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Abstract

Gene therapy critically relies on vectors that combine high trans-
duction efficiency with a high degree of target specificity and that
can be administered through a safe intravenous route. The lack of
suitable vectors, especially for gene therapy of brain disorders,
represents a major obstacle. Therefore, we applied an in vivo
screening system of random ligand libraries displayed on adeno-
associated viral capsids to select brain-targeted vectors for the
treatment of neurovascular diseases. We identified a capsid
variant showing an unprecedented degree of specificity and long-
lasting transduction efficiency for brain microvasculature endothelial
cells as the primary target of selection. A therapeutic vector based
on this selected viral capsid was used to markedly attenuate the
severe cerebrovascular pathology of mice with incontinentia
pigmenti after a single intravenous injection. Furthermore, the
versatility of this selection system will make it possible to select
ligands for additional in vivo targets without requiring previous
identification of potential target-specific receptors.
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Introduction

There is a particular medical need for new treatment options for

neurovascular and neurological disorders, and gene therapy repre-

sents a promising approach to address this need (Nagabhushan

Kalburgi et al, 2013). However, only few vector systems allow

efficient gene transfer to the central nervous system (CNS), and

none of them is specific. The low specificity poses a significant

risk for side effects. In addition, most of these vectors have to be

administered directly into the CNS, which locally restricts gene

transfer close to the injection site and thus may not be sufficient

for treating disorders with a more widely distributed pathology.

Being invasive, such approaches bear the risk of serious complica-

tions, including hemorrhages and infections. Instead, targeting

brain endothelial cells by intravenous vector injection represents a

promising alternative to the direct injection of vectors into the

brain parenchyma (Chen et al, 2009), as therapeutic gene products

may be transported to the abluminal side of the endothelium.

Moreover, this strategy may allow for gene therapy of neurovascular

disorders.

Vectors based on adeno-associated virus (AAV) are important

candidates for clinical application in neurological diseases as they

effectively transduce neural cells and have a favorable safety profile

(Nagabhushan Kalburgi et al, 2013; Weinberg et al, 2013). Nonethe-

less, as with most viral vectors, their natural tropism does not allow

specific transduction after systemic administration in vivo. Most

strategies to target AAVs to defined cell types focus on manipulating

the AAV capsid by inserting phage-selected peptides or other ligands

(White et al, 2004, 2008; Work et al, 2004, 2006; Chen et al, 2009;

Munch et al, 2013) or by capsid shuffling (Bowles et al, 2003;

Maheshri et al, 2006; Grimm et al, 2008; Koerber et al, 2008; Gray

et al, 2010; Lisowski et al, 2014) to abrogate their natural tropism
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and redirect them to alternative cellular receptors. Screening of

random peptide libraries that are displayed within the structural

constraint of the AAV capsid (Muller et al, 2003; Perabo et al, 2003;

Varadi et al, 2012) may provide the most naturalistic setting to

generate suitable targeted AAV vectors. Using this technology,

several vectors with improved transduction properties have been

established (Muller et al, 2003; Perabo et al, 2003; Waterkamp et al,

2006; Michelfelder et al, 2007; Stiefelhagen et al, 2008; Koerber

et al, 2009; Ying et al, 2010; Varadi et al, 2012; Deverman et al,

2016). However, despite great success in improving transduction

efficiency, most of these approaches have failed to significantly

enhance vector specificity for predefined target cells after systemic

administration in vivo. To overcome the shortcomings of in vitro

selection, we developed the prerequisites for screening random AAV

display peptide libraries in mice in vivo (Michelfelder et al, 2009).

In the present study, we applied this approach to select brain-

targeted AAV to treat CNS diseases in vivo. We generated a vector

for the targeted delivery of therapeutic genes to the CNS with a

previously unachieved degree of specificity. This vector efficiently

transduces the BBB-associated endothelium of the entire murine

CNS after a single intravenous injection. As proof of concept, we

utilized therapeutic vectors displaying such targeted capsids to

markedly attenuate the severe neuropathology in a mouse model of

incontinentia pigmenti (IP), a previously untreatable genetic disor-

der. Since vectors like the one presented here could be selected for

virtually any target tissue, our findings have implications not only

for the treatment of neurovascular diseases but also for a variety of

other non-neurological genetic and nongenetic disorders.

Results

In vivo screening of a random AAV display peptide library
enriches brain-targeted capsids

An AAV2 peptide library displaying random heptapeptide insertions

at amino acid position R588 of the capsid protein was intravenously

injected into FVB/N mice. After 48 h, the brains were harvested and

the DNA of particles that homed to this organ was extracted. The

relevant part of the capsid gene was amplified by PCR, re-cloned

into a new library, and the selection process was then repeated for

four additional rounds. After each round, 10 of the enriched library

particles were sequenced (Fig 1A). After the first two rounds of

selection, most of the clones displayed peptides sharing the

sequence motif NXXX
R
X
R
X
E
X
E. After the third round, however, a

new and clearly distinct sequence motif became apparent, with

glycine (G) at position three and tryptophan (W) at position six

(XXGXXWX).

To evaluate the targeting potential of the selected capsids, luci-

ferase reporter vectors displaying peptides corresponding to one of

the motifs (NXXX
R
X
R
X
E
X
E or XXGXXWX) or the wild-type control

capsids were intravenously injected into mice. One month after

vector administration, CMV promoter-driven luciferase activity was

determined from tissue lysates of the brain and control organs

(Fig 1B).

The peptide NNVRTSE, which we had also found during

in vitro screenings on different cell lines (J. Körbelin and M.

Trepel, unpublished data) in addition to the in vivo screening

reported here, did not mediate enhanced brain transduction

(Fig EV1). However, all peptides with the brain-selected variants

of the sequence motif XXGXXWX mediated substantially improved

transgene expression in the brain compared to wild-type rAAV2

capsids (Fig 1B). The increase in transgene expression in the brain

compared to wild-type rAAV2 ranged from eightfold (SDGLAWV)

to 65-fold (NRGTEWD), whereas transgene expression in the liver

was, if at all detectable, decreased by at least 20-fold (ADGVQWT).

The transgene expression profiles of all analyzed library clones,

including transduction of potential off-target organs, are shown in

detail in Fig EV1.

Adeno-associated virus displaying the NRGTEWD peptide

showed the best target specificity with the strongest transgene

expression in the brain and minimal or no expression in off-target

organs. Therefore, we chose this clone, hence designated AAV-BR1,

and further analyzed its transduction profile and investigated its

therapeutic potential.

