 0.33 80.33 ± 0.33 81.67 ± 0.88 9.74 ± 2.34 15.18 ± 2.45 21.80 ± 0.71 
OX0 6.34 ± 1.33 97.47 ± 2.06 10.67 ± 0.33 82.33 ± 1.20 84.00 ± 1.00 8.73 ± 0.87 9.52 ± 0.95 20.34 ± 0.62 
DR0 6.72 ± 1.27 95.23 ± 1.36 11.33 ± 1.33 81.67 ± 0.67 83.67 ± 0.67 7.96 ± 3.80 8.88 ± 4.28 17.89 ± 3.93 
OX1 3.84 ± 0.67** 100.60 ± 2.17 10.33 ± 1.45 80.00 ± 1.53 81.67 ± 1.86 8.00 ± 1.42 8.78 ± 1.50 21.39 ± 0.30 
OX2 2.41 ± 0.92*** 93.40 ± 2.84 12.33 ± 0.88 83.67 ± 0.88 86.00 ± 1.00 8.21 ± 1.12 8.93 ± 1.34 20.38 ± 0.72 

DR5-1 1.68 ± 0.68*** 87.90 ± 2.51* 7.80 ± 2.08 83.00 ± 1.15 85.67 ± 0.67 3.86 ± 1.07 4.21 ± 1.14 16.32 ± 0.48 
DR5-2 1.61 ± 0.29*** 95.37 ± 1.84 6.67 ± 0.67* 82.33 ± 0.67 85.00 ± 0.00 4.93 ± 0.40 5.48 ± 0.39 19.79 ± 1.15 
DR3-1 1.61 ± 0.31*** 90.53 ± 1.79 9.67 ± 1.33 85.00 ± 0.00** 87.00 ± 0.58** 6.62 ± 1.37 7.33 ± 1.65 21.42 ± 0.73 
DR3-2 0.84 ± 0.18*** 97.20 ± 1.73 9.00 ± 1.00 84.67 ± 0.33** 86.33 ± 0.33* 7.76 ± 0.73 8.41 ± 0.67 20.01 ± 0.68 

 773 
 774 
 775 
BEG: flowering beginning; DAG: day after germination; DW plant dry weight after seed harvesting; FD: flowering date; HTG_7: Plant height measured at 7 DAG; HTG_76: 776 
Plant height measured at 76 DAG; PW: panicle weight; TIL_76: number of tillers counted at 76 DAG; W1000: weight of 1000 seeds; Reported values are the mean value and 777 
standard error obtained for three individual plants. Results shown are from one of two independent biological repetitions that produced similar results. 778 
HTG_7: Height of 7-d-old plants cultivated in vitro condition (MS/2). Reported values are the mean and standard error for 14 individual plants of each line. 779 
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A Student t-test was done to establish whether the parameter measured in transgenic lines was different from corresponding control line; *: significant difference with p<0.05; 780 
**: significant differentce with p<0.01; ***: significant difference with p<0.001. 781 
 782 

 783 

784 
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* 

* 

Figure 1. OsMADS26 is expressed in shoots and roots and is induced by osmotic stress.  

A, expression of OsMADS26 in different organs of 7-day-old rice seedlings cultivated in standard condition 

(MS/2). L: leaf, S: stem base, CR: crown root, SR-A: seminal root without apex, SR+A: seminal root apex. 

B-C, expression patterns of OsMADS26 in root (B) and shoot (C) in standard condition (c) or under osmotic 

stress (OS: MS/2 + 100 mM Mannitol). Mean and standard error were calculated from two independent 

experiments consisting of three technical replicates each. A Student t-test was used to compare the relative 

expression level observed in standard andstress conditions; *: significant difference with p<0.05.  
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Figure 2. OsMADS26 is expressed in differentiated peripheral tissues.  

In situ hybridizations were revealed with the VectorBlue Kit III. Antisense (A, E, I) and sense (B, F, J) OsMADS26 

probe hybridizations on a longitudinal section of the root tip (A, B), transverse section in the seminal root (E, F) and 

transverse section in the third leaf (I, J) of 7-day-old rice seedling. Hybridization with antisense (C, G, K) and sense (D, 

H, L) 18S ribonucleic RNA probe were used as a positive and a negative control, respectively. ep, epidermis; ex, 

exodermis sc, sclerenchyma; ae, aerenchyma; st: stele; ph, phloem; xy, xylem; abe, abaxial epidermis; ade, adaxial 

epidermis; bc, bulliform cells; fib, fiber; bds, bundle sheath. Scale bars = 70 µm. 
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Figure 3. OsMADS26 expression is regulated by Magnaporthe oryzae infection.  

