
Mon. Not. R. Astron. Soc. 000, 1–11 (2014) Printed 21 July 2014 (MN LATEX style file v2.2)

The tilt of the velocity ellipsoid in the Milky Way disk
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ABSTRACT
Accurate determination of the local dark matter density is important for understanding the na-
ture and distribution of dark matter in the universe. This requires that the local velocity distri-
bution is characterised correctly. Here, we present a kinematic study of 16,276 SDSS/SEGUE
G-type dwarf stars in the solar neighbourhood, with which we determine the shape of the ve-
locity ellipsoid in the meridional plane. We separate our G-dwarf stars based on their [Fe/H]
and [α/Fe] abundances and estimate the best-fitting Milky Way model independently for each
sub-sample using a maximum-likelihood method that accounts for possible contaminants.

We show that the different subpopulations yield consistent results only when we allow
the velocity ellipsoid in the disk to be tilted, demonstrating that the common assumption of
decoupled radial and vertical motions in the disk is incorrect. Further, we the find that the tilt
angle α of the velocity ellipsoid increases with height |z| from 5± 2 ◦ at 0.5 kpc to 14± 3 ◦ at
2.0 kpc, consistent with pointing toward the Galactic centre at an angle tan(α) ' |z|/R. We
also confirm earlier findings that the subpopulations behave almost isothermally both radially
and vertically, about 39 (20) km s−1for the chemically-young, metal-rich disk stars to about
60 km s−1(48 km s−1) for the chemically-old, metal-poor disk stars.

We conclude that the coupling between radial and vertical motion captured in the velocity
ellipsoid tilt cannot be ignored when considering dynamical models of the solar neighbour-
hood. In a subsequent paper, we will develop a new modelling scheme informed by these
results and make an improved determination of the local dark matter density.

Key words: galaxies: velocity dispersion – galaxies: dark matter – galaxies: kinematics and
dynamics – galaxies: velocity ellipsoid

1 INTRODUCTION

The concordance cosmological model is based on collision-
less dark matter particles, of yet unknown nature, which cannot be
detected directly, but which interact through gravity. Various direct
detection experiments aim to uncover the nature of these particles,
in particular their mass, but, since the signal will depend strongly
on their distribution in the Solar neighbourhood, the local dark mat-
ter density needs to be measured independently and accurately (e.g.
Peter 2011). Such a local measurement is also essential to constrain
the overall dark matter distribution in the Milky Way as good mea-
surements of the Galactic rotation curve exist but these do not al-
low the separation of luminous and dark matter due to the so-called
disk-halo degeneracy (e.g. Dutton et al. 2011).

The traditional approach adopted to measure the local dark
matter density is through the vertical force, i.e., the derivative of
the gravitational potential away from the Galactic disk plane, in-
ferred from a population of stars with observed vertical number
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density profile and vertical velocity dispersion profile (e.g. Kui-
jken & Gilmore 1989). Recent surveys such as the Sloan Extension
for Galactic Understanding and Exploration (SEGUE; Yanny et al.
2009) make it possible to extract robust vertical density and disper-
sion profiles even for chemically different subpopulations, provid-
ing independent tracers of the same gravitational potential. How-
ever, even with many thousands of stars the uncertainties on the
dark matter density are still substantial and systematic differences
between studies remain even if similar data sets are being used (e.g.
Zhang et al. 2013).

Most investigations of the local dark matter density to date
have used the vertical Jeans equation, which relates the gravita-
tional potential directly to observable vertical profiles without hav-
ing to specify the phase-space distribution function of the tracers.
Unfortunately, the inference of the vertical profiles is often based
on taking statistical moments of discrete data within a certain bin,
which not only implies loss of information, but is also very sen-
sitive to interlopers. Moreover, the motions of stars in the vertical
and radial directions are typically coupled, however often a simple
approximation is adopted or the coupling is neglected altogether.

This radial-vertical coupling is reflected in the tilt of the ve-
locity dispersion ellipsoid with respect to the Galactic mid-plane.
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In turn, this tilt is related to the shape of the gravitational potential,
but also depends on the phase-space distribution function. Only in
the case of a Stäckel potential can the shape of the gravitational be
directly constrained from the tilt of the velocity ellipsoid (e.g. Bin-
ney & McMillan 2011). Even so, aside from measuring the local
dark matter density, the velocity ellipsoid is also important for con-
straining dynamical heating processes (e.g. Fuchs & Wielen 1987),
including those that might have led to the thickened Milky Way
disk (e.g. Liu & van de Ven 2012; Bovy et al. 2012a). The veloc-
ity ellipsoid also enters directly into the asymmetric drift correc-
tion of the azimuthal to circular velocity (Dehnen & Binney 1998).
Finally, deviations from axisymmetry due to, for example, spiral
structure are encoded in the velocity ellipsoid components (Binney
& Tremaine 2008).

Previous measurements of the local velocity ellipsoid, and in
particular its tilt, have been either over a broad range in height (e.g.
Siebert et al. 2008; Carollo et al. 2010; Casetti-Dinescu et al. 2011)
and/or with very large error bars (e.g. Smith et al. 2012). These lim-
itations are partly driven by the limited availability of large samples
of stars with reliable photometric and kinematic measurements. For
this study, we use a large and well-characterized sample of SEGUE
G-type dwarf stars. The method used to extract the velocity mo-
ments also plays an important role, so we introduce a discrete like-
lihood method that explicitly accounts for interlopers and uses a
Bayesian inference of the velocity moments.

We describe the G-dwarf sample and kinematic extraction
method in Section 2 and construct vertical Jeans models for chemi-
cally different subpopulations in Section 3. Even though they are
tracers of the same gravitational potential, the inferred value of
local dark matter density varies substantially, which we believe
mainly to be a consequence of the invalid assumption of decoupled
vertical and radial motion. In Section 4, we indeed confirm that the
tilt of the velocity ellipsoid for each subpopulation is non-zero and
similarly pointing toward the Galactic center. In Section 5, we dis-
cuss how this strongly-improved measurement of the velocity tilt
provides important constraints on dynamical models of the Milky
Way disk. In the Appendix A, we show that our measurements in
the meridional (R, z)-plane under the assumption of axisymmetry
are affected neither by motion in the azimuthal direction nor by a
slight non-zero vertical and radial mean velocities.

