Supporting Information

for

Palladium NNC-pincer complex: an efficient catalyst for Allylic Arylation at parts per billion levels

Go Hamasaka,^{a,b} Fumie Sakurai,^{a, b} and Yasuhiro Uozumi^{*a,b,c,d}

^aInstitute for Molecular Science, Okazaki 444-8787, Japan

^bThe Graduate School for Advanced Studies, Okazaki 444-8787, Japan

^cGreen Nanocatalysis Reserch Team, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan

^dJST-CREST, Okazaki 444-8787, Japan

Table of Contents

General Information	S2
Synthesis of 1	S 3
Typical procedure for the allylic arylation reaction	S 3
Experimental procedure for Scheme 3	S9
References	S 11
¹ H-NMR and ¹³ C-NMR Spectra	S12

General Information

When manipulations were performed under a nitrogen atmosphere, nitrogen gas was dried by passage through P₂O₅. Commercially available chemicals (purchased from Sigma-Aldrich, TCI, Kanto chemical, Wako Pure Chemical Industries, Nacalai tesque, and Merck) are used without further purification unless otherwise noted. Silica gel was purchased from Kanto chemical (Silica gel 60N, spherical neutral, particle size 40-50µm) or Yamazen corporation (Hi-FlashTM Column Silica gel 40 mm 60 Å). TLC plates were purchased from Merck (TLC Silica gel 60 F₂₅₄). NMR spectra were recorded on a JEOL JNM A-500 spectrometer (500 MHz for ¹H, 125 MHz for ¹³C) or a JEOL JNM ECS-400 spectrometer (396 MHz for ¹H, 100 MHz for ¹³C). Chemical shifts are reported in δ (ppm) referenced to an internal tetramethylsilane standard for ¹H NMR. Chemical shifts of ¹³C NMR are given related to CDCl₃ as an internal standard (δ 77.0). ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 25 °C. GC-MS analyses were measured with an Agilent 6890 GC/5973N MS Detector. ESI mass spectra (LRMS and HRMS) were recorded on a JEOL JMS-T100LC spectrometer. Elemental analyses were performed on a J-SCIENCE LAB MICRO CORDER JM10. Melting points were determined using a Yanaco micro melting point apparatus MP-J3 and were uncorrected. IR spectra were obtained using a JASCO FT/IR-460plus spectrometer in ATR mode. Millipore water was obtained from a Millipore Milli-O Academic A10 purification unit. (E)-3-(4-Methoxyphenyl)-2-propen-1-ol acetate (**2b**), 1 (E)-3-(4-methylphenyl)-2-propen-1-ol acetate (**2c**), 1 (E)-3-(4-tert-butylphenyl)-2-propen-1-ol acetate (2d), (E)-3-(4-phenylphenyl)-2-propen-1-ol acetate (2e), (E)-3-(E(4-trifluoromethylphenyl)-2-propen-1-ol acetate (2f), (E)-3-(4-nitrophenyl)-2-propen-1-ol acetate (2g), (E)-3-(4-nitrophenyl)-2-propen-1-ol acetate (2g)-3-(4-nitrophenyl)-2-propen-1-ol acetate (2g)-3-(4-nitrophenyl)-3-(4-nitroacetylphenyl)-2-propen-1-ol acetate (2h),¹ (E)-3-((4-methoxycarbonyl)phenyl)-2-propen-1-ol acetate (2i),¹ (E)-(naphthalene-6-yl)allyl acetate (2i),² (E)-3-((2-methoxycarbonyl)phenyl)-2-propen-1-ol acetate (2k),¹ (E)-3-(2-methoxycarbonyl)phenyl)-2-propen-1-ol acetate (2k),¹ (E)-3-(2-methoxycarbonyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phenyl)phen methylphenyl)-2-propen-1-ol acetate (2l),¹ cyclohex-2-enyl acetate (2o),³ neryl acetate (2p),⁴ geranyl acetate (2q), (1E)-1-phenyl-1-buten-3-yl acetate (2r), (1E)-1-phenyl-1-hepten-3-yl acetate (2s), (1E)-3-(2-thienyl)allyl acetate (2t), (E)-3-(3-pyridyl)allyl acetate (2u), sodium tetraarylborates (3b-3d), complex 7, 1 phenyl-2propenyl acetate (8),⁴ 2-phenyl-1,10-phenanthroline,¹⁵ and 2,9-diphenyl-1,10-phenanthlorine¹⁵ were prepared by literature methods.

S2

Synthesis of Chloro-[2-(9-phenyl-1,10-phenanthrolin-2-yl)phenyl]palladium (1).

 $PdCl_2(MeCN)_2$ (700.0 mg, 2.11 mmol) was added to a solution of 2,9-diphenyl-1,10-phenanthroline (546.1 mg, 2.11 mmol) in a benzene/methanol mixture (20 mL/25 mL). After being stirred for 6 h at 50 °C, a resulting insoluble material was collected by filtration. The obtained material was washed with dichloromethane, methanol, and diethyl ether, and dried in *vacuo* to give **1** (886.2 mg, 1.87 mmol,