Three-week-old rice seedlings of Nipponbare were challenged with two isolates of M.oryzae 

virulent FR13 and avirulent CL3.6.7 or mock treated. The expression of each gene was normalized 

using the actin gene as control. The mean and SD were calculated from three independent 

experiments. A Student T-test (*: P<0.05; **: P<0.01) was done to establish whether the relative 

expression level in inoculated condition was different from mock treated. 
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Figure 4. Over-expression and down-regulation of OsMADS26 do not interfere with overall plant 

development.  

A, OsMADS26 relative expression levels in 3-weeks-old T2 overexpressing (OX1, OX2, dark bars) and 

controls (WT, OX0, white bars) plants cultivated in greenhouse. B, OsMADS26 expression levels in RNA 

down-regulated (DR5-1, DR5-2, DR3-1, DR3-2, grey bars) and control (WT, DR0, white bars) plants 

cultivated in greenhouse.  Mean and standard error were obtained from two individual plants of each line. C, 

Control and transgenic OsMADS26 T2 plants cultivated in greenhouse observed at flowering stage. A 

Student t-test was done to establish whether the relative expression level in transgenic line was different 

from corresponding null segregant line; *: significant difference with p<0.05; **: significant difference with 

p<0.01; ***: significant difference with p<0.001. 
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Figure 5. OsMADS26 negatively regulates resistance against Magnaporthe oryzae.  

Plants overexpressing (OX1, OX2, black bars), down-regulated (DR5-1, DR5-2, DR3-1, DR3-2, grey bars) 

OsMADS26 lines and corresponding control lines transformed with empty vectors or untransformed line 

(OX0, DR0 WT, white bars) and Maratelli, a highly susceptible cultivar, were tested. A, symptom severity in 

leaves of transgenic and control plants inoculated with the GUY11 strain of M. oryzae. Photographs were 

taken 7 days post inoculation. B, percentage of susceptible versus total lesions observed in Mo-infected 

leaves 7 days after inoculation. Mean and standard error were from ten inoculated plants for each line. 

Results shown are from one of two independent experiments that produced similar results. A Student t-test 

was done to establish whether one given transgenic line was different from its corresponding null segregant 

line; *: significant difference with p<0.05; **: significant difference with  p<0.01.  
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Figure 6. Expression of defense genes is down regulated in OsMADS26 over-expressing before and 

after infection by Magnaporthae oryzae.  

Three-week-old rice seedling of OsMADS26 over-expressing (OX2) lines and a control line (OX0) were 

challenged with the moderately virulent isolates of M. oryzae GY11 (black bars) or mock treated (grey bars). 

The RNA were extracted at 48h post-inoculation. The expression of each gene was normalized using the 

actin gene as control. The POX223, PBZ1, CHI7 and PR5 genes are coding for Pathogenesis-related proteins 

used as classical markers of defense. The NH1, OsFLS2 and WRKY28 genes are coding for regulator proteins 

of defense in rice. The mean and SD were calculated from three independent experiments. A Student T-test 

(*: P<0.01) was done to establish whether the relative expression level in the OX2 lines was different with 

the Ox0 line used as control.  
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Figure 7. OsMADS26 negatively regulates water stress tolerance 

Six independent lines: over-expressing (OX2) or down-regulated (DR5-2, DR3-1) OsMADS26 and 

corresponding control lines transformed with empty vectors (OX0, DR0) or wild type (WT) were used for 

this experiment. A, Drought stress was applied on twenty days old plants growing in greenhouse in pots, by 

stopping watering during 18 days followed by 15 days of rewatering. The pictures were taken 15 days after 

rewatering.  B, Relative water content (RWC) of plants was measured on the last expanded leaf before and at 