Throughout we adopt 8 kpc for the Sun’s distance to the
Galactic center, and 220 km s−1 for the circular velocity of the lo-
cal standard of rest (LSR) (Kerr & Lynden-Bell 1986). We adopt for
the Sun’s peculiar velocity relative to the LSR the common values
of (10.00, 5.25, 7.17) km s−1 in the radial, azimuthal and vertical
direction, respectively (Dehnen & Binney 1998).

2 LOCAL STELLAR KINEMATICS

We briefly introduce the sample of G-type dwarf stars and kine-
matic extraction algorithms we use to probe the dynamics in a local
volume of about 1 kpc in radius around the Sun and from about 0.5
to 2.5 kpc away from the mid-plane.

2.1 SEGUE G-type dwarf stars

The data used in this paper are the same as the SEGUE G-type
dwarf data used in Liu & van de Ven (2012) to which we refer
for further details. In brief, of the wide variety of stars covered by
SEGUE (Yanny et al. 2009), we focus on the G-type dwarf stars
as they are abundant and have been targeted for spectroscopy with

minimal selection biases. Among possible stellar tracers of the disk
dynamics, G dwarfs are the brightest with main-sequence life-times
long enough to validate the assumption of dynamical equilibrium.
Moreover, their rich metal-line spectrum enables reliable line-
of-sight velocities, metallicities [Fe/H], and abundances [α/Fe],
with typical uncertainties for S/N>15 of 2–5 km s−1, 0.2 dex, and
0.1 dex respectively (Lee et al. 2011). We augment our kinematic
data with proper motions from the USNO-B survey, which are good
to 1–5 mas yr−1, while distances based on the photometric colour-
metallicity-absolute-magnitude relation of Ivezić et al. (2008) have
relative errors of ∼ 10%.

The line-of-sight velocities and proper motions of the stars are
transformed into the three velocity components along cylindrical
coordinates, namely radial velocity vR, azimuthal or rotational ve-
locity vφ, and vertical velocity vz . Taking into account the errors in
line-of-sight velocities, proper motions and distances, the resulting
uncertainties in the velocity components in cylindrical coordinates
are on average 10 km s−1. At the furthest distances of ∼3 kpc, the
velocity error can increase to 40 km s−1, but no biases are intro-
duced as the velocity error remains smaller than the intrinsic veloc-
ity dispersion of the stars.

We focus our analysis on vertical gradients, so that to avoid
biases due to radial gradients we concentrate on the Solar cylinder
with stars between 7 and 9 kpc from the Galactic center. In the end,
the sample then consists of a total of 16,276 stars between 0.5 and
2.5 kpc away from the mid-plane.

2.2 Velocity ellipsoid in the meridional plane

We treat the Milky Way disk as an axisymmetric system in a steady
state, so that the potential Φ (R, z) and the distribution function
do not vary with azimuth φ or time. From Jeans (1915), we then
know that the distribution function depends only on isolating inte-
grals of the motion: energy E = 1

2

(
v2R + v2φ + v2z

)
+ Φ (R, z),

angular momentum Lz = Rvφ, and a third integral I3 whose form
is not generally known. However, in the absence of resonances,
I3 is invariant under the change (vR, vz) → (−vR,−vz), from
which it follows that the mean velocity is in the azimuthal direc-
tion (vR = vz = 0) and the velocity ellipsoid is aligned with the
rotation direction (vRvφ = vφvz = 0).

The remaining second velocity moment vRvz then quantifies
the coupling between the radial and vertical motions, and, in com-
bination with the radial and vertical velocity dispersion, σR and σz
yields the tilt of the velocity ellipsoid. We extract the latter velocity
moments from the observed radial and vertical velocities, vR and
vz , but do not need to consider the observed azimuthal velocities
vφ, if the Milky Way disk is axisymmetric locally. In Appendix A,
we show that excluding or including the azimuthal velocities yields
consistent results for σR, σz and vRvz. Thus, we exclude the az-
imuthal velocities from the remainder of the current analysis; this
is particularly convenient because it is well known that the distri-
bution in vφ is non-Gaussian.

The distribution in vR and vz , on the other hand, is well de-
scribed by a bi-variate Gaussian. However, vR and vz are observed
to be mildly non-zero especially closer to the mid-plane (Williams
et al. 2013), in line with deviations from axisymmetry due to spiral
structures (Faure et al. 2014), Even so, in Appendix A, we show
that, at the heights 0.5 < |z|/kpc < 2.5 probed by the G dwarfs,
the deviations are so small that they do not affect the inferred sec-
ond velocity moments. So to decrease the statistical uncertainty on
particular vRvz and, hence, on the subsequent tilt angle measure-
ment, we set vR = vz = 0 for the remainder of the paper.

c© 2014 RAS, MNRAS 000, 1–11



The tilt of the velocity ellipsoid in the Milky Way disk 3

The only non-zero velocity moments are, thus, second mo-
ments σR, σz , vRvz. To determine these velocity moments for a
subset of stars (typically selected, in this paper, to have similar
heights, metallicities and α-element abundances), we use a max-
imum likelihood approach, which we discuss below.

2.3 Extracting velocity moments

Consider a dataset of N stars where the ith star has velocity vector
vi and uncertainty matrix ∆i. Now suppose that the velocity dis-
tribution in the disk may be modelled as a multivariate Gaussian j
of rank n with mean µj and variance Σj . We wish to know what is
the likelihood that star i came from the disk distribution predicted
by Gaussian j, which can be written as

Ldisk
ij = L

(
vi
∣∣µj ,Σj ,∆i

)
=

1

(2π)
n
2
∣∣Σ′j∣∣ 12 exp

(
−1

2

(
vi − µj

)T
Σ′−1
j

(
vi − µj

))
.

(1)

where Σ′j = Σj + ∆2
i results from the convolution of the intrinsic

variance of the Gaussian and the observed uncertainties. Here, µj
and Σj are unknown parameters that we wish to determine.