89%) as yellow solids. Mp. >300 °C. ¹H-NMR (396 MHz, CD₂Cl₂) δ 8.44 (d, *J* = 8.6 Hz, 1H, phen 4-H), 8.43 (d, *J* = 8.6 Hz, 1H, phen 7-H), 7.95 (d, *J* = 8.6 Hz, 1H, phen 8-H), 7.93 (d, *J* = 8.6 Hz, 1H, phen 3-H), 7.87–7.90 (m, 4H, phen 5,6-H, *o*-H), 7.76–7.79 (m, 1H, *m*''-H), 7.53–7.59 (m, 4H, *m*-H, *p*-H, and *o*'-H), 7.15 (td, *J* = 2.0, 7.2 Hz, 1H, *p*'-H), 7.12 (td, *J* = 2.0, 7.2 Hz, 1H, *m*'-H). ¹³C-NMR (100 MHz, CD₂Cl₂) δ 163.64, 162.92, 151.79, 148.00, 138.20, 137.80, 137.33, 130.91, 130.28, 130.07, 129.15, 128.51, 128.21, 127.82, 126.68, 126.27, 125.26, 124.92, 118.98. IR (ATR): 3046, 2928, 1617, 1585, 1575, 1508, 1499, 1415, 1316, 1147, 1023. 856, 761, 733, 691 cm⁻¹. ESI-TOF-MS *m*/*z* 437 ([M-Cl]⁺), 469 ([M-Cl+MeOH]⁺), 911 ([2M-Cl]⁺). Anal. Calcd for C₂₄H₁₅ClN₂Pd·0.5H₂O: C, 59.77: H, 3.34; N, 5.81%. Found: C, 59.63: H, 3.26: N, 5.73%.

Typical procedure for the allylic arylation of allylic acetates with sodium tetraarylborates using 1

The complex **1** (4.7 mg, 0.01 mmol) was dissolved in methanol (100 mL) to give a stock solution. Under a nitrogen atmosphere, the stock solution (0.1 mL, 1.00×10^{-5} mmol), methanol (9.9 mL), and NaBPh₄ (6.84 g, 20.0 mmol) were added to a reaction vessel. The resulting solution was degassed via three freeze-pump-thaw cycles. Cinnamyl acetate (1.76 g, 10.0 mmol) was added to the solution. The reaction mixture was stirred at 50 °C for 24 h and allowed to cool to 25 °C. After removal of the solvent, water (50 mL) was added to the residue. The resulting suspension was extracted with *tert*-butyl methyl ether (50 mL × 4). The combined organic layer was dried over Na₂SO₄. The resulting solution was concentrated under reduced pressure. The crude product was chromatographed on silica gel (eluent: hexane) to give 1,1'-[(1*E*)-prop-1-ene-1,3-diyl]dibenzene (**4aa**) (1.69 g, 8.67 mmol, 87%) as colorless oil.

1,1'-[(1*E***)-Prop-1-ene-1,3-diyl]dibenzene (4aa)⁷** [CAS: 3412-44-0] (1.69 g, 8.67 mmol, 87%)

¹H-NMR (396 MHz, CDCl₃) δ 7.37–7.18 (m, 10H, ArH), 6.46 (d, J = 15.8 Hz, 1H, -CH=CHCH₂-), 6.36 (dt, J = 15.8, 6.7 Hz, 1H, -CH=CHCH₂-), 3.55 (d, J = 6.7 Hz, 2H, -CH=CHCH₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 140.19, 137.49, 131.09, 129.26, 128.72, 128.54, 127.15, 126.23, 126.17, 39.40. EI-MS *m*/*z* 194 (M⁺).

(*E*)-1-(4-Methoxyphenyl)-3-phenylpropene (4ba)⁷ [CAS: 35856-81-6] (1.79 g, 7.98 mmol, 80%) ¹H-NMR (396 MHz, CDCl₃) δ 7.33–7.20 (m, 7H, ArH), 6.83 (d, *J* = 8.7 Hz, 2H, ArH), 6.40 (d, *J* = 15.7 Hz, 1H, -C**H**=CHCH₂-), 6.22 (dt, *J* = 15.7, 6.8 Hz, 1H, - MeO CH=CHCH₂-), 3.80 (s, 3H, -OCH₃), 3.53 (d, *J* = 6.8 Hz, 2H, -CH=CHCH₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 158.80, 140.43, 130.39, 130.27, 128.63, 128.44, 127.19, 127.03, 126.08, 113.88, 55.27, 39.32. EI-MS *m/z* 224 (M⁺).

(*E*)-1-(4-Methylphenyl)-3-phenylpropene (4ca)⁷ [CAS: 134539-87-0] (1.68 g, 8.07 mmol, 81%) ¹H-NMR (396 MHz, CDCl₃) δ 7.35–7.19 (m, 7H, ArH), 7.10 (d, *J* = 8.3 Hz, 2H, ArH), 6.43 (d, *J* = 15.4 Hz, 1H, -CH=CHCH₂-), 6.30 (dt, *J* = 15.4, 7.0 Hz, 1H, - Me CH=CHCH₂-), 3.54 (d, *J* = 7.0 Hz, 2H, -CH=CHCH₂-), 2.31 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 140.32, 136.82, 134.65, 130.88, 129.17, 128.65, 128.44, 128.14, 126.11, 125.98, 39.33, 21.15. EI-MS *m/z* 208 (M⁺).

(*E*)-1-(4-Methylphenyl)-3-phenylpropene (4da)⁸ [CAS: 62056-41-1] (2.32 g, 9.27 mmol, 93%)

¹H-NMR (396 MHz, CDCl₃) δ 7.34–7.28 (m, 6H, ArH), 7.25–7.19 (m, 3H, ArH), 6.45 (d, J = 15.4 Hz, 1H, -C**H**=CHCH₂-), 6.32 (dt, J = 15.4, 7.2 Hz, 1H, - ^{*t*}Bu CH=C**H**CH₂-), 3.54 (d, J = 7.2 Hz, 2H, -CH=CHC**H**₂-), 1.31 (s, 3Hx3, -C(C**H**₃)₃). ¹³C-NMR (100 MHz, CDCl₃) δ 150.10, 140.30, 134.65, 130.80, 128.63, 128.42, 128.34, 126.09, 125.80, 125.39, 39.33, 34.48, 31.28. EI-MS

m/z 250 (M⁺).