The brain-selected AAV capsid BR1 (NRGTEWD peptide)
efficiently mediates durable and brain-specific gene expression
based on specific vector homing in vivo

We generated reporter vectors carrying the luciferase gene under

the control of the CAG promoter, packaged into either one of three

different AAV capsids: AAV2 displaying the peptide NRGTEWD

(termed “BR1”), wild-type AAV2, or AAV2 displaying the phage-

selected peptide DSPAHPS (termed “PPS”) which has been reported

to target blood vessels in the brain (Chen et al, 2009). Mice

injected with AAV-BR1 vector displayed transgene-mediated lumi-

nescence of so far unachieved specificity and efficacy in the brain

(Fig 2A and Appendix Fig S1). Wild-type rAAV2 capsids, on the

other hand, predominantly mediated transgene expression in the

liver. The control peptide PPS mediated enhanced overall transgene

expression, particularly in the heart and other tissues. The PPS-

targeting peptide had been selected in the brain by phage display

(Chen et al, 2009). Consequently, there was AAV-PPS-mediated

gene expression in the brain (see below), but expression was so

weak that it could not be detected by in vivo imaging. In contrast,

the luminescence mediated by the newly selected AAV-BR1

reporter vector was strong enough to be clearly detectable in the

brain and the eyes of living animals even at day 264 after vector

injection (Fig 2B). The vector’s tissue specificity was confirmed by

three-dimensional reconstruction and virtual cross sectioning

(Fig 2C). Expression of the BR1-mediated transgene was monitored

over a prolonged period of time (> 660 days) and proved to be

exceptionally stable and target-specific for the entire observation

period (Fig 3 and Appendix Fig S2). We also analyzed transgene

expression ex vivo for greater quantitative accuracy. In tissue

lysates of AAV-BR1-transduced mice, luciferase activity in the brain

was 1,000-fold stronger than in the liver and 100-fold stronger than

in the heart (Fig 4A). Compared to wild-type rAAV2, the same

vector dose of AAV-BR1 induced a 650-fold higher transgene

expression in the brain. Brain luminescence mediated by AAV-PPS,

on the other hand, was 10-fold stronger than in the liver and

enhanced 20-fold compared to wild-type rAAV2. However, AAV-

PPS-mediated transgene expression was predominantly detected in

the heart, where it was approximately 25 times stronger than in the

brain. To evaluate whether the brain-specific transgene expression
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was caused by specific peptide-mediated homing, the vector distri-

bution was quantified by qPCR. For all tested vectors, most viral

DNA was recovered from spleen, an organ without any detectable

transgene expression, indicating nonspecific particle uptake in the

reticular endothelial system independently of transduction. When

excluding the spleen from analysis, considerable enrichment of

AAV-BR1 vector genomes was observed in the brain (Fig 4B). The

number of AAV-BR1 vector genomes detected in the brain was over

40 times higher than in the liver and more than 170-fold enriched

compared to wild-type rAAV2, whereas an 18-fold decrease in

vector genomes was seen in the liver when comparing AAV-BR1

with wild-type rAAV2. While AAV-BR1 showed peptide-mediated

vector homing to the brain and de-targeting from the liver, AAV-

PPS vector genomes were mainly recovered from the heart and the

kidney without being significantly enriched in the brain compared

to wild-type rAAV2 (Fig 4B).

Recombinant vectors displaying the brain-enriched BR1 peptide
are highly effective in targeting the blood–brain barrier-
associated endothelium of the central nervous system

To identify the target cells of BR1-mediated transduction, we

analyzed brains and control organs of mice that were treated with

BR1 vectors carrying GFP under the control of the CAG promoter

(Fig 5). Mice treated with AAV-BR1-CAG-eGFP showed intense

vector-mediated fluorescence in the microvasculature of the entire

brain 2 weeks after vector injection (Fig 5A), without considerable

differences in the rate of transduced capillaries between cerebellum,

olfactory bulb, striatum, and cerebral cortex (see Appendix Fig S3

for infection rates). In addition, some scattered neuronal transduc-

tion was observed, indicating the vector’s ability to partially cross

the fully developed BBB. Notably, AAV-BR1-mediated transduction

of the microvasculature was not restricted to the brain and was also

A

B

Figure 1. Capsid variants of a random AAV display peptide library during five rounds of in vivo selection enriching for brain-homing library particles.

A Randomly chosen library peptide inserts (shown in single-letter code) recovered from the brain. Ten clones were sequenced after each round of selection.
Intravenously injected library particles were allowed to circulate for two days in each selection round (n = 1 animal/selection round, age 8–12 weeks). Five selection
rounds were performed. Amino acids characterizing the emerging motifs are highlighted in different colors. The consensus motif of each selection round is shown at
the bottom of each column. Sequences were considered to show a consensus if at least four different clones displayed the same amino acids at the same position or
at two adjacent positions.

B In vivo transduction profile of luciferase reporter vectors displaying variants of the enriched library capsid sequence motifs or unmodified wild-type AAV2 control
capsid. Four weeks after i.v. injection of 5 × 1010 genomic particles/mouse containing a CMV-luciferase reporter gene, luminescence was measured in the brain and
control organs. Data are shown as bars (mean) with plotted individual data points (n = 3 animals/group, age 8–12 weeks).
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seen in the spinal cord, attesting to the vector’s targeting properties

for the BBB-associated endothelium of the entire CNS (Fig 5A

and Appendix Fig S3). In brain sections of mice treated with

AAV-BR1-CAG-eGFP, eGFP clearly colocalized with endothelial CD31

staining (Fig 5B) but not with CD13 staining for pericytes (Fig 5C) or

aquaporin 4 staining for astrocytic endfeet (Fig 5D). To confirm

endothelial cells as the primary target of the vector, we cultured

primary cerebral microvascular endothelial cells (PCMECs) from

AAV-BR1-treated mice. The majority of the CD31-positive PCMECs

showed vector-mediated fluorescence (Fig 5E). The superior trans-

duction of brain microvasculature endothelial cells by AAV-BR1

could also be reconfirmed in vitro by infecting murine PCMECs after

taking them into culture (Fig EV2). Immortalized human cerebral

microvascular endothelial cells (hCMEC/D3) (Weksler et al, 2005)

were also proven to be susceptible to AAV-BR1. The AAV-PPS

control vector showed only marginal infectivity (~10–20%), whereas

AAV-BR1 and wild-type AAV2 were equally infective (~ 40%) for

hCMEC/D3 cells in the in vitro setting (Fig EV3). To verify the

utility of the BR1 vector to modulate the BBB-associated endothe-

lium, Cre reporter mice Ai14 (Madisen et al, 2010) were treated

with a BR1 vector carrying the Cre recombinase under the control of

the CMV promoter. In vector-treated mice, fluorescence was intense

A

B

C

Figure 2. In vivo luminescence imaging of mice after intravenous injection of brain-enriched AAV2 vectors carrying a luciferase reporter gene under the
control of the CAG promoter.

A Luciferase reporter gene vectors displaying the brain-targeted peptide NRGTEWD (“BR1”), unmodified wild-type AAV2 capsid, or the previously reported brain-
targeting peptide DSPAHPS (PPS). Vectors were intravenously injected into mice (5 × 1010 genomic particles/mouse). Panels show representative examples of n = 5
animals, age 8–12 weeks per group. Animals were imaged in dorsal (left panel), ventral (second from left panel), and lateral (second from right and right panel)
positions, 14 days after vector injection.

B Close-up imaging of AAV-BR1-treated mice. Mice were imaged in dorsal and lateral positions in a different color scheme allowing detailed visualization of the
transduced brain in living animals, even as late as at day 264 after vector injection.

C Virtual sections: sagittal, coronal, and transaxial (left panels) and three-dimensional reconstruction (right panel) of the luminescence images of a mouse injected with
BR1 vector (as in A). Images were obtained by measuring different wavelengths of the emitted light (Living Image software), confirming the brain as exclusive source
of luminescence.
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in endothelial cells of the entire brain, whereas no such signal could

be detected in untreated transgenic mice (Fig 6). Vector-transduced

endothelial cells or neurons were barely detectable in the brains of

mice treated with either of the control vectors, AAV-PPS or wild-

type AAV2 after systemic administration. In the liver and the heart,

on the other hand, transduction of hepatocytes and cardiomyocytes

was observed for the control vector, but not for the brain-targeted

AAV-BR1 vector (Fig EV4). Of note, transduction of brain endothe-

lial cells was also seen when employing alternative injection routes,

such as intraperitoneal, intramuscular, or subcutaneous administra-

tion of the AAV-BR1 vector (Fig EV5). Nevertheless, intravenous

injection proved to be most effective (Fig EV5A) and most specific

(Fig EV5B), and can therefore be considered the most favorable

route of injection.