Our dataset is also contaminated by Milky Way halo stars,
which we assume to have a Gaussian velocity distribution with a
mean of zero and variance Σhalo. We also need to consider the
likelihood of observing star i given the halo population, which we
write as

Lhalo
i = L (vi |Σhalo,∆i )

=
1

(2π)
n
2 |Σ′halo|

1
2

exp

(
−1

2
vTi Σ

′−1
halovi

)
. (2)

where Σ′halo = Σhalo + ∆2
i results from the convolution of the

variance of the halo distribution and the observed uncertainties.
Schönrich et al. (2011) measured dispersions σR,halo = 157 ±
10 km s−1and σz,halo = 75± 8 km s−1, where σ2

R,halo and σ2
z,halo

are the diagonal elements of Σhalo. We adopt these values for our
analysis and assume that the off-diagonal elements are zero.

If we assume that a (small) fraction εj of the stars are halo stars
– and so fraction (1− εj) are disk stars – then the total likelihood
of star i is given by

Lij = (1− εj)Ldisk
ij + εjLhalo

i (3)

The halo fraction εj will be another free parameter in our models.
The total likelihood of model j is the product of the model likeli-
hoods for each star

Lj =
N∏
i=1

Lij . (4)

The best model is that which maximises Lj .
In general, our free parameters are µj , Σj and εj . However,

as we discussed in Section 2.2, we can assume that all compo-
nents of µj and a number of elements of Σj are zero. So, in
practice, we have only four free parameters for each model j: σR,
σz , vRvz and ε. In order to efficiently sample our parameter space
as we search for the best model, we use a Markov Chain Monte
Carlo (MCMC) analysis; we use the EMCEE package developed by
Foreman-Mackey et al. (2013), which is an implementation of the
affine-invariant MCMC ensemble sampler by Goodman & Weare
(2010). Our MCMC chains use 100 walkers and run for 600 steps.

We consider the first 500 steps as the burn-in phase that finds the
region of parameter space where the likelihood is highest. The fi-
nal 100 steps then constitute the post-burn phase that explores the
high-likelihood region.

Fig. 1 illustrates the output from an MCMC run on a typi-
cal subset of our kinematic data (around 500 stars). The left-hand
panels show the evolution and eventual convergence of the MCMC
chain. The coloured points show the values sampled by the walk-
ers at each step with the colours representing the likelihood of the
model (red high and blue low). The solid lines show the means
of the walker values and the dotted lines show the 1σ dispersions
of the walker values. All of the parameters converge tightly. The
right-hand panels show the post-burn parameter distributions. The
scatter plots show the two-dimensional distributions of the param-
eters, again with points coloured according to their likelihoods (red
high and blue low). The ellipses show the 1σ, 2σ and 3σ regions
of the covariance matrix for the post-burn parameter distribution,
projected into each 2D plane. The crosses mark the means of the
parameter distributions. The histograms show the one-dimensional
distributions of the parameters; the solid black lines represent gaus-
sians with the same mean and standard deviation. The histogram
panels also give the one-dimensional mean and uncertainty for each
of the parameters.

3 VERTICAL JEANS MODEL

We use dynamical models to link observable quantities (such as
stellar number density ν and velocity dispersion σ) with quantities
that we wish to know but are not able to measure directly (such as
mass density ρ and potential Φ).

Different stellar populations will have different spatial distri-
butions (ν) and different kinematics (σ) due to differences in their
ages and in their origins. Nevertheless, they feel the same under-
lying density that gives rise to the same underlying potential. So,
in theory, if we use the observed kinematics of a number of popu-
lations independently to find the best-fit density distribution in the
solar neighbourhood, all populations should return the same an-
swer. However, in practice, we will only obtain consistent results
from the different populations if the assumptions we make in the
modelling are correct.

Our goal here is to assess the validity of the assumption that
the radial and vertical motions of stars in the Milky Way disk are
decoupled. As such, we first select two sub-samples of G-dwarf
stars based on their [Fe/H] metallicities and [α/Fe] abundances.
Then we model the local mass density independently for the two
sub-samples, assuming that the vertical and radial motions are de-
coupled, and test the agreement of the two best-fit models.

3.1 Gravitational potential

The total mass density in the solar neighbourhood has contributions
from both luminous and dark matter. Jurić et al. (2008) calculated
photometric parallax distances for ∼48 million stars selected from
the SDSS to determine the 3-dimensional number density distribu-
tion of the Milky Way. Using a sub-sample of nearby M-dwarfs,
they found that the solar neighbourhood mass density is best de-
scribed as two exponential disks: a thin disk with density ρthin and
a thick disk with density ρthick, where the fraction of thick disk
stars relative to thin disk stars in the plane at the solar radius R�
is f = 0.12. The thin disk component has a vertical scale height
hthin = 300 pc and the thick disk component has a vertical scale
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Figure 1. Left: Parameter evolution in a typical MCMC run. The points show the values visited by the walkers at each step and are coloured by likelihood from
red (high) to blue (low). The solid lines show the means at each step and the dotted lines show the dispersions. All parameters converge quickly and tightly.
Right: Post-burn parameter distributions from a typical MCMC run. The scatter plots show the projected two-dimensional distributions of the parameters, with
the points coloured by likelihood (red high and blue low). The crosses indicate mean values and the ellipses encompass the 1–3σ regions. The histograms
show the projected one-dimensional parameter distributions with lines representing gaussians with the same mean and standard deviation. We also give the
one-dimensional mean and uncertainty for each of the parameters. We do not see significant correlations between the parameters.

height hthick = 900 pc. We adopt this as the stellar density dis-
tribution for our analysis1. Dark matter also makes a contribution
ρdm to the local density distribution; as the radial extent of our data
is small and the vertical extent is less than 2 kpc, we can assume
that this is constant throughout the region of interest. Thus the total
mass density in the solar neighbourhood is given by

ρ� (z) = ρ (R�, z) = ρthin (R�, z) + ρthick (R�, z) + ρdm (5)

where the thin and thick disk densities are given by

ρdisk (R�, z) = ρdisk (R�, 0) exp

(
− z

hdisk

)
(6)

and where ρdisk (R�, 0) is the density of the disk component in the
plane at the solar radius.