(*E*)-1-(4-Phenylphenyl)-3-phenylpropene (4ea) [CAS: none] (2.30 g, 8.51 mmol, 85%)

Mp. 90-91 °C. ¹H-NMR (396 MHz, CDCl₃) δ 7.60–7.52 (m, 4H, ArH), 7.45–7.41 (m, 4H, ArH), 7.35–7.31 (m, 2H, ArH), 7.27–7.21 (m, 4H, ArH), 6.50 (d, *J* = 15.6 Hz, 1H, -C**H**=CHCH₂-), 6.41 (dt, *J* = 15.6, 6.5 Hz, 1H, -C**H**=C**H**CH₂-

), 3.58 (d, J = 6.5 Hz, 2H, -CH=CHCH₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 140.72, 140.09, 139.79, 136.47, 130.56, 129.36, 128.72, 128.66, 128.48, 127.16, 126.86, 126.50, 126.18, 39.38. IR (ATR): 1600, 1487, 966, 836, 754, 700, 685, 588 cm⁻¹. EI-MS *m*/*z* 270 (M⁺). Anal. Calcd for C₂₁H₁₈: C, 93.29: H, 6.71%. Found: C, 93.24: H, 6.71%.

(*E*)-1-(4-trifluoromethylphenyl)-3-phenylpropene (4fa)⁹ [CAS: 62056-35-3] (2.50 g, 9.53 mmol, 95%)

¹H-NMR (396 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H, ArH), 7.43 (d, J = 8.0 Hz, 2H, ArH), 7.35–7.23 (m, 5H, ArH), 6.48–6.46 (m, 2H, -C**H**=C**H**CH₂-), 3.57 (d, J = F₃C

3.7 Hz, 2H, -CH=CHC**H**₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 140.93, 139.55, 132.13, 129.79, 128.90 (q, *J* = 32.4 Hz), 128.71, 128.63, 126.41, 126.26, 125.46 (q, *J*_{C-F} = 3.8 Hz), 124.30 (q, *J*_{C-F} = 271.8 Hz), 39.36. EI-MS *m*/*z* 262 (M⁺).

(*E*)-1-(4-Nitrophenyl)-3-phenylpropene (4ga)⁷ [CAS: 156904-24-4] (2.27 g, 9.49 mmol, 95%) O_2N ¹H-NMR (396 MHz, CDCl₃) δ 8.16 (d, *J* = 9.1 Hz, 2H, ArH), 7.47 (d, *J* = 9.1 Hz, 2H, ArH), 7.36–7.32 (m, 2H, ArH), 7.27–7.23 (m, 3H, ArH), 6.57 (dt, *J* = 15.8, 6.3 Hz, 1H, -CH=CHCH₂-), 6.50 (d, *J* = 15.8 Hz, 1H, -CH=CHCH₂-), 3.61 (brd, *J* = 6.3 Hz, 2H, -CH=CHCH₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 146.42, 143.82, 138.91, 134.52, 129.00, 128.61, 128.56, 126.43, 126.42, 123.80, 39.32. EI-MS *m/z* 239 (M⁺).

(*E*)-1-(4-Acetylphenyl)-3-phenylpropene (4ha) [CAS: none] (1.82 g, 7.72 mmol, 77%)

Mp. 37-39 °C. ¹H-NMR (396 MHz, CDCl₃) δ 7.89 (d, J = 7.9 Hz, 2H, ArH), 7.43 (d, J = 7.9 Hz, 2H, ArH), 7.35–7.31 (m, 2H, ArH), 7.26–7.22 (m, 3H, ArH), 6.56–6.45 (m, 2H, -C**H**=C**H**CH₂-), 3.58 (d, J = 5.5 Hz, 2H, -C**H**=C**H**C**H**₂-), 2.58 (s, 3H,

C(O)CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 197.53, 142.07, 139.40, 135.53, 132.42, 130.03, 128.67, 128.62, 128.51, 126.30, 126.06, 39.35, 26.47. IR (ATR): 1676, 1598, 1492, 1450, 1409, 1356, 1265, 1181, 976, 957, 938, 808, 738, 696, 595 cm⁻¹. EI-MS *m*/*z* 236 (M⁺). Anal. Calcd for C₁₇H₁₆O: C, 86.40: H, 6.82%. Found: C, 86.01: H, 6.81%.

(*E*)-methyl 4-(3-phenylprop-1-enyl)benzoate (4ia)¹⁰ [CAS: 1012036-96-2] (2.32 g, 9.18 mmol, 92%)

¹H-NMR (396 MHz, CDCl₃) δ 7.96 (d, J = 8.3 Hz, 2H, ArH), 7.40 (d, J = 8.3 Hz, 2H, ArH), 7.34–7.31 (m, 2H, ArH), 7.24 (d, J = 7.1 Hz, 3H, ArH), 6.50–6.48 (m, 1H, -CH=CHCH₂-), 3.91 (s, 3H, -OCH₃), 3.58 (d, J = 5.1 Hz, 2H, -CH=CHCH₂-).