AAV-BR1 vectors can be used to treat vascular disease in the
brain in a murine model of incontinentia pigmenti

To explore the therapeutic potential of the brain endothelial-targeted

vector AAV-BR1, we used a mouse model of IP for proof of concept.

This genetic disease is caused by heterozygous, inactivating muta-

tions of the Nemo gene on the X chromosome (Smahi et al, 2000).

IP patients show skin lesions that eventually evolve into changes in

dermal pigmentation. However, the major clinical problems are

epileptic seizures and other neurological symptoms due to a loss of

brain capillaries and a disruption of the BBB as shown in mice defi-

cient of NEMO in brain endothelial cells (Meuwissen & Mancini,

2012; Ridder et al, 2015). At postnatal day 8 (P8), numerous empty

basement membrane strands without endothelial cells inside, so-

called string vessels, are found in brains of Nemo�/+ mice (Ridder

et al, 2015). A representative example of such string vessels is

shown in detail in Appendix Fig S4. At P0, the lengths of string

vessels had not yet increased in Nemo�/+ mice compared to wild-

type littermates, opening a therapeutic time window for gene

therapy (Fig 7A). When we injected neonatal Nemo�/+ mice

intravenously at P0 with AAV vectors carrying the Nemo gene under

the control of the CAG promoter and displaying the brain-targeted

BR1 peptide (AAV-BR1-CAG-NEMO), the lengths of string vessels at

P8 were markedly reduced down to the level of wild-type mice

(Fig 7A). In addition, the number of apoptotic endothelial cells was

Figure 3. Long-term transgene expression in the brain mediated by AAV-BR1 vector.
AAV-BR1 vector harboring the luciferase gene under the control of the CAG promoter was administered intravenously (5 × 1010 genomic particles/mouse, age 8 weeks). Long-
term transgene expression was analyzed by in vivo bioluminescence imaging at 16 time points during a 665-day period (n = 2 animals). Original images of analyzed animals
(above) and quantification of luminescence in the brain as the region of interest = ROI (bottom).
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significantly lower in AAV-BR1-CAG-NEMO-treated than in control

vector-treated animals (P = 0.0201; Fig 7B), demonstrating that

transducing Nemo rescues the survival of brain endothelial cells in

Nemo�/+ mice. Moreover, AAV-BR1-CAG-NEMO administration to

Nemo�/+ mice normalized the extravasation of albumin into brain

tissue, indicating that targeted delivery of the Nemo gene into brain

vessels is able to maintain an intact BBB in Nemo�/+ mice (Fig 7C).

The remarkable improvement of neuropathology was accompanied

by a higher body weight of Nemo�/+ mice after administering AAV-

BR1-CAG-NEMO (Fig 7D).

In contrast to humans, the skin phenotype is associated with a

high mortality of the Nemo�/+ genotype in mice between P8 and

P12 (Nenci et al, 2006). In order to study the functional conse-

quences of gene therapy in adult animals despite the high mortality

of Nemo�/+ mice (Schmidt-Supprian et al, 2000), we adopted a

conditional approach to delete Nemo specifically in brain endothe-

lial cells (NemobeKO). As reported previously, the cerebrovascular

pathology of NemobeKO mice mimicked the situation in Nemo�/+

animals (Ridder et al, 2015). Intravenous injection of AAV-BR1-

CAG-NEMO into adult NemobeKO mice (followed by 5 days of tamox-

ifen treatment, starting 1 week after vector administration) reduced

the number of string vessels (Fig 8A and B), normalized the total

vessel lengths (Fig 8C), and reversed the extravasation of albumin

and immunoglobulin into brain tissue (Fig 8D and E). Importantly,

infection of brain endothelial cells had no effect on the tightness of

the BBB in wild-type animals (Fig 8F), suggesting a unique and safe

means to tighten the BBB, protect cerebral vessels, and supply

proteins to the CNS.

Discussion

The future of gene therapy for neurological diseases will depend on

the development of safe, efficient, and target-specific vectors.

Administration of such vectors should be technically easy, and the

vectors should be able to reach the entire CNS through the circula-

tion and not just circumscribed areas amenable to local application.

For a long time, the ability to cross the BBB was thought to be a

prerequisite for CNS-directed gene therapy vectors. However, trans-

duction of the CNS-associated endothelium by targeted vectors

seems to be sufficient to induce therapeutic effects at least in some

CNS disorders, due to the close proximity of neurons and

A

B

Figure 4. Luciferase transgene expression and vector biodistribution in tissue lysates.
Luciferase activity and vector copy numbers were determined in tissue lysates 14 days after vector administration (5 × 1010 genomic particles/mouse, age 8–12 weeks).

A Vector-mediated luminescence. Transgene expression was measured in AAV-BR1 harboring the luciferase gene under the control of the CAG promoter and control
vectors (AAV-PPS and wild-type rAAV2) in brain and off-target control organs (left panel). Comparison of luminescence in the brain mediated by AAV-BR1 and control
vectors (right panel). ****P < 0.0001 (BR1: brain vs. all), ***P = 0.0002 (PPS: heart vs. brain/muscle), ***P = 0.0001 (PPS: heart vs. lung/liver/spleen/kidney),
*P = 0.0101 (WT: heart vs. lung), *P = 0.0120 (WT: heart vs. spleen), *P = 0.0148 (WT: heart vs. kidney), *P = 0.0113 (WT: heart vs. muscle), **P = 0.0011 (brain: BR1
vs. PPS), ***P = 0.0009 (brain: BR1 vs. WT).

B Biodistribution of AAV-BR1 and control vectors (AAV-PPS and wild-type rAAV2) in brain and off-target control organs, excluding spleen (left panel). Genome copy
numbers of AAV-BR1 and control vectors (AAV-PPS and wild-type rAAV2) in the brain (right panel). ****P < 0.0001 (BR1: brain vs. liver/kidney/muscle), ***P = 0.0006
(BR1: brain vs. heart), ***P = 0.0003 (BR1: brain vs. lung), **P = 0.0025 (PPS: kidney vs. muscle), *P = 0.0378 (PPS: kidney vs. lung), *P = 0.0114 (PPS: kidney vs. liver),
****P < 0.0001 (WT: liver vs. all), **P = 0.0028 (brain: BR1 vs. PPS/WT).

Data information: Data are shown as mean + SEM, n = 5 mice per group. Data were analyzed by one-way ANOVA, followed by Turkey’s multiple comparison test. The
mean of each column was compared to the mean of the column with the highest value.
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endothelial cells. In mouse models of two lysosomal storage

diseases, CNS pathology could be ameliorated by overexpressing

the relevant enzymes in brain endothelial cells (Chen et al, 2009).