Recalling that we know the local normalisation fraction f of
the thick disk relative to the thin disk in the plane

f =
ρthick (R�, 0)

ρthin (R�, 0)
, (7)

then

ρ� (z) = ρ0

[
exp

(
− z

hthin

)
+ f exp

(
− z

hthick

)]
+ ρdm (8)

where ρ0 = ρthin (R�, 0).
The potential generated by this density distribution can then

be calculated via Poisson’s equation

∇2Φ = 4πGρ�. (9)

We are not able to measure Φ directly. Instead, we use dynamical
models to predict the observable quantities generated in a given po-
tential, then we compare the values we actually observe with those
we predict. For our present study, we use the Jeans equations to
carry out the dynamical modelling.

1 Note, we assume that all of our stars are at the solar radius, so we neglect
any radial variations in disk density.

Under the assumption of axial symmetry, the vertical first mo-
ment Jeans equation in cylindrical polars is

1

R

∂

∂R
(Rν vRvz) +

∂

∂z

(
ν σ2

z

)
+ ν

∂Φ

∂z
= 0. (10)

If we assume that the velocity ellipsoid is aligned with the
cylindrical coordinate system (and hence that radial and vertical
motions can be decoupled) then vRvz = 0. Our sample is restricted
to the solar neighbourhood and we assume that all stars are at the
solar radius R�. Hence, the vertical Jeans equation becomes

d

dz

(
ν σ2

z

)
+ ν

dΦ

dz
= 0. (11)

As we can see, we are actually interested in the first derivative of
the potential here, which we calculate from equations 8 and 9 as

dΦ

dz
(z) =4πGρ0

{
hthin

[
1− exp

(
− z

hthin

)]
+fhthick

[
1− exp

(
− z

hthick

)]}
+ 4πGρdmz.

(12)

Finally, we need the tracer number density ν and the verti-
cal velocity dispersion σz; both of which we are able to calculate
from observations. Note that different stellar populations may have
different number density profiles and different dispersion profiles
due to differences in their origins, however they all orbit within the
same potential. This point is key to our analysis. By applying these
models to multiple stellar populations independently, we can ob-
tain multiple independent estimates for the potential of the system.
If the assumptions we have made in the modelling are correct –
principally that the radial and vertical motions may be decoupled
– and equation 11 is a good representation of reality, then the esti-
mates of the potential should be in good agreement. However, if the
potential estimates we recover do not agree, then we can conclude
that our assumptions were incorrect.

c© 2014 RAS, MNRAS 000, 1–11
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Figure 2. Top: [α/Fe] abundances and [Fe/H] metallicities of 16,276 SDSS/SEGUE G-dwarf stars, binned in 0.025 dex by 0.0125 dex pixels. The pixel colours
represent the number counts, as shown by the colour bar. The selection boxes used to extract the two sub-populations we use in this section are shown as red
and blue rectangles. α-element and iron abundances can be used as a proxy for age; the sub-sample with high [α/Fe] and low [Fe/H] we call the α-young
population and the sub-sample with low [α/Fe] and high [Fe/H] we call the α-old population. Bottom left: The selection-function-corrected number density
profiles of the α-old sample (red) and α-young sample (blue). The solid lines are exponential fits with scale heights ζh indicated. Bottom right: Vertical
velocity dispersion as a function of height. The α-old sample (red) is best fit by a model with negligible dark matter (upper dashed line) and α-young sample
(blue) is best fit by a model including dark matter (lower solid line). To aid visual comparison of the models, the upper solid line (lower dashed line) shows the
best-fitting α-young (α-old) density model using the α-old (α-young) tracer density. As the populations orbit in the same underlying potential, they should
make consistent predictions about the local dark matter density. These models assume that the radial and vertical motions can be decoupled; the discrepancy
in the fits indicates that this assumption is incorrect.

3.2 Tracer populations

The top panel of Fig. 2 shows the [α/Fe] abundances and [Fe/H]
metallicities of the stars in our sample. The stars have been binned
into pixels of 0.025 dex by 0.0125 dex and the pixels coloured ac-
cording to the number of stars in that pixel as shown by the colour
bar. α-element and iron abundances are particularly useful as they
can be used as a proxy for age: stars towards the top-left of param-
eter space as plotted are older, in general, than the stars towards the
bottom-right (Loebman et al. 2011). In our sample, there are two
clear overdensities: the first occurs at high [α/Fe] and low [Fe/H],

representing an older population; the second occurs at high [Fe/H]
and low [α/Fe], representing a younger population.

We select two sub-samples centred on these overdensities: the
α-old sample contains stars with 0.3 < [α/Fe] and −1.2 < [Fe/H]
< −0.3; the α-young sample contains stars with [α/Fe] < 0.2 and
[Fe/H] > −0.5. These selection boxes are shown in the top panel
of Fig. 2, with the α-old selection shown in red and the α-young
selection shown in blue. For consistency, these colours will be used
in all plots comparing results from these two sub-samples.

We assume that the number density ν of stars in each tracer

c© 2014 RAS, MNRAS 000, 1–11



6 A. Büdenbender et al.

population follows an exponential profile such that

ν (z) = ν0 exp

(
− z

ζtr

)
(13)

where ν0 is the number density in the Galactic plane and the ζtr
is the scale height of the tracer population. To determine the scale-
height parameters for each subpopulation, we calculate the number
density of stars in a series of height bins and find the best-fitting
exponential profile. The number density is highly sensitive to the
selection function for SEGUE; to correct for this, we adopt the
approach described in Section 3.1.2 of Zhang et al. (2013). The
bottom left panel of Fig. 2 shows the logarithm of the corrected
number density as a function of vertical distance from the plane for
the two subpopulations. The α-old population is shown in red and
the α-young population is shown in blue. The data are shown as
symbols and the best-fit profiles are shown as solid lines. We find
a best-fitting scale height of ζtr = 253 ± 6 pc for the α-young
population and ζtr = 665± 11 pc for the α-old population.