¹³C-NMR (100 MHz, CDCl₃) δ 166.82, 141.87, 139.46, 132.13, 130.10, 129.80, 128.61, 128.49, 128.45, 126.27, 125.89, 51.92, 39.33. EI-MS *m*/*z* 252 (M⁺).

(*E*)-1-(2-Naphthyl)-3-phenylpropene (4ja)¹¹ [CAS: 5751-32-6] (2.41g, 9.87 mmol, 99%)

¹H-NMR (396 MHz, CDCl₃) δ 7.79–7.74 (m, 3H, ArH), 7.70 (s, 1H, ArH), 7.58 (dd, J = 8.3, 1.8 Hz, 1H, ArH), 7.46–7.39 (m, 2H, ArH), 7.29–7.22 (m, 5H, ArH), 6.62 (d, J = 15.7 Hz, 1H, -C**H**=CHCH₂-), 6.49 (dt, J = 15.7, 6.9 Hz, 1H, -CH=C**H**CH₂-), 3.61 (d, J = 6.9 Hz, 2H, -CH=CHC**H**₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 140.08, 134.87, 133.60, 132.72, 131.09, 129.64, 128.69, 128.49, 128.05, 127.82, 127.59, 126.19, 126.12, 125.73, 125.54, 123.50, 39.42. EI-MS *m/z* 244 (M⁺).

(*E*)-1-(2-Methoxyphenyl)-3-phenylpropene (4ka)¹⁰ [CAS: 1246889-00-6] (2.09 g, 9.33 mmol, 93%)

¹H-NMR (396 MHz, CDCl₃) δ 7.60 (d, J = 7.5 Hz, 1H, ArH), 7.46–7.41 (m, 2H, ArH), 7.37–7.16 (m, 4H, ArH), 6.92–6.85 (m, 2H, ArH), 6.82 (d, J = 15.8 Hz, 1H, -CH=CHCH₂-), 6.42 (dt, J = 15.8, 7.1 Hz, 1H, -CH=CHCH₂-), 3.85 (s, 3H, -OCH₃), 3.57 (d, J = 7.1 Hz, 2H, -CH=CHCH₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 156.35, 140.46, 129.70, 128.57, 128.37, 128.05, 126.52, 126.39, 125.99, 125.68, 120.54, 110.69, 55.32, 39.80. EI-MS m/z 224 (M⁺).

(*E*)-1-(2-Methylphenyl)-3-phenylpropene (4la)¹² [CAS: 83135-54-0] (1.73 g, 8.30 mmol, 83%)

¹H-NMR (396 MHz, CDCl₃) δ 7.43–7.41 (m, 1H, ArH), 7.33–7.20 (m, 5H, ArH), 7.15–7.13 (m, 3H, ArH), 6.67 (d, J = 15.4 Hz, 1H, -C**H**=CHCH₂-), 6.23 (dt, J = 15.4, 7.3 Hz, 1H, -CH=C**H**CH₂-), 3.59 (d, J = 7.3 Hz, 2H, -CH=CHC**H**₂-), 2.34 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 140.24, 136.54, 135.03, 130.45, 130.14, 128.94, 128.58, 128.44, 127.02, 126.11, 125.99, 125.52, 39.61, 19.83. EI-MS m/z 208 (M⁺).

(*E*)-**3-(4-Methylphenyl**)-**1-phenylpropene** (**4ab**)⁷ [CAS: 134539-86-9] (1.75 g, 8.40 mmol, 84%)

¹H-NMR (396 MHz, CDCl₃) δ 7.35 (d, J = 7.5 Hz, 2H, ArH), 7.29 (d, J =7.5 Hz, 2H, ArH), 7.21–7.18 (m, 1H, ArH), 7.15–7.10 (m, 4H, ArH), 6.45 (d, J = 15.6 Hz, 1H, -C**H**=CHCH₂-), 6.34 (dt, J = 15.6, 6.7 Hz, 1H, -CH=C**H**CH₂-), 3.51 (d, J = 6.7 Hz, 2H, -CH=CHC**H**₂-), 2.33 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 137.48, 137.01, 135.62, 130.78, 129.47, 129.14, 128.52, 128.45, 127.00, 126.07, 38.89, 20.99. EI-MS *m/z* 208 (M⁺).

(*E*)-3-(4-Chlorophenyl)-1-phenylpropene (4ac)⁷ [CAS: 511234-96-1] (1.34 g, 5.86 mmol, 59%)

¹H-NMR (396 MHz, CDCl₃) δ 7.35 (d, J = 7.9 Hz, 2H, ArH), 7.31–7.25 (m, 4H, ArH), 7.24–7.19 (m, 1H, ArH), 7.17 (d, J = 7.9 Hz, 2H, ArH), 6.44 (d, J = 15.3 Hz, 1H, -CH=CHCH₂-), 6.31 (dt, J = 15.3, 6.7 Hz, 1H, -CH=CHCH₂-), 3.52 (d, J = 6.7 Hz, 2H, -CH=CHCH₂-).

CI

¹³C-NMR (100 MHz, CDCl₃) δ 138.52, 137.17, 131.90, 131.42, 129.98, 128.52, 128.50, 128.49, 127.23, 126.09, 38.56. EI-MS *m/z* 228 (M⁺).