5 days, 11 days and 15 days after watering stopping. Mean value and standard error were calculated from 

five individual plants for each line. C and D, RT-qPCR expression analysis of drought- and salt-responsive 

rice genes RAB21 (C) and SALT (D) in control and transgenic plants before and during drought stress. RNA 

were extracted from leaves of two plants of each line that had closest relative water content (RWC). We did 

not measure gene expression 15 days after the water deficit period since the control and MADS26 

overexpressing plants were already highly damaged. Mean and standard error were from two individual 

plants for each line. A Student t-test was done to establish whether the RWC or the gene expression level in 

transgenic lines was different from corresponding control line; *: significant difference with p<0.05; ** : 

significant difference with p<0.01; *** : significant difference with p<0.001.   www.plant.org on October 7, 2015 - Published by www.plantphysiol.orgDownloaded from 
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Figure 8. OsMADS26 down-regulation confers tolerance to water deficit under field conditions.  

Plants were grown in the field in CIAT (Colombia) and a drought stress was applied (see Methods). The shape of 

the plant 17 DAS (DAS= days after stress) is shown (A) and the chlorophyll fluorescence (B) was measured at the 

indicated times after stress in three independent blocks on three plants. Yield was measured at the end of the 

experiment (C). The mean and SD are shown and a T-test (n=9;***: P<0.001) was used to evaluate statistical 

difference between the over-expressing OX2 and down-regulated DR3-1 transgenic lines with their respective 

controls OX0 and DR0.  
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Figure 9. Genome wide gene expression regulations in OsMADS26 over-expressing or down regulated 

lines.  

Number of genes significantly differentially expressed in the microarray experiment. 71 (32 + 39) genes 

presented an inverted regulation profile in OE and DR lines. Green and red colors depict respectively genes 

induced or repressed by OsMADS26 expression.  
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Figure S1: OsMADS26 over- or down-expression is stable across generations
A, OsMADS26 expression in overexpressing (OX1, OX2, dark bars) and corresponding control (OX0, WT,
white bars) T4 plants. B, OsMADS26 expression in interfered (DR5-1, DR5-2, DR3-1, DR3-2, grey bars)
and corresponding control (PDP, WT, white bars) T4 plants. Mean value and standard error were obtained
from two independent experiments. C, OsMADS26 expression levels in RNA interfered (grey bars) and
control (white bars) of 7-day-old T2 seedlings cultivated on MS/2 medium added with 125 mM of Mannitol.
Mean and standard error were obtained from 14 individual plants of each line. A Student t-test was done to
establish whether the RWC or the gene expression level in transgenic lines was different from corresponding
control line; *: significant difference with p<0.05; ** : significant difference with p<0.01; *** : significant
difference with p<0.001.
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Figure S2: OsMADS26 over-expressing and down-regulated lines growth under normal watering
condition in the field.
Plants were grown under normal water condition in the field in CIAT (Colombia). The height,
biomass and yield were measured at the end of the experiment. The mean and SD are shown and a
T-test (n=9;**: P<0.01; ***: P<0.001) was used to evaluate statistical difference between the over-
expressing OX2 and down-regulated DR3-1 transgenic lines with their respective controls OX0
and DR0.
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Figure S3: Rice blast resistance evaluation of over-expressing or down-regulated OsMADS26
lines under semi-controlled field conditions.
Plants were grown in nethouses in LMI-RICE (Hanoi, Vietnam) and inoculated each week for four
weeks with spores of the virulent M. oryzae isolate VT15. Symptoms were measured every week
after epidemics started and one time point is provided. The greyish lesions were counted as a
measure of susceptibility. The mean and SD are shown and a T-test (*: P<0.05) was used to evaluate
statistical difference between the OsMADS26 over-expressing OX2 and down-regulated DR3-1
transgenic lines with their respective controls OX0 and DR0.
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Figure S4: OsMADS26 negatively regulates resistance against Xanthomonas oryzae pv. oryzae (Xoo).