3.3 Vertical velocity dispersion

Now that we have a functional form for the tracer density (equation
(13)), we can substitute this and the first derivative of the potential
from equation (12) into the vertical Jeans equation (11). Rearrang-
ing and performing the necessary integration, we obtain a predic-
tion for the vertical velocity dispersion as a function of height

σ2
z(z) =4πGρ0ζtr

{
hthin

[
1− hthin

hthin + ζtr
exp

(
− z

hthin

)]
+fhthick

[
1− hthick

hthick + ζtr
exp

(
− z

hthick

)]}
+ 4πGρdmζtr (z + ζtr) . (14)

There are two free parameters in this expression: the local thin disk
density in the plane ρ0 and the local dark matter density ρdm.

To obtain vertical velocity dispersion profiles for our data, we
bin the stars in height and use the maximum likelihood method de-
scribed in Section 2.3 to calculate the velocity dispersion in each
bin. We use 10 bins, with the bin boundaries selected so that each
bin contains an equal number of stars. This is done independently
for each of our sub-samples. Note that, although we are only in-
terested here in the vertical velocity dispersion σz , our maximum
likelihood analysis uses all of the data available and fits for the
radial dispersion, the covariance and the background fraction2 as
well. The bottom-right panel of Fig. 2 shows the vertical velocity
dispersion profiles for our two sub-samples; the α-young sample is
shown in blue and the α-old sample is shown in red.

We wish to compare the model predictions against our data
and determine which (ρ0, ρdm) values provide a best fit to the ob-
served profile for each sub-sample. We do this using a non-linear
least squares (NNLS) fit.

We find that the α-old sample is best described by a model
with central disk density ρ0 = 0.12 ± 0.011 M� pc−3and local
dark matter density ρdm = 0.0024±0.0021 M� pc−3. This model
is shown as dashed lines in the bottom-left panel of Fig. 2. The up-
per dashed line is plotted using the value of ζtr found to best fit the
α-old sample; as expected, this is is an excellent fit to the α-old

2 The estimated background fraction varies little from bin to bin and never
exceeds 2%.

dispersion profile. In order to show the ability of this model to re-
produce the α-young profile, the lower dashed line is plotted using
the α-young ζtr. This is a very poor fit to our α-young sample.

We find that the α-young sample is best described by a model
with central disk density ρ0 = 0.06 ± 0.011 M� pc−3and local
dark matter density ρdm = 0.014 ± 0.004 M� pc−3. This model
is shown as solid lines in the bottom-left panel of Fig. 2. Again, we
plot this model using both the α-old ζtr (upper solid line) and the
α-young ζtr (lower solid line). This model is an excellent approx-
imation to the α-young sample, but fails to reproduce the α-old
sample.

As we previously discussed, the α-old and α-young sub-
samples feel the same underlying densities. If our modelling ap-
proach is correct and the radial and vertical motions can be decou-
pled, then the best-fit models determined from the two sub-samples
should be consistent. However, we find that the dark matter den-
sities estimated by the two subpopulations are inconsistent: the α-
young population favours a model with small but non-negligible
local dark matter density, whereas the α-old population favours a
model that is consistent with no local dark matter. From this we
conclude that our assumption was incorrect and, thus, that the ra-
dial and vertical motions cannot be treated independently. This, in
turn, implies that the velocity ellipsoid is tilted.

4 VELOCITY ELLIPSOID TILT

The coupling between the radial and vertical motions is character-
ized by the tilt angle αtilt of the velocity ellipsoid defined as

tan(2αtilt) =
2 vRvz
σ2
R − σ2

z

. (15)

We expect σR and σz to be larger for an older population of stars
as a result of internal and external dynamical heating mechanisms
over time (e.g. Carlberg & Sellwood 1985), as well as due to the
possibility that the earliest stars were born dynamical hotter from a
more turbulent disk at higher redshift (e.g. Förster Schreiber et al.
2009). However, the tilt angle can still be and remain the same for
different populations, and, actually, if the (local) potential is of sep-
arable Stäckel form, has to be same. Hence, we now investigate
the velocity ellipsoid for different sub-populations independently
and find that, within the measurement uncertainties, the title angle
is the same. We then combine the sub-populations to arrive at a
measurement of the tilt angle, which we show to be consistent but
significantly more precise than previous determinations.

4.1 Velocity ellipsoid of different subpopulations

As shown in the top-left panel of Fig. 3, we divide our sample
of G dwarfs into seven subpopulations in the plane of [α/Fe] ver-
sus [Fe/H]; we use a Voronoi binning scheme (Cappellari & Copin
2003) to ensure comparable number of stars per subpopulation. We
then sub-divide each subpopulation further in height |z| away from
the mid-plane so that each bin contains approximately 500 stars.
This number of stars ensures that our MCMC discrete likelihood
fits (see Section 2.3) yield robust results per bin on the three veloc-
ity ellipsoid components σR, σz and vRvz . In particular, an accu-
rate measurement of the latter cross term is essential to infer the tilt
angle αtilt with a precision of . 4◦, indicated by the black error
bar in the top-right panel of Fig. 3.

The corresponding uncertainties on the radial and vertical dis-
persions, shown in the bottom panels of Fig. 3, are only . 2km s−1.
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Figure 3. Top left: The sub-division of SDSS/SEGUE G-dwarf stars in the Solar neighbourhood according to their measured [α/Fe] abundance and [Fe/H]
metallicity, with the number of stars per sub-population indicated. Position in the [α/Fe]-[Fe/H] plane can be used as a proxy for age; we reflect this in the
colours, such that from purple to red the stars become older, on average. Top right: Non-zero tilt angle of the velocity ellipsoid for each sub-population as
function of height away from the Galactic mid-plane. Bottom: Nearly flat radial and vertical velocity dispersion as function of height for each sub-population.
We provide the values of the above measurements in Table 1.