(*E*)-3-(4-Fluorophenyl)-1-phenylpropene (4ad)⁷ [CAS: 485844-19-7] (1.37 g, 6.45 mmol, 65%) ¹H-NMR (396 MHz, CDCl₃) δ 7.37–7.18 (m, 7H, ArH), 6.99 (t, *J* = 8.1 Hz, 2H, ArH), 6.44 (d, *J* = 15.0 Hz, 1H, -C**H**=CHCH₂-), 6.32 (dt, *J* = 15.0, 6.6 Hz, 1H, -CH=C**H**CH₂-), 3.52 (d, *J* = 6.6 Hz, 2H, -CH=CHC**H**₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 161.45 (d, *J* = 243.3 Hz), 137.26, 135.68 (d, *J* = 3.9 Hz), 131.16, 129.99 (d, *J* = 7.7 Hz), 128.93, 128.49, 127.18, 126.09, 115.18 (d, *J* = 21.0 Hz), 38.43. EI-MS *m*/z 212 (M⁺).

(*E*)-1-Phenyl-2-hexene (4ma)⁷ [CAS: 78633-31-5] (1.25 g, 7.80 mmol, 78%)

¹H-NMR (396 MHz, CDCl₃) δ 7.31–7.26 (m, 2H, ArH), 7.20–7.17 (m, 3H, ArH), 5.57 (dt, J = 15.0, 5.9 Hz, 1H, -CH=CHCH₂Ph), 5.50 (dt, J = 15.4, 5.9 Hz, 1H, -CH=CHCH₂Ph),

3.33 (d, J = 5.9 Hz, 2H, -CH=CHCH₂Ph), 2.00 (q, J = 6.7 Hz, 2H, -CH₂CH=CHCH₂Ph), 1.40 (sext, J = 7.4 Hz, 2H, -CH₂CH₂CH=CHCH₂Ph), 0.90 (t, 3H, J = 7.4 Hz, -CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 141.12, 131.90, 128.86, 128.46, 128.30, 125.82, 39.06, 34.60, 22.59, 13.69. EI-MS *m*/*z* 160 (M⁺).

2-Methyl-4-phenyl-2-butene (**4na**)⁷ [CAS: 286376-80-5] (1.06 g, 7.25 mmol, 73%) ¹H-NMR (396 MHz, CDCl₃) δ 7.29–7.25 (m, 2H, ArH), 7.19–7.15 (m, 3H, ArH), 5.35–5.30 (m, 2H, (CH₃)₂C=C**H**CH₂Ph), 3.34 (d, *J* = 7.1 Hz, 2H, (CH₃)₂C=CHC**H**₂Ph), 1.74 (s, 3H, -CH₃), 1.72 (s, 3H, -CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 141.79, 132.46, 128.32, 128.28, 125.67, 123.18, 34.35, 25.74, 17.79. EI-MS *m*/*z* 146 (M⁺).

3-Phenylcyclohexene (40a)⁷ [CAS: 15232-96-9] (1.12 g, 7.08 mmol, 71%)

¹H-NMR (396 MHz, CDCl₃) δ 7.32–7.28 (m, 2H, ArH), 7.23–7.18 (m, 3H, ArH), 5.91–5.88 (m, 1H, -CH=C**H**-CHPh-), 5.73–5.70 (m, 1H, -C**H**=CH-CHPh-), 3.43–3.38 (m, 1H, -CH=CH-C**H**Ph-), 2.11–1.98 (m, 3H, -(CH₂)₃-CHPh-), 1.77–1.72 (m, 1H, -(CH₂)₃-CHPh-), 1.67–1.51 (m, 2H, -(CH₂)₃-CHPh-). ¹³C-NMR (100 MHz, CDCl₃) δ 140.60, 130.13, 128.31, 128.23, 127.69, 125.91, 41.82, 32.61, 24.98, 21.16. EI-MS *m*/*z* 158 (M⁺).

(**Z**)-3,7-Dimethyl-1-phenyl-2,6-octadiene (4pa)⁷ [CAS: 21488-83-5] (1.16 g, 5.39 mmol, 54%)

¹H-NMR (396 MHz, CDCl₃) δ 7.29–7.24 (m, 2H, ArH), 7.19–7.15 (m, 3H, ArH), 5.33 (t, J = 7.2 Hz, 1H, -(CH₃)C=CHCH₂Ph), 5.16-5.13 (m, 1H, (CH₃)₂C=CH-(CH₂)₂-), 3.35 (d, J = 7.2 Hz, 2H, -(CH₃)C=CHCH₂Ph), 2.17–2.10 (m, 4H, (CH₃)₂C=CH-(CH₂)₂-), 1.75 (s, 3H, -CH₃), 1.69 (s, 3H, -CH₃), 1.62 (s, 3H, -CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 141.80, 136.14, 131.72, 128.33, 128.31, 125.67, 124.15, 123.81, 34.08, 31.95, 26.56, 25.71, 17.65. EI-MS *m/z* 214 (M⁺).

(*E*)-3,7-Dimethyl-1-phenyl-2,6-octadiene (4qa)⁷ [CAS: 21488-84-6] (1.38 g, 6.44 mmol, 64%) ¹H-NMR (396 MHz, CDCl₃) δ 7.29–7.25 (m, 2H, ArH), 7.20–7.15 (m, 3H, ArH), 5.34 (t, *J* = 7.0 Hz, 1H, -(CH₃)C=CHCH₂Ph), 5.10 (t, *J* = 6.9 Hz, 1H, (CH₃)₂C=CH-(CH₂)₂-), 3.36 (d, *J* = 7.0 Hz, 2H, -(CH₃)C=CHCH₂Ph), 2.14–2.09 (m, 2H, (CH₃)₂C=CH-(CH₂)₂-), 2.07–2.03 (m, 2H, (CH₃)₂C=CH-(CH₂)₂-), 1.71 (s, 3H, -CH₃), 1.68 (s, 3H, -CH₃), 1.60 (s, 3H, -CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 141.75, 136.16, 131.43, 128.33, 128.30, 125.64, 124.25, 123.01, 39.69, 34.16, 26.57, 25.71, 17.68, 16.08. EI-MS *m/z* 214 (M⁺).