Thus, it seems likely that endothelial expression of proteins with

relevance for other neurological disorders (e.g., for one of the

numerous other lysosomal storage diseases, Canavan disease, ataxia

telangiectasia) and their subsequent transport into the brain

parenchyma might be a promising treatment option. Despite such

ground-breaking discoveries, currently available vectors lack the

degree of tissue specificity and efficacy that is necessary to mediate

strong and long-lasting therapeutic effects while minimizing side

effects, not only for CNS disease; especially, the discussion about

A

E

B

D

C

Figure 5. AAV-BR1-mediated transduction of brain endothelial cells in vivo.
C57BL/6mice (age8 weeks)were injectedwithAAV-BR1harboringaneGFP reportergeneunder the controlof theCAGpromoter. Images showrepresentative examples ofn = 6mice.

A Representative images from cerebellum, olfactory bulb, striatum, cerebral cortex, and the spinal cord, 14 days after vector injection. BR1-eGFP-transduced cells
(green) were positive for the endothelial marker CD31 (red). Scale bars represent 250 lm.

B Higher magnification confocal images. The endothelial marker CD31 (red) colocalizes with vector-mediated eGFP expression (green). Scale bars represent 50 lm
(upper panel) or 10 lm (lower panel).

C CD13 staining of pericytes. The vector-mediated eGFP expression pattern (green) does not colocalize with CD13 (red). Scale bars represent 250 lm (upper panel) or
10 lm (lower panel).

D Aquaporin 4 staining of astrocytic endfeet. The vector-mediated eGFP expression (green) does not colocalize with aquaporin 4 (red). Scale bars represent 100 lm
(upper panel) or 10 lm (lower panel).

E Expression of eGFP in primary brain endothelial cells prepared from C57BL/6 mice, 14 days after injection with AAV-BR1-eGFP. Scale bars represent 500 lm (upper
panel) or 100 lm (lower panel).
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hepatocellular carcinomas (HCC) that are being induced by recom-

binant AAV vectors in animal models (Donsante et al, 2001, 2007;

Bell et al, 2006; Montini, 2011; Rosas et al, 2012; Valdmanis et al,

2012) and the recent reports on wild-type AAV2-induced HCC in

humans (Nault et al, 2015; Russell & Grompe, 2015) emphasize

the need for more target-specific AAV vectors for intravenous

injections.

Several AAV serotypes allow neuronal transduction after being

locally administered (McCown et al, 1996; During et al, 1998;

Mandel et al, 1998; Davidson et al, 2000; Cearley & Wolfe, 2006; de

Backer et al, 2010; Markakis et al, 2010; Shen et al, 2013), and

some of them (e.g., AAV9, AAVrh.8, and AAVrh.10) seem to be able

to cross the mature BBB after systemic administration in adult

animals (Foust et al, 2009; Dayton et al, 2012; Yang et al, 2014).

However, very high vector doses (up to 2 × 1014 vg/kg) are needed

to efficiently transduce the CNS, and the brain endothelial cells—

being a very important therapeutic target as key player of the BBB—

are not transduced. In addition, none of the natural AAV serotypes

is CNS-specific. This is especially true for serotypes such as AAV9,

which is commonly used to target the brain, albeit showing much

stronger tropism for different off-target tissues, including heart,

liver, and skeletal muscles (Zincarelli et al, 2008). Vectors with

considerably improved transduction efficiency for various target

tissues have been generated by conjugating receptor-targeted anti-

bodies or other ligands to the AAV capsid (Bartlett et al, 1999;

Ponnazhagan et al, 2002; Ried et al, 2002; Munch et al, 2013).

Other attempts aimed at changing the natural AAV tropism by incor-

porating small, previously selected (e.g., by phage display) targeting

peptides directly into the receptor-binding region (White et al, 2004,

2008; Work et al, 2004, 2006; Chen et al, 2009). However, such

approaches rely on the (limited) availability of specific targeting

ligands and their (even more limited) compatibility with vector

transduction beyond receptor binding. Frequently, the targeting

properties of preselected peptides change when transferring them

into the protein context of a viral capsid, rendering this approach to

developing vectors unpredictable. The screening of random AAV

display peptide libraries is the only systematic approach by which

peptides can be selected directly within the structural constraints of

the assembled AAV capsid (Muller et al, 2003; Perabo et al, 2003;

Waterkamp et al, 2006; Varadi et al, 2012). Although the screening

of such libraries has yielded numerous vectors well suited for

in vitro experiments (Muller et al, 2003; Perabo et al, 2003; Water-

kamp et al, 2006; Michelfelder et al, 2007; Varadi et al, 2012), no

efficient and tissue-specific vectors for systemic in vivo administra-

tion in the brain have been developed so far. Also a new AAV9

vector which has been selected recently by a Cre-dependent strategy

lacks CNS specificity (Deverman et al, 2016). Based on initial stud-

ies demonstrating the general feasibility of screening AAV display

peptide libraries in vivo (Michelfelder et al, 2009; Ying et al, 2010),

we have now applied this screening technology to generate a vector

with high degree of specificity and a unique transduction efficacy

for the vascular endothelium of the brain, the spinal cord, and

presumably also of the inner retina of mice. The additional detection

of sporadically transduced neurons in different areas of the brain

indicates that AAV-BR1 might to some degree be able to traffic

through the endothelial layer via transcytosis and to cross the BBB.

Although it is still unknown which receptor is employed by AAV-

BR1 for infecting brain endothelial cells, it is likely that the type I

transmembrane protein KIAA0319L might be employed for cell

entry by AAV-BR1, as this protein has very recently been shown to

Figure 6. AAV-BR1-iCre-mediated gene recombination in Ai14 Cre
reporter mice.
Two weeks after vector injection (1.8 × 1011 genomic particles/animal) into
16-week-old mice, Cre-mediated gene recombination driven by the CAG
promoter was observed mainly in brain endothelial cells (lower panel, red). No
recombination was observed in control animals without BR1-iCre-virus injection
(upper panel). CD31 (green) was used as a marker for brain endothelial cells.
Panels show representative examples of n = 3 animals. Scale bars represent
250 lm.

▸Figure 7. Therapeutic use of AAV-BR1: normalizing endothelial cell survival and blood–brain barrier permeability in neonatal incontinentia pigmenti mice
(Nemo−/+) with AAV-BR1-NEMO.
BR1-mediated expression of NEMO or eGFP was driven by the CAG promoter.

A Immunostaining of cerebral microvessels. Treatment with AAV-BR1-NEMO normalized string vessels (white arrows, highlighted in white square inset) in Nemo�/+ mice as
compared to Nemo�/+ mice treated with the AAV-BR1-eGFP control vector at postnatal day 8 (P8). The upper left panel shows the staining in untreated wild-type
control mice. String vessels were identified as capillaries that have lost CD31-positive (green) endothelial cells but stain for the basement membrane protein collagen IV
(red). Scale bars represent 200 lm. The lower right panel summarizes quantitative analysis of string vessels in Nemo�/+ and control mice (NemoFl or wild-type) at P0
(n = 3 animals/group) and at P8 (n = 6 animals/group, *P = 0.0125). String vessels in the cerebral cortex were quantified as percentage of total vessel lengths.

B Quantification of active caspase-3-positive endothelial cells at P8 (n = 5 animals/group, *P = 0.0201).
C Albumin in brain tissue as indicator for BBB leakage. In Nemo�/+ mice treated with AAV-BR1-NEMO, less albumin was found in brain tissue, indicating less BBB

leakage. Representative Western blot with albumin from P8 Nemo�/+ mice treated with AAV-BR1-NEMO or AAV-BR1-eGFP control vector, respectively, as well as
untreated wild-type (WT) control mice. Right panel: quantitative analysis of the Western blots (n = 4 animals/group, *P = 0.0283).