Although the dispersions change from bin to bin, within each
subpopulation the dispersion is nearly constant with |z|, consis-
tent with earlier findings of vertically near-isothermal behavior of
mono-abundance populations (e.g. Liu & van de Ven 2012; Bovy
et al. 2012b). For the α-older and more metal-poor stars with some-
what larger Voronoi bins, the remaining variation might be ascribed
to a change with height in the relative contribution of stars with
different kinematics. However, for the α-younger and more metal-
rich stars that are probing lower heights, a decrease in dispersion
toward the mid plane is expected, but the amplitude will depend on
the amount of dark matter (see also the solid and dashed curves in
Fig. 2) as well as the tilt of the velocity ellipsoid.

The top-right panel of Fig. 3 shows a clear non-zero tilt that
increases in magnitude away from the mid-plane. Since the α-older
stars are typically probing larger heights, the assumption of decou-
pled radial and vertical motion in the above vertical Jeans analysis
is likely to be more incorrect than for the α-younger stars. So the
inference that we made in Section 3.3 – that a gravitational po-
tential with a significant presence of dark matter is more plausible
– is perhaps too premature; though we note that the velocity el-
lipsoid tilt is also significantly non-zero for the α-younger stars,

which casts doubt on our conclusions for that sub-sample as well.
We have shown here that, within the measurement uncertainties, the
tilt angle at a given height is consistent between the different sub-
populations. Thus, henceforth, we shall consider the sample of G
dwarfs together to improve the statistical precision on the measured
velocity ellipsoid tilt.

4.2 Tilt angle

The left panel of Fig. 4 shows the tilt angle αtilt of the velocity
ellipsoid as function of height |z| away from the mid-plane at the
solar radius. The measurements are based on our MCMC discrete
likelihood fitting (see Section 2.3), with around 1000 G-type dwarf
stars per bin in height. The vertical error bars indicate the standard
deviation around the mean in the αtilt values of the MCMC chain
after convergence; the horizontal error bars indicate the size of the
bin in |z| around the median value (see also Table 2).

Over the full range in height probed from about 0.4 to 2.0 kpc,
the tilt angle is significantly non-zero and, thus, everywhere incon-
sistent with the assumption of decoupled radial and vertical motion.
Whereas the latter would imply cylindrical alignment of the veloc-
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Table 1. Measured velocity ellipsoid components as function of height above the Galactic plane for chemically different subpopulations from Fig. 3. The
seven subpopulations are ordered in this table top down from metal-rich and α-poor to metal-poor and α-rich. The stars within each population are subdivided
in different height ranges (with mean and spread indicated) after which the velocity ellipsoid components in the meridional plane are computed using the
likelihood approach described in Section 2.3; the mean and standard-deviation of the MCMC post-burn parameter distribution are given. The tilt angle αtilt

follows from combing the velocity ellipsoid components as in equation (15).

[Fe/H] [α/Fe] z σR σz 〈vRvz〉 αtilt ε

(dex) (dex) (pc) (km s−1) (km s−1) (km s−1) (deg) (%)

-0.07 0.11 448 ± 124 33.6 ± 1.3 19.0 ± 0.9 -44 ± 39 -3.2 ± 2.9 1.7 ± 0.8
565 ± 89 34.7 ± 1.5 19.0 ± 0.9 -62 ± 41 -4.2 ± 2.8 1.7 ± 0.8
667 ± 83 37.5 ± 1.6 19.8 ± 0.8 -82 ± 47 -4.6 ± 2.6 1.2 ± 0.7
766 ± 97 38.0 ± 1.5 20.3 ± 0.9 -101 ± 44 -5.5 ± 2.3 1.3 ± 0.7

966 ± 357 38.1 ± 1.3 21.4 ± 0.8 -114 ± 40 -6.4 ± 2.2 1.0 ± 0.5

-0.21 0.14 447 ± 125 41.2 ± 1.5 19.6 ± 0.9 -66 ± 49 -2.9 ± 2.1 1.0 ± 0.7
564 ± 83 40.8 ± 1.6 20.9 ± 0.9 -5 ± 49 -0.2 ± 2.3 0.9 ± 0.6
650 ± 71 40.9 ± 1.6 21.0 ± 0.8 36 ± 49 1.7 ± 2.3 0.5 ± 0.4
739 ± 73 43.3 ± 1.7 21.4 ± 1.0 -83 ± 56 -3.3 ± 2.2 1.0 ± 0.9
827 ± 78 43.5 ± 1.7 24.7 ± 1.0 -180 ± 59 -7.8 ± 2.5 0.5 ± 0.5

928 ± 104 43.1 ± 1.6 23.8 ± 1.0 -4 ± 59 -0.2 ± 2.6 0.8 ± 0.6
1082 ± 158 41.9 ± 1.7 24.8 ± 1.1 43 ± 61 2.2 ± 3.0 0.5 ± 0.4
1327 ± 394 42.2 ± 1.9 26.5 ± 1.1 -94 ± 64 -4.9 ± 3.3 0.4 ± 0.4

-0.36 0.18 499 ± 158 36.9 ± 1.5 22.6 ± 1.0 -42 ± 47 -2.8 ± 3.2 1.9 ± 1.0
637 ± 104 39.7 ± 1.5 24.6 ± 1.0 -103 ± 56 -6.0 ± 3.2 1.0 ± 0.7
762 ± 106 40.5 ± 1.5 24.4 ± 1.1 -131 ± 59 -7.0 ± 3.1 0.9 ± 0.7
893 ± 134 40.2 ± 1.6 23.6 ± 1.1 -91 ± 57 -4.9 ± 3.0 0.8 ± 0.7
1186 ± 489 41.2 ± 1.5 25.1 ± 0.9 -146 ± 56 -7.7 ± 2.8 3.1 ± 1.0

-0.35 0.28 684 ± 205 49.3 ± 1.9 34.0 ± 1.3 -69 ± 87 -3.1 ± 3.9 0.5 ± 0.5
893 ± 176 48.9 ± 1.9 32.6 ± 1.3 -67 ± 87 -2.9 ± 3.7 1.0 ± 0.8
1106 ± 195 50.8 ± 1.9 34.0 ± 1.4 -65 ± 96 -2.6 ± 3.9 0.9 ± 0.8
1360 ± 264 53.1 ± 2.2 35.1 ± 1.5 -192 ± 108 -6.8 ± 3.7 1.4 ± 1.1
1828 ± 640 49.2 ± 2.0 35.0 ± 1.3 -338 ± 96 -14.7 ± 3.6 1.4 ± 1.0