(*E*)-1,3-Diphenyl-1-butene (4ra)⁷ [CAS: 7302-01-4] (1.53 g, 7.35 mmol, 74%)
¹H-NMR (396 MHz, CDCl₃) δ 7.37–7.17 (m, 10H, ArH), 6.40–6.35 (m, 2H), 3.65–3.62 (m, 1H), 1.46 (d, *J* = 7.1 Hz, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 145.60, 137.52, 135.19, 128.47, 127.29, 127.02, 126.20, 126.12, 42.54, 21.20. EI-MS *m/z* 208 (M⁺).

(*E*)-1,3-Diphenyl-1-heptene (4sa)¹⁶ [CAS: 485844-22-2] (1.45 g, 5.77 mmol, 58%) ¹H-NMR (396 MHz, CDCl₃) δ 7.35–7.16 (m, 10H, ArH), 6.41–6.29 (m, 2H), 3.39 (q, *J* = 7.1 Hz, 1H), 1.79 (q, *J* = 7.1 Hz, 2H), 1.36–1.22 (m, 4H) 1.0 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ 144.73, 137.59, 134.48, 129.19, 128.46, 128.44, 127.62, 126.98, 126.14, 126.11, 49.18, 35.62, 29.85, 22.69, 14.05. EI-MS *m/z* 250 (M⁺).

(*E*)-1-(2-Thiophene)-3-phenylpropene (4ta)¹¹ [CAS: 1403462-93-0] (0.029 g, 0.14 mmol, 1%)

¹H-NMR (396 MHz, CDCl₃) δ 7.33–7.30 (m, 2H, ArH), 7.26–7.21 (m, 3H, ArH), 7.10 (d, J = 4.8 Hz, 1H, thiophene 5-H), 6.93 (dd, J = 4.8, 3.2 Hz, 1H, thiophene 4-H), 6.89 (d, J =3.2 Hz, 1H, thiophene 3-H), 6.56 (d, J = 15.6 Hz, 1H, -C**H**=CHCH₂-), 6.21 (dt, J = 15.6, 6.7 Hz, 1H, -CH=C**H**CH₂-), 3.51 (d, J = 6.7 Hz, 2H, -CH=CHC**H**₂-). ¹³C-NMR (100 MHz, CDCl₃) δ 142.58, 139.76, 129.08, 128.67, 128.48, 127.19, 126.21, 124.75, 124.22, 123.46, 39.06. EI-MS m/z 200 (M⁺).

(*E*)-1-(3-Pyridine)-3-phenylpropene (4ua)¹⁰ [CAS: 1380310-78-0] (0.053 g, 0.27 mmol, 3%)

¹H-NMR (396 MHz, CDCl₃) δ 8.58 (d, *J* = 1.6 Hz, 1H, ArH), 8.44 (d, *J* = 4.8, 1.6 Hz, 1H, ArH), 7.67 (dt, *J* = 7.9, 1.6 Hz, 1H, ArH), 7.35–7.31 (m, 2H, ArH), 7.25–7.20 (m, 4H, ArH), 6.49–6.39 (m, 2H, -CH=CHCH₂-), 3.57 (d, *J* = 5.1 Hz, 2H, -CH=CHCH₂-). ¹³C-

NMR (100 MHz, CDCl₃) δ 147.97, 147.89, 139.43, 133.05, 132.64, 131.86, 128.64, 128.57, 127.35, 126.36, 123.40, 39.38. FAB-MS *m*/*z* 196 ([M+1]⁺).

Synthesis of Dichloro-(2-phenyl-1,10-phenanthroline)palladium (6).

 $PdCl_2(MeCN)_2$ (25.9 mg, 0.100 mmol) was added to a solution of 2,9-diphenyl-1,10phenanthroline (25.6 mg, 0.100 mmol) in CH₂Cl₂. After being stirred for 4 h at 40 °C, a resulting insoluble material was collected by filtration. The obtained material was washed with dichloromethane and hexane, and dried in *vacuo* to give **6** (29.1 mg, 0.067 mmol,

67%) as orange solids. ¹H-NMR (396 MHz, DMSO-d₆) δ 9.51(dd, J = 1.2, 5.3 Hz, 1H), 8.71 (d, J = 8.1 Hz, 1H), 8.67 (dd, J = 1.2, 8.3 Hz, 2H), 8.17 (d, J = 8.9 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H), 7.90 (dd, J = 5.3, 8.3, 2H), 7.88 (d, J = 8.1, 2H), 7.42 (d, J = 7.9, 2H), 6.87 (t, J = 7.9, 1H), 6.66 (t, J = 7.9, 2H). ¹³C-NMR (100 MHz, DMSO-d₆) δ 158.90, 153.94, 145.26, 144.26, 140.22, 139.91, 138.75, 136.77, 130.65, 129.12, 129.02, 128.53, 127.51, 126.99, 125.62, 124.84. ESI-TOF-MS m/z 653 ([2M-PdCl₃]⁺).