D Body weight of vector-treated mice. WT control or Nemo�/+ mice at P8 treated with AAV-BR1-NEMO or AAV-BR1-eGFP (n = 18 animals/group, *P = 0.0038).

Data information: Data are shown as mean + SEM or as plotted individual points with bars representing the mean. Differences between vector-treated Nemo�/+ mice
were analyzed by unpaired t-test.

Source data are available online for this figure.
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be essential for cellular uptake of a variety of AAV serotypes (Pillay

et al, 2016). In addition, the carbohydrate structure on the endothe-

lial cell surface is likely to be essential for specific targeting since all

known primary attachment receptors of AAV are carbohydrates,

namely glycans (Mietzsch et al, 2014).

In terms of efficient and specific transduction of the brain, the

AAV vector presented here strongly outperforms previously

described natural AAV serotypes (Foust et al, 2009; Dayton et al,

2012; Yang et al, 2014) and AAV vectors generated by inserting

phage-selected peptides. This demonstrates the advantage of the

AAV library system, which selects targeting ligands in the structural

and functional context needed for subsequent therapeutic applica-

tion. In addition, the AAV-BR1-mediated transgene expression in

the brain was unexpectedly persistent. Considering recombinant

A

B C D

Figure 7.
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AAVs as mostly nonintegrating vectors, the observed stability of

expression may most likely be explained by the slow turnover rate

of the transduced brain endothelial cells.

Overall, the in vivo tropism of AAV-BR1 could be confirmed

in vitro in primary murine and immortalized human brain endothe-

lial cells. The fact that AAV-BR1 and wild-type AAV2 were equally

effective in infecting the human hCMEC/D3 cell line (Weksler et al,

2005) might be explained by potential inter-species differences

(Lisowski et al, 2014) or, not less likely, by differences between the

situation in vivo and in vitro. Endothelial cells are prone to dedif-

ferentiate and to change their expression profile when being taken

into culture (Liaw & Schwartz, 1993; Staton et al, 2009). Moreover,

the blood flow in vivo and the constant incubation in cell culture

medium in vitro lead to different exposure times for particles to

attach to the receptor. Thus, the prognostic value of these in vitro

experiments for the potential benefit of AAV-BR1 in a clinical setting

is limited.

As a crucial component of blood vessels in the brain and BBB,

brain endothelial cells are involved in numerous neurological

diseases, including primary vascular diseases such as stroke or

vascular-mediated diseases such as multiple sclerosis, and even in

tumor growth and epilepsy. Transducing these cells with the AAV-

BR1 vector may represent a convenient and safe way to improve

cerebral perfusion, to modulate the BBB, or to improve drugability

of CNS targets beyond the BBB via a peripheral route. Our data in

the IP model provide proof of principle for this strategy. Transduc-

ing Nemo into brain endothelial cells in vivo ameliorated CNS

involvement that is the leading manifestation of this disease in

humans (Meuwissen & Mancini, 2012). So far, no specific treatment

of IP is available. Importantly, by sparing peripheral cells—including

peripheral, non-CNS endothelial cells—gene therapy with the

AAV-BR1 vector obviates potential adverse effects that have been

attributed to NEMO, such as promoting atherosclerosis (Gareus

et al, 2008). Notably, vectors such as the one presented here not

only could be employed to treat IP but can also be applied to treat a

broad range of other severe neurological diseases. Since the screen-

ing of random AAV display peptide libraries is not limited to organs

such as the brain, the strategy presented in our study might help to

improve vector development for a large spectrum of diseases.

Materials and Methods

Preparation of the random AAV2 display peptide library

A random AAV2 display library displaying heptapeptide insertions

at amino acid position R588 (VP1 numbering) with a diversity of

1 × 108 unique clones (calculated at plasmid level) was produced

using a three-step protocol as described previously (Muller et al,

2003; Waterkamp et al, 2006). In short, a degenerate oligonucleotide

encoding seven random amino acids (encoded by NNK to

avoid two out of three stop codons and to limit the number of degen-

erate codons) was synthesized commercially (Metabion) as follows:

50–CAGTCGGCCAGAGAGGC(NNK)7GCCCAGGCGGCTGACGAG–30.
Second-strand synthesis was performed using the Sequenase

enzyme (Affymetrix) and the primer 50–CTCGTCAGCCGCCTGG–30.
The double-stranded oligonucleotide insert was cleaved with BglI,

purified with the QIAquick Nucleotide Removal Kit (Qiagen), and

ligated into the SfiI-digested pMT187-0-3 library plasmid (Muller

et al, 2003) at nucleotide position 3967 of the AAV genome. Electro-

competent DH5a bacteria were transformed with the library plas-

mids using the Gene Pulser Electroporation System (Bio-Rad). The

diversity of the plasmid library was determined by the number of

clones growing from a representative aliquot of the transformed

bacteria on LB agar containing 150 mg/ml ampicillin. Library plas-

mids were harvested from transformed bacteria and purified using

the NucleoBond PC100 plasmid preparation kit (Macherey-Nagel).

The AAV library genomes were packaged into chimeric capsids

(AAV transfer shuttles) as a hybrid of wild-type and library AAV

capsids by transfecting 2 × 108 293T cells in ten 15-cm cell culture

dishes at a 1:1:2 ratio of the plasmid pVP3 cm (Waterkamp et al,

2006) (containing the wild-type cap gene with modified codon

usage, without inverted terminal repeats), the library plasmids

(Muller et al, 2003) (containing the cap gene with peptide insertion,

with inverted terminal repeats as packaging signal), and the pXX6

adenoviral helper plasmid (Xiao et al, 1998). The resulting AAV

library transfer shuttles were used to infect 2 × 108 293T cells in ten

15-cm cell culture dishes at a multiplicity of infection (MOI) of 0.5

replicative units per cell. Cells were superinfected with Ad5 at an

MOI of 5 plaque-forming units (pfu)/cell. The final random peptide

◀ Figure 8. Normalizing endothelial cell survival and blood–brain barrier permeability by intravenous injection of AAV-BR1-NEMO in a conditional murine
incontinentia pigmenti model (NemobeKO mice).
BR1-mediated expression of NEMO or eGFP was driven by the CAG promoter. All animals were at the age of 8–12 weeks.

A Representative immunostainings of cerebral microvessels. String vessels (white arrows, highlighted in white square inset) were significantly reduced in NemobeKO mice
treated with AAV-BR1-NEMO compared to NemobeKO mice treated with AAV-BR1-eGFP control vector. NemoFl mice served as control animals. Scale bars represent 200 lm.

B Quantification of string vessel lengths in the cerebral cortex as percentage of total vessel lengths. NemobeKO and NemoFl mice were treated with AAV-BR1-NEMO or
AAV-BR1-eGFP control vector (n = 9 NemoFl animals + BR1-eGFP, 10 NemobeKO animals + BR1-eGFP, 9 NemoFl animals + BR1-NEMO, and 13 NemobeKO

animals + BR1-NEMO), ****P < 0.0001.
C Total vessel length measured as total CD31-positive vessels. Vessels were restored in NemobeKO mice treated with AAV-BR1-NEMO compared to the AAV-BR1-eGFP

injected mice. NemoFl mice served as a control (n = 9 NemoFl animals + BR1-eGFP, 10 NemobeKO animals + BR1-eGFP, 9 NemoFl animals + BR1-NEMO, and 13
NemobeKO animals + BR1-NEMO), ***P = 0.0007, **P = 0.0038 (NemoKO:eGFP vs. NemoFl:NEMO), **P = 0.0014 (NemoKO:NEMO vs. NemoKO:eGFP).