-0.51 0.29 558 ± 179 41.0 ± 1.8 31.1 ± 1.3 -128 ± 71 -9.8 ± 5.1 3.1 ± 1.5
735 ± 139 44.3 ± 2.0 32.8 ± 1.4 -118 ± 88 -7.5 ± 5.4 2.8 ± 1.6
896 ± 136 46.0 ± 1.9 36.4 ± 1.5 -14 ± 102 -1.1 ± 7.4 1.0 ± 0.9
1064 ± 149 47.1 ± 2.0 35.1 ± 1.5 -43 ± 92 -2.5 ± 5.2 2.6 ± 1.6
1254 ± 174 45.1 ± 2.1 33.7 ± 1.3 -126 ± 94 -7.8 ± 5.6 4.1 ± 1.7
1490 ± 232 45.2 ± 2.0 36.1 ± 1.5 -33 ± 104 -2.6 ± 8.0 1.8 ± 1.4
1969 ± 587 49.3 ± 2.1 39.1 ± 1.4 -249 ± 109 -14.5 ± 5.5 3.1 ± 2.0

-0.68 0.32 623 ± 223 53.3 v 1.9 39.7 ± 1.5 -252 ± 113 -10.9 ± 4.5 1.7 ± 1.4
822 ± 148 52.1 ± 2.0 40.4 ± 1.5 -224 ± 107 -11.3 ± 5.0 2.0 ± 1.3
984 ± 146 53.1 ± 2.0 42.1 ± 1.7 -187 ± 122 -9.9 ± 6.0 3.9 ± 2.0
1168 ± 156 53.4 ± 2.1 39.4 ± 1.6 -212 ± 111 -9.0 ± 4.5 3.1 ± 1.8
1366 ± 178 56.0 ± 2.3 41.2 ± 1.6 -293 ± 128 -11.1 ± 4.5 1.8 ± 1.5
1580 ± 201 55.4 ± 2.4 44.3 ± 1.6 -354 ± 144 -16.2 ± 5.5 2.2 ± 1.8
1854 ± 256 55.8 ± 2.5 43.6 ± 1.8 -243 ± 148 -10.9 ± 6.2 1.5 ± 1.4
2226 ± 449 56.6 ± 2.6 43.3 ± 1.7 -466 ± 151 -17.4 ± 4.6 1.7 ± 1.5

-0.89 0.34 813 ± 272 58.8 ± 2.2 45.8 ± 1.7 -197 ± 147 -8.1 ± 5.8 4.5 ± 2.6
1093 ± 230 58.9 ± 2.2 45.8 ± 1.7 -150 ± 150 -6.2 ± 6.0 4.6 ± 2.7
1379 ± 242 58.2 ± 2.2 48.1 ± 1.8 -391 ± 155 -18.0 ± 5.7 5.9 ± 3.5
1671 ± 251 59.2 ± 2.4 45.0 ± 1.7 -214 ± 156 -8.1 ± 5.6 2.1 ± 1.9
2095 ± 583 55.8 ± 2.2 46.7 ± 1.6 -567 ± 131 -25.2 ± 3.9 4.4 ± 3.3

ity ellipsoid, the measurements are instead consistent with a ve-
locity ellipsoid pointing toward the Galactic center: the solid curve
represents the best-fit of the relation

αtilt = (0.78± 0.20) arctan(|z|/R�) + (0.03± 0.03) (16)

which is close to the case of alignment with the spherical coordinate
system for which αtilt = arctan(|z|/R�).

In the case that the (local) potential is of separable Stäckel
form and axisymmetric, the velocity ellipsoid is aligned with the
prolate spheroidal coordinate system (e.g. de Zeeuw 1985). Ex-
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Figure 4. Tilt angle αtilt of the velocity ellipsoid as function of height |z| away from the mid-plane at the Solar radius. The filled circles are measurements
with uncertainties indicated by the vertical error bars based on ∼1000 G-dwarf stars per bin in height with the bin-size indicated by the horizontal error bars.
Left: The tilt angle is significantly non-zero everywhere with best-fit arctan relation as indicated by the solid curve that is close to spherical alignment. Right:
Our tilt angle measurements are consistent with previous determinations, but significantly improved. We provide the measurements of the tilt angle as well as
halo contamination fraction in Table 2.

Table 2. Measured tilt angle (in degrees) as function of height in pc from
Fig. 4. The last column shows halo contamination fraction (in %). Their
errors are estimated from the standard-deviations of the post-burn parameter
distributions.

z αtilt ε z αtilt ε

(pc) (deg) (%) (pc) (deg) (%)

425 -4.92 ± 1.83 2.8 ± 0.8 1064 -7.44 ± 2.31 3.0 ± 1.1
522 -4.21 ± 1.91 3.3 ± 0.9 1156 -9.50 ± 2.32 3.6 ± 1.1
589 -5.05 ± 1.92 4.1 ± 1.0 1263 -9.12 ± 2.84 4.7 ± 1.2
653 -4.23 ± 2.06 3.4 ± 0.9 1392 -9.26 ± 2.65 4.7 ± 1.4
715 -6.71 ± 2.12 2.5 ± 0.8 1546 -10.88 ± 3.21 3.7 ± 1.4
777 -7.93 ± 1.87 2.4 ± 0.8 1724 -9.67 ± 2.91 4.1 ± 1.3
841 -6.88 ± 2.23 3.2 ± 0.9 1949 -13.62 ± 2.69 5.7 ± 1.5

pressed in cylindrical coordinates, the tilt angle is then given by

tan(2αtilt) =
2Rz

R2 − z2 + ∆2
, (17)

where ∆ > 0 is the focus of the prolate spheroidal coordinate
system. The uncertainties in the tilt angle measurements allow for
∆/R� . 0.19(0.52) within 1σ (3σ) confidence limits, which in-
cludes the limiting case of spherical alignment with ∆ = 0.