Experimental Procedure for Scheme 3

The reaction of 8 with 3a using 1 (Scheme 3a)

Complex **1** (4.7 mg, 0.01 mmol) was dissolved in methanol (100 mL) to give a stock solution. Under a nitrogen atmosphere, the stock solution (0.1 mL, 1.00×10^{-5} mmol), methanol (9.9 mL), and NaBPh₄ (**3a**, 6.84 g, 20.0 mmol) were added to a reaction vessel. The resulting solution was degassed via three freeze-pump-thaw cycles. 1-Phenyl-2-propenyl acetate (**8**, 1.76 g, 10.0 mmol) was added to the solution. The reaction mixture was stirred at 50 °C for 24 h and allowed to cool to 25 °C. After removal of the solvent, water (50 mL) was added to the residue. The resulting suspension was extracted with *tert*-butyl methyl ether (50 mL × 4). The combined organic layer was dried over Na₂SO₄. The resulting solution was concentrated under reduced pressure. The crude product was chromatographed on silica gel (eluent: hexane) to give (*E*)-1,3-diphenylpropene (**4a**) (1.46 g, 7.52 mmol, 75%) as colorless oil.

The reaction of the complex 1 with sodium tetraphenylborate (3a) in a NMR tube (Scheme 3b)

In a glove box, the complex **1** (1.0 mg, 2.1×10^{-3} mmol), NaBPh₄ (0.7 mg, 2.1×10^{-3} mmol), hexamethylbenzene as an internal standard were placed in a valved NMR tube. THF-d₈ (0.75 mL) was added to the NMR tube. After closed the valve, the NMR tube was taken out from the glove box. The NMR tube was heated in an oil bath at 80 °C for 24 h. After being cooled to 25 °C, the yield of **9** was determined by the ¹H NMR analysis to be 96%.

Isolation of Phenyl-[2-(9-phenyl-1,10-phenanthrolin-2-yl)phenyl]palladium (9)

Under a nitrogen atmosphere, NaBPh₄ (36.0 mg, 0.106 mmol) was added to a degassed solution of phenyl-[2-(9-phenyl-1,10-phenanthrolin-2-yl)phenyl]palladium (50.0 mg, 0.106 mmol) in THF (35 mL). The reaction mixture was refluxed for 38 h and allowed to cool to 25 °C. After removal of the solvent, the residue was washed with THF (5 mL) and dried in *vacuo*. The crude product was dissolved in CH₂Cl₂ (10 mL) and filtered through Celite. After concentration of the filtrate, the

resulting residue was washed with pentane (10 mL) to give phenyl-[2-(9-phenyl-1,10-phenanthrolin-2-yl)phenyl]palladium (32.7 mg, 0.063 mmol, 59%) as orange solids. Mp. 160-164 °C (decomp.). ¹H-NMR (396 MHz, CD₂Cl₂) δ 8.50 (d, *J* = 8.7 Hz, 1H, 4-H), 8.43 (d, *J* = 8.7 Hz, 1H, 7-H), 8.11 (d, *J* = 8.3 Hz, 1H, 8-H), 7.91 (d, *J* = 8.7 Hz, 1H, 5-H or 6-H), 7.88 (d, *J* = 8.7 Hz, 1H, 5-H or 6-H), 7.86 (d, *J* = 8.3 Hz, 1H, 3-H), 7.62 (dd, *J* = 1.8, 7.6 Hz, 1H, *o*'-H), 7.52–7.50 (m, 2H, *o*-H), 7.18–7.15 (m, 2H, *o*"-H), 6.98 (dd, *J* = 1.8, 7.6 Hz, 1H, *m*"'-H), 6.92–6.87 (m, 2H, *p*-H and *p*'-H), 6.84–6.80 (m, 3H, *m*-H and *m*'-H), 6.53–6.50 (m, 3H, *m*"-H and *p*"-H). ¹³C-NMR (100 MHz, CD₂Cl₂) δ 167.68, 161.24, 156.03, 152.58, 148.84, 139.41, 138.00, 137.75, 137.51, 137.22, 130.66, 130.28, 229.73, 129.28, 129.17, 128.51, 127.90, 127.76, 127.19, 126.31, 126.22, 126.18, 124.71, 123.93,

121.31, 118.74. IR (ATR): 3060, 3037, 1620, 1587, 1547, 1509, 1498, 1487, 1463, 1418, 1273, 1149, 1019, 850, 828, 774, 750, 724, 690, 656, 643, 596 cm⁻¹. MALDI-TOF-MS m/z 514 ([M]⁺). Anal. Calcd for $C_{30}H_{20}N_2Pd \cdot 0.5CH_2Cl_2$: C, 68.19: H, 3.87; N, 5.27%. Found: C, 68.29: H, 3.98: N, 5.31%.

The reaction of the complex 9 with cinnamyl acetate (2a) in a NMR tube (Scheme 3c)

In a glove box, complex **9** (1.1 mg, 2.1×10^{-3} mmol) and hexamethylbenzene as an internal standard were placed in a valved NMR tube. THF-d8 (0.75 mL) and a solution of cinnamyl acetate in THF-d₈ (20 µL (concentration is 3.7 mg/200 µL), 2.1×10^{-3} mmol) were added to the NMR tube. After closed the valve, the NMR tube was taken out from the glove box. The NMR tube was heated in an oil bath at 80 °C for 24 h. After being cooled to 25 °C, the yield of **4aa** was determined by the ¹H NMR analysis to be 57%.