D IgG and albumin Western blots of brain lysates. Less leakage in the BBB was detected in NemobeKO mice treated with AAV-BR1-NEMO than in NemobeKO mice injected
with AAV-BR1-eGFP (the right panel indicates the quantified gel intensity under the various treatment conditions; n = 5 animals per group). NemoFl mice served as
controls, ****P < 0.0001.

E Quantitative immunoglobulin staining of coronal brain sections of NemoFl and NemobeKO mice. Ig extravasation was significantly reduced in AAV-BR1-NEMO-treated
mice (n = 9 NemoFl animals + BR1-eGFP, 10 NemobeKO animals + BR1-eGFP, 9 NemoFl animals + BR1-NEMO, and 13 NemobeKO animals + BR1-NEMO), ****P < 0.0001.

F Effect of AAV-BR1 vector on BBB permeability. No vector (left) or empty AAV-BR1 vector (right) was injected i.v. to wild-type mice and BBB permeability was assessed
by extravasation of the fluorescent tracer sodium fluorescein (n = 7 animals per group). No significant difference was detected (n.s.).

Data information: Data are shown as mean + SEM. Data were analyzed by two-way ANOVA followed by Bonferroni’s post-test (A–E) or by Student’s t-test (F).

Source data are available online for this figure.
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AAV display library was harvested approximately 72 h after infec-

tion from the supernatant of the lysed cells. The supernatant was

concentrated using VivaSpin columns (Viva Science), and library

particles were purified by iodixanol density-gradient ultracentrifuga-

tion (Zolotukhin et al, 1999). Thus, a discontinuous iodixanol gradi-

ent was prepared by subsequently underlying the harvested library

particles with 15, 25, 40, and 54% iodixanol solutions, followed by

ultracentrifugation at 230,000 g for 70 min. The purified library

particles were aspirated from the layer containing 40% iodixanol

and dialyzed against HBSS. The virus titer was determined from

1:10,000 diluted samples at the genomic level by real-time PCR (see

below) using the cap-specific primers 50–GCAGTATGGTTCTG
TATCTACCAACC–30 and 50–GCCTGGAAGAACGCCTTGTGTG–30.

Determination of vector copy numbers by qPCR

To determine vector copy numbers, we used the SYBR Green

I-based FastStart Essential DNA Green Master (Roche) with the

LightCycler Nano System (Roche) or the Platinum SYBR Green

qPCR Supermix (Invitrogen) with the ABI Prism 7000 Sequence

Detection system (Applied Biosystems). An initial denaturation of

the probes (95°C, 10 min) was followed by 45 cycles of amplifi-

cation (95°C/67°C/72°C; 30 s each; rampage 5°C/s) and a final

melting curve analysis (60–97°C with 0.1°C/s). For each vector,

corresponding plasmid DNA was used to generate a standard curve.

Primers used for titration were either cap-specific (AAV library) or

promoter-specific (recombinant AAV vectors).

In vivo screening of the random AAV2 display peptide library

For the in vivo selection, 1 × 1011 genomic library particles were

injected into the tail vein of FVB mice. Two days later, mice were

sacrificed and the complete brain as organ of interest was removed.

Total tissue DNA was extracted using the DNeasy Tissue Kit (Qia-

gen). The random oligonucleotide insertions from the enriched AAV

library particles were amplified by nested PCR using the primers

50–ATGGCAAGCCACAAGGACGATG–30 and 50–CGTGGAGTACTGTG
TGATGAAG–30 for the first PCR, and 50–GGTTCTCATCTTTGGGAA
GCAAG–30 as well as 50–TGATGAGAATCTGTGGAGGAG–30 for the

second PCR. Approximately 20 PCRs with 1 lg template DNA each

were set up for the two PCR rounds. The PCR-amplified oligonu-

cleotides were used to produce preselected libraries for subsequent

rounds of selection. Preselected libraries were produced like the

primary library (as described above). Five rounds of selection were

performed in n = 1 animal each. After each round of selection, ten

clones were sequenced. Selected library clones were produced as

recombinant AAV vectors for further analysis.

Plasmid constructs for Nemo gene transfer experiments

The mouse IKKc/Nemo gene Ikbkg (accession number

NM_001136067) was amplified by PCR from mouse endothelial

cDNA with the forward primer BstB1: 50–CCGATTCGAATTCA
CCATGTATATCAGGTAC–30 and the reverse primer Xho1:

50–TGCCCTCGAGCTCTATGCACTCCATGACATG–30. The 1,306-bp

Nemo fragment was cloned into the vector pAAV-CAG-BMP2-2A-

eGFP (Heinonen et al, 2014) by removing BMP2 with BstBI

and XhoI and replacing it with Nemo, generating the plasmid

pAAV-CAG-NEMO-2A-eGFP. The plasmid pAAV-CMV-iCre-2A-eGFP

was generated as previously described (Heinonen et al, 2014).

Vector production and quantification

Recombinant AAV vectors were produced by triple transfection of

HEK293T cells. Cells were grown at 37°C, 5% CO2 in DMEM (Invitro-

gen) supplemented with 1% penicillin/streptomycin (Invitrogen) and

10% fetal calf serum (Biochrom). HEK293T cells were transfected

with plasmid DNA using linear polyethylenimine (Polysciences) or

by the calcium phosphate method (Grimm et al, 2003; Zhu et al,

2007). Three days after transfection, cells were harvested and then

lysed by repeated freeze–thaw cycles in PBS-MK, and the vectors

were then purified by iodixanol density-gradient ultracentrifugation

(see above) or via affinity column purification using Sepharose

columns (HiTrapTM, AVB SepharoseTM; GE Healthcare). For transfec-

tions, we used pXX6 or p179 as adenoviral helper plasmid (Xiao

et al, 1998), the luciferase reporter plasmids pAAV-CMV-LUC (con-

taining inverted terminal repeats of AAV2, the CMV promoter, the

firefly luciferase gene, and the SV40 Poly-A signal), pAAV-CAG-LUC

(containing inverted terminal repeats of AAV2, the CAG promoter,

the firefly luciferase gene, and the SV40 Poly-A signal), the GFP

reporter plasmid pAAV-CAG-eGFP (containing inverted terminal

repeats of AAV2, the CAG promoter, the eGFP gene, and the SV40

Poly-A signal), the plasmid pAAV-CAG-NEMO-2A-eGFP or pAAV-

CMV-iCre-2A-eGFP (see above), and a plasmid encoding the modi-

fied AAV capsid of interest. Plasmids encoding the AAV capsid

mutants and wild-type controls were modified pXX2-187 (Michel-

felder et al, 2007) and pXX2 (Xiao et al, 1998; Chen et al, 2009).

To quantify vector stocks, genomic titers were determined by

quantitative real-time PCR (see above) using the CAG-specific

primers 50–GGACTCTGCACCATAACACAC–30 and 50–GTAGGAAAG
TCCCATAAGGTCA–30 for the plasmids pAAV-CAG-LUC and pAAV-

CAG-eGFP and the WRPE-specific primers 50-TGCCCGCTGCTGGAC-
30 and 50-CCGACAACACCACGGAATTG-30 for the plasmids pAAV-

CAG-NEMO-2A-eGFP and pAAV-CMV-iCre-2A-eGFP.