Plants over-expressing (OX1, OX2) (black bars) or down-regulated (DR5-1, DR5-2, DR3-1, DR3-2) (grey
bars) OsMADS26 and corresponding control lines transformed with empty vectors (OX0, DR0) or
untransformed line (WT) (white bars) were tested. A: Symptom severity in leaves of transgenic and control
plants inoculated with the PXO99A strain of Xoo. Photographs were taken at 14 days post inoculation (dpi).
B: Length of lesion produced in Xoo-infected leaves at 14 dpi. Mean and standard error were obtained from
nine inoculated plants for each line. Results shown are from one of two independent experiments that
produced similar results.
A Student t-test was done to establish whether one given mutant line was different from its corresponding
control line; *: significant difference with p<0.05; **: significant difference with p<0.01.
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Figure S5: OsMADS26 expression level does not affect resistance against Rice Yellow Mottle Virus
(RYMV).

Nine independent lines of over-expressing (OX1, OX2, black bars), down-regulated (DR5-1, DR5-2, DR3-1,
DR3-2, grey bars) OsMADS26 lines and corresponding control lines transformed with empty vectors or
untransformed line (OX0, DR0 WT, white bars), IR64 (susceptible control, dashed bar) and Gigante
(resistant control) cultivars were tested. A,B, Symptom severity in leaves of transgenic and control plants
inoculated with RYMV at 14, and 21 days postinoculation (dpi). C,D, ELISA virus accumulation
quantification in leaves of transgenic and control plants inoculated with RYMV at 14 and 21 (dpi). WT and
control transformed with empty vectors (white bars), over-expressing lines (black bars), down-regulated
lines (grey bars) and reference cultivars (dashed bars) Gigante (GIG), and IR64. Leaves from ten plants for
each line were pooled and the virus content determined by enzyme-linked immunosorbent assay using an
antibody generated against the coat protein as described (N’Guessan et al. 2000). Mean and standard error
were obtained from ten inoculated plants for each line. Results shown are representative of data obtained
from two independent experiments.
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Figure S6: OsMADS26 down regulation enhances water deficit tolerance in the field.
Plants were grown in the field in CIAT (Colombia) and a drought stress was applied (see Methods). The leaf
rolling score (0-9 scale from the less to the more) of the plant 17 DAS (DAS= days after stress) is given (A)
and SPAD value (B) was measured at the indicated times after stress in three independent blocks on three
plants. The total biomass was measured at the end of the experiment (C). The mean and SD are shown and a
T-test (n=9;*: P<0.05; **:P<0.01; ***: P<0.001) was used to evaluate statistical difference between the
over-expressor OX2 and interfered DR3-1 transgenic lines with their respective controls OX0 and DR0.
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gtaagcaagagatagggataagggGAAGAGGAGGAAGAAGGAGGaggtgtagggaga
aaccggagcaacctcgaagctagtccaaactagtgggaggttgtctttccggcaagccggagcccggagc
tatcgatcatcaagctttctaccccgaccgacgaggaagaagacgactgatcaattgatcaaaccgatctct
ccatagctaggtagacaggaggagaggaggaagaagagggggagaggagacttatcttgatcgATGgcg
cgaggcaaggtgcagctccgtcgcatcgagaacccggttcACCGTCAGGTCACCTTCTGCAA
gcgccgtgccggcctgctgaagaaggccagggagctctccatcctctgcgaggccgacatcggcatcatcat
cttctccgcccacggcaagctctacgacctcgccaccaccggaaccatggaggagctgatcgagaggtacaa
gagtgctagtggcgaacaggccaacgcctgcggcgaccagagaatggacccaaaacaggaggcaatggt
gctcaaacaagaaatcaatctactgcagaagggcctgaggtacatctatgggaacagggcaaatgaacaca
tgactgttgaagagctgaatgccctagagaggtacttagagatatggatgtacAACATTCGCTCCGC
AAAGATGCagataatgatccaagagatccaagcactaaagagcaaggaaggcatgttgaaagctgcta
acgaaattctccaagaaaagatagtagaacagaatggtctgatcgacgtaggcatgatggtagcagatcaac
agaatgggcattttagtacagtcccactgttagaagagatcactaacccactgactatactgagtggctattcta
cttgtaggggctcggagatgggctattccttcTAAcactaataatggcctgggggatacttgtgttcattacta
gtgtgtaatatggttaataatgcttgtgttgctgtttgctttgctattctgatgtaccttatttagacaagttcccg
caggaagtgtcttttagtattgtatttgtcttgggctgtggtgctttgtttttccCTAAAGAACTCTT
GAGGAGCtctgttgttgaaccatttcaagtaattgagactattgtttcc