The allylic arylation of cinnamyl acetate 2a with sodium tetraphenylborate 3a using 9 (Scheme 3d)

Complex **9** (5.2 mg, 0.01 mmol) was dissolved in methanol (100 mL) to give a stock solution. Under a nitrogen atmosphere, the stock solution (0.1 mL, 1.00×10^{-5} mmol), methanol (9.9 mL), and NaBPh₄ (6.84 g, 20.0 mmol) were added to a reaction vessel. The resulting solution was degassed via three freeze-pump-thaw cycles. Cinnamyl acetate (1.76 g, 10.0 mmol) was added to the solution. The reaction mixture was stirred at 50 °C for 24 h and allowed to cool to 25 °C. After removal of the solvent, water (50 mL) was added to the residue. The resulting suspension was extracted with *tert*-butyl methyl ether (50 mL × 4). The combined organic layer was dried over Na₂SO₄. The resulting solution was concentrated under reduced pressure. The crude product was chromatographed on silica gel (eluent: hexane) to give (*E*)-1,3-diphenylpropene (**4aa**) (1.81 g, 9.32 mmol, 93%) as colorless oil.

References

- Pan, D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J.; Liu, Q.; Zhang, L.; Jiao, N. Angew. Chem. Int. Ed. 2008, 47, 4729-4732.
- (2) Su, Y.; Jiao, N. Org. Lett. 2009, 11, 2980-2983.
- (3) Pilarski, L. T.; Selander, N.; Böse, D.; Szabó, K. J. Org. Lett. 2009, 11, 5518-5521.
- (4) Tu, W.; Zhou, L.; Yin, R.; Lv, X.; Flowers II, R. A.; Choquette, K. A.; Liu, H.; Niu, Q.; Wang, X. Chem. Commun. 2012, 48, 11026-11028.
- (5) Pontikis, R.; Benhida, R.; Aubertin, A.-M.; Grierson, D. S.; Monneret, C. J. Med. Chem. 1997, 40, 1845-1854.
- (6) Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.; Hayashi, T. J. Am. Chem. Soc. 2009, 131, 13588-13589.
- (7) Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc. 2012, 134, 3190-3198.
- (8) Bushby, R. J.; Ferber, G. J. J. Chem. Soc., Perkin Trans 2 1976, 1683-1688.
- (9) Mino, T.; Kogure, T.; Abe, T.; Koizumi, T.; Fujita, T.; Sakamoto, M. Eur. J. Org. Chem. 2013, 1501-1505.
- (10) Yang, H.; Yan, H.; Sun. P.; Zhu, Y.; Lu, L. Liu, D.; Rong, G.; Mao, J. Green Chem. 2013, 15, 976-981.
- (11) Sekine, M.; Ilies, L.; Nakamura, E. Org. Lett. 2013, 15, 714-717.
- (12) Barluenga, J.; Florentino, L.; Aznar, F.; Valdés, C. Org. Lett. 2013, 13, 510-513.
- (13) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384-3388.
- (14) Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 879-889.
- (15) Jakobsen, S.; Tilset, M. Tetrahedron Lett. 2011, 52, 3072-3074.
- (16) Bouyssi, D.; Gerusz, V.; Balme, G. Eur. J. Org. Chem. 2002, 2445-2448.
- (17) Ragaini, F.; Gasperini, M.; Cenini, S.; Arnera, L.; Caselli, A.; Macchi, P.; Casati, N. *Chem. Eur. J.* **2009**, *15*, 8064-8077.

Chloro-[2-(9-phenyl-1,10-phenanthrolin-2-yl)phenyl]palladium (1).

1,1'-[(1*E*)-prop-1-ene-1,3-diyl]dibenzene (4aa)

S13

(*E*)-1-(4-Methoxyphenyl)-3-phenylpropene (4ba)

(*E*)-1-(4-Methylphenyl)-3-phenylpropene (4ca)

(*E*)-1-(4-Methylphenyl)-3-phenylpropene (4da)

(*E*)-1-(4-Phenylphenyl)-3-phenylpropene (4ea)

(*E*)-1-(4-Nitrophenyl)-3-phenylpropene (4ga)

(*E*)-1-(4-Acetylphenyl)-3-phenylpropene (4ha)

(E)-1-(2-Naphthyl)-3-phenylpropene (4ja)

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

PPN

9.0

(*E*)-1-(2-Methoxyphenyl)-3-phenylpropene (4ka)

(*E*)-1-(2-Methylphenyl)-3-phenylpropene (4la)

S24

(*E*)-3-(4-Methylphenyl)-1-phenylpropene (4ab)

(*E*)-3-(4-Chlorophenyl)-1-phenylpropene (4ac)

(*E*)-3-(4-Fluorophenyl)-1-phenylpropene (4ad)

S27

(E)-1-Phenyl-2-hexene (4ma)

2-Methyl-4-phenyl-2-butene (4na)

3-Phenylcyclohexene (40a)

(Z)-3,7-Dimethyl-1-phenyl-2,6-octadiene (4pa)

(*E*)-3,7-Dimethyl-1-phenyl-2,6-octadiene (4qa)

(E)-1,3-Diphenyl-1-butene (4ra)

(E)-1,3-Diphenyl-1-heptene (4sa)

(*E*)-1-(2-Thiophene)-3-phenylpropene (4ta)

200 190 180 170 160 150 140 130 120 110 100 90 80

70 60

19,1 c CDCL3 77.00 ppm 0,50 Hz 60

٠ś

PPM

(E)-1-(3-Pyridine)-3-phenylpropene (4ua)

Dichloro-(2-phenyl-1,10-phenanthroline)palladium (6)

S37

Phenyl-[2-(9-phenyl-1,10-phenanthrolin-2-yl)phenyl]palladium (9)