In vivo administration of rAAV vectors

Recombinant AAV vectors expressing luciferase driven by the CMV

promoter or the CAG promoter were injected into the tail vein at a

dose of 5 × 1010 genomic particles (gp)/mouse under anesthesia

with 2.5% isoflurane. Vectors expressing either iCre or Nemo were

administered intravenously, and vectors expressing eGFP were

administered intravenously, or—as alternative—intraperitoneally,

intramuscularly, or subcutaneously (as indicated in the figure

legends) at a dose of 1.8 × 1011 gp/mouse in adults and 6 × 1010

gp/mouse in neonates. Mice of individual experimental groups in

each experiment were of similar age and weight and randomly allo-

cated to vector treatment groups.

Assessment of luciferase reporter gene expression

At different time points after vector injection, animals were anes-

thetized with 2.5% isoflurane. Luciferase expression was analyzed

using a Xenogen IVIS200 imaging system (Caliper Lifesciences) and

the software Living Image 4.0 (Caliper) after intraperitoneal injec-

tion of 200 ll luciferin substrate (150 mg/kg, Xenogen) per mouse.
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Representative in vivo bioluminescence images were taken when

luminescence in relative light units (photons/s/cm2) reached the

highest intensity. Three-dimensional reconstructions of in vivo lumi-

nescence images were obtained by using the DLIT option of the soft-

ware Living Image 4.0 (Caliper) and measuring the emitted light in

five different wavelengths from 560 to 640 nm, for 3 min each. The

final figures showing bioluminescence images were assembled using

the Photoshop (Adobe) software. After bioluminescence imaging,

animals were sacrificed; the organs of interest were quickly

removed, snap-frozen in liquid nitrogen, and stored at �80°C.

To quantify luciferase expression more accurately, organs were

homogenized in reporter lysis buffer (RLB, Promega) using a

Precellys 24 tissue homogenizer (Peqlab) with ceramic beads

(CK28, Precellys, Peqlab). Luciferase reporter gene activity was

determined in a luminometer (Mithras LB 940, Berthold Technolo-

gies) over a 10-s interval after adding 100 ll luciferase assay reagent

(LAR, Promega) with a 2-s delay between each measurement.

Values were normalized to total protein levels in each sample with

the Roti Nanoquant Protein Assay (Roth).

Analysis of vector biodistribution

Fourteen days after i.v. administration of 5 × 1010 genomic parti-

cles/mouse, total DNA from each organ was extracted using

Precellys 24 tissue homogenizer (Peqlab) with ceramic beads (CK28,

Precellys, Peqlab) and the DNeasy Tissue Kit (Qiagen) according to

the manufacturer’s instructions. DNA was quantified using a spec-

tral photometer (NanoDrop ND-2000C (Peqlab)). AAV vector DNA

in tissues was analyzed by quantitative real-time PCR using the

CAG-specific primers 50–GGACTCTGCACCATAACACAC–30 and

50–GTAGGAAAGTCCCATAAGGTCA–3 (see above). Vector copy

numbers were normalized to total DNA.

Transduction in cell culture

Primary brain endothelial cells of mice (8 weeks of age) were

cultured in 24-well plates as described previously (Ridder et al,

2011). Freshly purchased immortalized human brain endothelial

cells (hCMEC/D3, free of mycoplasma, hepatitis A, B, C, HPV,

herpes, and HIV 1 and 2; Millipore #SCC066) were grown in 24-well

plates coated with rat tail collagen, type I (1:20 in 1× PBS) in

EndoGRO-MV medium (Millipore # SCME004) supplemented with

1 ng/ml FGF2 (Millipore #GF003). Primary murine cells were

infected with 1.0 × 1010 gp/well, three days after preparation.

Immortalized human cells were infected with 1.6 × 1010 gp/well,

one day after seeding. Medium was changed at least 3 days after

infection. Ten days (murine cells) or 4 days (human cells) after

infection, cells were fixed in 4% PFA and immunostained with

chicken anti-GFP (1:2,000, Abcam #ab13970), and DAPI (1:2,000).

Murine cells were additionally stained with rat anti-CD31, 1:500 (BD

Pharmingen #557355). Infectivity was determined by the ratio of

GFP-positive cells to DAPI.

Immunohistochemistry

Two weeks (in adults) or 8 days (in neonates) after vector injection,

mice were anesthetized by isoflurane inhalation, followed by intrac-

ardial perfusion with PBS and 4% PFA fixation. Harvested organs

(brain, spinal cord, heart, kidney, muscle, liver, lung, and pancreas

were postfixed in 4% PFA at 4°C for two hours, followed by one

time wash in PBS and embedded in 2.5% agarose (in PBS)). Vibra-

tome sections (60–100 lm) were prepared and stored in PBS at 4°C.

Tissues for immunostaining were blocked in 5% BSA in PBS supple-

mented with 0.5% Triton X-100). Sections were incubated overnight

at 4°C with the following primary antibodies: chicken anti-GFP,

1:2,000 (Abcam #ab13970); rat anti-CD31, 1:500 (BD Pharmingen

#557355); rat anti-CD13, 1:400 (AbD Serotec #MCA2183GA); rabbit

anti-aquaporin 4, 1:100 (Millipore #AB3594); rabbit anti-active

caspase-3, 1:400 (Cell Signaling #9661S); or anti-collagen IV,

1:1,000 (Abcam #ab6586) in blocking buffer. The following day,

sections were washed twice in PBS-Tx. Sections were later

incubated in the following secondary antibodies for 2 h at RT: goat

anti-chicken IgG, Alexa Fluor 488, 1:2,000 (Abcam #ab150169),

anti-mouse-IgM-Cy3 1:400 (Jackson ImmunoResearch Laboratories),

anti-mouse-IgG-HRP 1:5,000 (Santa Cruz Biotechnology, Inc.), or

donkey anti-rat Cy3, 1:400 (Jackson ImmunoResearch #715-165-

140). Sections were washed twice in PBS and mounted with Mowiol

4-88 containing 1,4-diazabicyclo-(2,2,2)octane.

Microscopy

Fluorescence images were taken at room temperature with one of

the following microscopes:

Fluorescent microscope: DMI 6000 B (Leica); objectives: HCXPL

FLUOTAR 10.0×, aperture 0.3, immersion; dry. HCXPL FLUOTAR L

20.0×, aperture 0.4, immersion; dry.

Confocal microscope: laser scanning microscope TCS SP5 (Leica);

objectives: CPLAN 10.0×, aperture 0.4, immersion; dry. CPLAN L

20.0×, aperture 0.3PHI, immersion; water. HCXAPOLV-V-1 63×,

aperture 0.9, immersion; oil.

Images were taken with a Leica DFC360FX camera using the acqui-

sition software: LAS AF

Images were analyzed with ImageJ software. Images were not

manipulated in any way except to make brightness and contrast

adjustments. The final figures showing immunofluorescence images

were assembled using the Illustrator (Adobe) software.

Histological quantifications and determination
of BBB permeability

Endogenous immunoglobulin extravasation was quantified by using

20-lm cryosections after fixation in methanol and staining with

Cy3-labeled donkey anti-mouse IgM antibody (see above). The inte-

grated density of 2–4 images per mouse was determined by using

the ImageJ software (National Institutes of Health). To quantify the

string vessels, the lengths of collagen IV-positive and CD31-negative

vessels were determined with ImageJ software. Total vessel lengths

were measured in anti-CD31-stained sections. Two to four images

were taken in the cortex and analyzed for all parameters. All

cryosections from one experiment were always stained in parallel,

and images were generated at the same settings.