Ist Amplification
Forward: 5’-aagcaagagatagggataag -3’
Reverse: 5’-cgatcaagataagtctcctc -3’ 
2nd Amplification (with attB sequence)
Forward: 5’-ggggacaagtttgtacaaaaaagcaggctgaagaggaggaagaaggagg-3’
Reverse: 5’-ggggaccactttgtacaagaaagctgggtccctcttcttcctcctctcc -3’

Primers used for GST1 amplification and cloning

Primers used for GST2 amplification and cloning

Forward: 5’-tagtagaacagaatggtctg -3’
Reverse: 5’-gttgaaccatttcaagtaat -3’ 

Ist Amplification

2nd Amplification (with attB sequence)

Forward: 5’-ggggacaagtttgtacaaaaaagcaggctcatgatggtagcagatcaac -3’
Reverse: 5’-ggggaccactttgtacaagaaagctgggtgctcctcaagagttctttag -3’

GST1

GST2

Forward: 5’-gaagaggaggaagaaggagg -3’
Reverse: 5’-gctcctcaagagttctttag -3’ 

Primers used for OsMADS26 cDNA amplification

Figure S4: Sequence of OsMADS26 cDNA, GST1 and GST2 position in 5’ and 3’-UTR and primer sequences
used for PCR amplification.

In bold: GST sequences cloned in pANDA vector and used for RNA interference induction; underlined:
nested primers used for amplification of GST1 and GST2; Underlined capitals: primers used for the
amplification of the cDNA sequence cloned in PC5300.OE vector for OsMADS26 overexpression; Capitals:
primers used for the analysis of OsMADS26 expression by RT-qPRC in transgenic plants. In italic: Open
reading frame (ORF), in italic, capital and bold: start and stop codons. In grey: BP recombination sequence
(gateway cloning technology of INVITROGEN).



 

 
1

Table SII: Primers used for RT-qPCR gene expression studies  1 
 2 

Name Gene Function Forward Reverse Reference
Actin Os03g50890 Actin GCGTGGACAAAGTTTTCAA

CCG 
TCTGGTACCCTCATCAGGCAT
C 

- 
 

CHI7 Os06g51050 chitinase CAATGCACACGAGATTGTG
A 

CCGCATTGTGTTAACGTCCA Kaku et al, 2006 

PR5 Os08g04580 CsAtPR5, putative, expressed TTGGCTTCTGTCTGCTTGA
A 

AGCTGCATCAACCATGCTAA - 

EXP Os06g11070 Expressed protein TCCATCTGCTCCCGTTGTT
GTG 

AAAGAGTTCGCCACCAACCGT
C 

(Caldana et al., 2007)  

NH1 Os01g09800 Regulatory protein NPR1, 
putative, expressed 

CCTGATGGTTGCCTTCTGT
C 

ATTCAAGCACTTGTATTACAC
CTC 

(Chern et al., 2005) 

OsFLS2      
OsMADS26 Os08g02070 Transcription factor activity GCTCGGAGATGGGCTATTCCTTC GACACTTCCTGCGGGAACTTG

TC 
(Shinozuka et al., 1999) 

PBZ1 Os12g36880 
 

Probenazole induced protein 
PBZ1/PR10 

CCGGGCACCATCTACACC CCTCGATCATCTTGAGCATGC (Midoh and Iwata, 1996; Swarbrick 
et al., 2008)

POX223 Os07g48020 Peroxidase 2 precursor, 
putative, expressed 

ACGACGCCCAACGCCTTC
 

CTTCCAGCAACGAACGCATCC
 

(Vergne et al., 2007)  

Rab21 AK109096 Rice dehydrin TGTGTGATCGGTGTTTCGA
T 

CCACACGCGCACTTACATAC (Claes et al., 1990; Quilis et al., 
2008)  

Salt AF001395 Salt-stress-induced protein CCCCATTGTCTGTGTACGT
G 

GGGATTAGTTGCCCATGGAT (Oh et al., 2005; Quilis et al., 2008)  

WRKY28  Os06g44010 CGCCGATGAACTTTGCTC CCACCTTGGCACGTGTAGA Delteil et al, 2012 
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