Stainings for CD31 and collagen IV were quantified in a partially

automated manner using a custom macro implemented into the

image analysis software Fiji (www.fiji.sc/Fiji) (Schindelin et al,

2012). Briefly, images were thresholded using an auto-threshold

method, despeckled, and smoothened to remove staining artifacts.
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After converting the images to binary form, staining lengths were

quantified with the “Skeleton 2D/3D” plug-in, yielding the number

and lengths of stained structures in each image. To ensure that the

quantification was reliable, the macro was initially compared to a

manually quantified dataset showing a significant correlation

(r2 = 0.9157, data not shown). The BBB permeability was investi-

gated as described previously (Ridder et al, 2015).

Western blotting

The cerebella of mouse brains used in the string vessel analysis

were homogenized in cell lysis buffer (Cell Signaling #9803) supple-

mented with PMSF (0.5 M) freshly prepared before use. Proteins

were transferred to nitrocellulose membranes. The Western blots

were probed overnight at 4°C with the following primary antibodies:

goat anti-mouse IgG-HRP 1:2,500 (Santa Cruz # SC-2005), goat anti-

mouse albumin 1:16,000 (Bethyl Laboratories #A90-134), and goat

anti-actin 1:1,000 (Santa Cruz #sc-1615). Subsequently, HRP-conju-

gated secondary antibodies were added for 1–2 h at room tempera-

ture. For detection, we applied enhanced chemiluminescence

(SuperSignal West Femto Substrate, Thermo Scientific) and a digital

detection system (GelDoc 2000, Bio-Rad). Gel intensities were quan-

tified with ImageJ software, and the ratio of albumin/actin or

immunoglobulin/actin was measured.

Animals

All mice were housed in individual, ventilated cages (IVCs) with

12-h light/dark cycles with food and water ad libitum. Experiments

were performed under anesthesia with 2.5% isoflurane and 97.5%

oxygen. Initial in vivo selection with the random AAV2-peptide

library and analysis of AAV luciferase reporter vectors were

performed in 8- to 12-week-old female FVB/N mice (Taketo et al,

1991). All mouse lines used for further experiments were estab-

lished on a C57BL/6 background (Charles River). Mice were of both

genders between the ages of 8–16 weeks, with the exception of

animals in the Nemo�/+ experiment, in which neonate animals

were injected at P0. The Cre reporter line B6.Cg-Gt(ROSA)

26Sortm14(CAG-tdTomato)Hze/J (Ai14)(Madisen et al, 2010) was

obtained from the Jackson Laboratory. Heterozygous Nemo knock-

out mice (Nemo�/+) were generated by crossing NemoFl mice

(Schmidt-Supprian et al, 2000) with CMV-Cre mice (Jax stock no. 6054).

In experiments with Nemo�/+ mice, five animals that did not show

any characteristic skin phenotype were excluded from analysis.

Only Nemo�/+ mice with skin phenotype were analyzed at P8.

Their body weights were measured over the 8-day period, and their

brains were dissected either at P0 or at P8 for further analysis (see

above). Brain endothelial-specific knockout (NemobeKO) animals

were generated by crossing the BAC-transgenic Slco1c1-CreERT2

strain (Ridder et al, 2011) that expresses the tamoxifen-inducible

CreERT2 recombinase under the control of the mouse Slco1c1 regula-

tory sequences with NemoFl mice (Schmidt-Supprian et al, 2000).

NemobeKO and Nemofl mice were injected with AAV-BR1-CAG-NEMO

or AAV-BR1-CAG-eGFP 7 days prior to tamoxifen treatment. To

induce recombination, NemobeKO and Nemofl animals were injected

i.p. with 1 mg tamoxifen dissolved in 90% Miglyol� 812/10%

ethanol every 12 h for five consecutive days. Brains were dissected

for analysis 7-10 days after the tamoxifen treatment. Littermates

lacking the Cre transgene or age-matched wild-type animals were

used as controls in all experiments. Investigators were blinded for

treatment or genotype of mice, or both, in all experiments.

Statistics

Statistical analysis was performed using the software GraphPad

Prism 6 (GraphPad Software, San Diego, CA). All data were analyzed

for normality by Kolmogorov–Smirnov test before applying paramet-

ric statistical tests. Datasets were analyzed either by Student’s t-test

or by one-way ANOVA (followed by Turkey’s multiple comparison

test), after being tested for differences in their variance by Brown–

Forsythe test to ensure that groups of data with unequal sample sizes

had similar variance, or data were tested by two-way ANOVA (fol-

lowed by Bonferroni’s multiple comparison test), as indicated in the

figure legends. Based on data from previous projects or from prelimi-

nary experiments, we calculated the sample size using G*Power

3.1.9.2 to ensure adequate power of key experiments in detecting

prespecified effect sizes. P-values < 0.05 were considered significant.

The exact (Student’s t-test) or adjusted (ANOVA) P-values for all

experiments with indicated statistical significance are reported in the

figure legends. Small datasets with samples sizes n < 5 were plotted

as individual data points with bars representing the mean, without

being tested for statistical significance when n < 4.

The paper explained

Problem
Efficient and tissue-specific gene therapy vectors are desperately
needed for most clinically relevant targets. This is especially true for
neurovascular diseases. Vectors based on adeno-associated virus (AAV)
have been able to substantially improve the accessibility of the
central nervous system (CNS). However, few of the existing vectors are
tissue-specific after intravenous injection, and most CNS-directed AAV
vectors preferably transduce neurons and/or astrocytes. Brain
endothelial cells—as the key player of the blood–brain barrier—might
display another promising site for gene therapy interventions which
has not yet been targeted successfully in an efficient manner.

Results
By screening a random AAV display peptide library over five selection
rounds in mice, we identified for the first time an efficient brain-
homing AAV capsid mutant with a high degree of specificity for its
target tissue. This mutant (designated AAV-BR1) mediated efficient
and long-lasting transgene expression in BBB-associated endothelial
cells after intravenous injection, whereas transgene expression in off-
target organs was barely detectable. To demonstrate the therapeutic
potential of AAV-BR1, we utilized this brain-specific capsid mutant to
generate a gene therapy vector and were able to ameliorate the
severe cerebrovascular pathology in a mouse model of incontinentia
pigmenti.

Impact
This study demonstrates the high potential of screening random AAV
display peptide libraries in vivo and highlights the importance of such
libraries for the field of gene therapy. Since the applied technique is
not limited to organs such as the brain, this study might help to
develop vectors for a spectrum of other targets. This study further
emphasizes the role of brain endothelial cells as relevant gene ther-
apy intervention site and provides a potential therapeutic vector for a
broad range of neurovascular diseases.
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Study approval

All animal experiments were performed in accordance with the

European Community Council Directive of November 24, 1986 (86/

609/EEC), the German Animal Welfare Act, and the ARRIVE guide-

lines. All efforts were made to minimize pain or discomfort of

animals. Animal experiments were approved by the responsible

local authorities and ethics review boards (Amt für Verbraucher-

schutz, Lebensmittelsicherheit und Veterinärwesen, Hamburg,

Germany, and Ministerium für Energiewende, Landwirtschaft,

Umwelt und Landwirtschaftsministerium ländliche Räume, Kiel,Sch-

leswig-Holstein, Germany).

Expanded View for this article is available online.
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