4.3 Literature comparison

In the right-panel of Fig. 4, we compare our estimate of the tilt
angle as a function of distance from the mid-plane with estimates
from previous studies.

Siebert et al. (2008) used 580 red-clump stars below the
Galactic mid-plane from the second data release of the RAdial Ve-
locity Experiment (RAVE), to infer a tilt angle of 7.3 ± 1.8◦ for
heights 0.5 < |z|/kpc < 1.5. Casetti-Dinescu et al. (2011) com-
bined data from the fourth release of the Southern Proper Motion
Program and the same second release of RAVE for 1450 red-clump

stars above and below the Galatic mid-plane to find a tilt angle of
8.6 ± 1.8◦ for heights 0.7 < |z|/kpc < 2.0. After accounting for
the flip in sign of αtilt from below to above the Galactic mid-plane,
Fig. 4 shows that both measurements are consistent with our find-
ings especially when taking into account the large range in heights
around the mean |z| ∼ 1 kpc.

Over a similar range in heights 1 < |z|/kpc < 2, Carollo
et al. (2010) found, based on a sample of more than ten thou-
sand calibration stars from SDSS DR7, a consistent tilt angle of
7.1 ± 1.5◦ for stars with metallicity −0.8 < [Fe/H] < −0.6, but
a larger tilt angle of 10.3 ± 0.4◦ for more metal-poor stars with
−1.5 < [Fe/H]< −0.8. However, given that more metal-poor stars
are relatively more abundant at larger heights, it is likely that both
values are fully consistent with the > 10◦ change in tilt angle we
find over this large range in height. Smith et al. (2012) also used
SDSS DR7 data, but restricted to Stripe 82, to exploit the high-
precision photometry and proper motions. They measured the tilt
angle in four bins in the height range 0.5 < |z|/kpc < 1.7 for
stars with metallicity [Fe/H] < −0.6 and more metal-poor stars
with −0.8 < [Fe/H] < −0.5, and concluded that, despite larger
uncertainties, the tilt angles are consistent with spherical alignment
of the velocity ellipsoid; the few measurements that appear at larger
(negative) tilt angles they believe to be an artefact.

Recently, Binney et al. (2014) used > 400, 000 stars from the
fourth data release of RAVE to infer, under the assumed tilt angle
variation αtilt ∝ arctan(|z|/R�), a proportionality constant of
∼ 0.8 except for hot dwarfs with ∼ 0.2. The former gradient is
consistent with our measurements in Fig. 4 and the corresponding
best-fit relation given in equation (16), but the hot-dwarfs gradient
appears too shallow, although a more quantitive comparison is un-
fortunately not possible due to missing uncertainties on the inferred
gradients.
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5 DISCUSSION AND CONCLUSION

In this paper, we have accurately measured the velocity ellip-
soid of the Milky Way disk near the Sun. To do this, we used a
well-characterized sample of >16,000 G-type dwarf stars from the
SEGUE survey and fit their discrete kinematic data using a like-
lihood method that accounts for halo star contaminants. In com-
bination with a Markov Chain Monte Carlo (MCMC) sampling,
we have robustly measured the velocity ellipsoid components as
function of height away from the Galactic mid-plane, even for
chemically-distinct subpopulations.

As these subpopulations are tracers of the same underlying
gravitational potential, fitting Jeans models to the vertical den-
sity and dispersion profiles for each subpopulation independently
should yield the same constraint on the local dark matter den-
sity. Instead, we found large variations: metal-rich, low-α-abundant
stars require a significant amount of local dark matter density, while
metal-poor, high-α-abundant stars do not need any dark matter.
As the latter stars are relatively more abundant at larger vertical
heights, we believe this is the consequence of a coupling between
vertical and radial motions that becomes stronger with height. In
turn, this should be detectable as an increase in the tilt angle of the
velocity ellipsoid with height.

Next, we measured the velocity ellipsoid components in the
meridional plane as function of height, for seven chemically-
distinct subpopulations. We found radial and vertical dispersions,
σR and σz , that are approximately constant with height, consistent
with the isothermally profiles found in earlier studies (e.g. Liu &
van de Ven 2012; Bovy et al. 2012b). Between the subpopulations,
the amplitudes of both σR and σz increase when the stars are less
metal-rich and more α-abundant, in line with the age-velocity re-
lation observed in the Solar neighborhood (e.g. Casagrande et al.
2011). The cross term vRvz together with σR and σz yields a tilt
angle of the velocity ellipsoid that is clearly non-zero and its am-
plitude indeed increasing with height.

As the tilt angle measurements between the subpopulations
are fully consistent within the error bars, we were able to decrease
the statistical uncertainties by combining all G dwarfs. This yields
a tilt angle as function of height that is consistent with previous
determinations, but significantly improved. The resulting measure-
ments given in Table 2 are very well fitted by the the relation
αtilt = (0.78± 0.20) arctan(|z|/R�) + (0.03± 0.03), which is
close to alignment with the spherical coordinate system and hence
a velocity ellipsoid pointing to the Galactic center.

In case of a Stäckel potential, the tilt of the velocity ellipsoid
is directly coupled to the shape of the gravitational potential and
thus must be the same for any subpopulation. In case of oblate ax-
isymmetry the velocity ellipsoid is then aligned with the prolate
spheroidal coordinate system. The resulting expression for the tilt
angle (eq. 17) can describe the tilt angle measurements as long as
the focus of the latter coordinate systems is significantly smaller
than the solar radius. Even if the Stäckel potential is only a good
approximation locally, this brings a convenient, and often fully an-
alytical, expression of dynamical aspects that otherwise, even nu-
merically, are very hard to achieve. One such example is the use
of a local Stäckel approximation to infer the integral of motions or
actions (Binney 2012).

In a forthcoming paper, we obtain a solution of the axisym-
metric Jeans equations along curvilinear coordinates that allows us
to construct in a computationally efficient way models that allow
for a non-zero tilt of the velocity ellipsoid. In this way, we can
overcome the assumption of decoupled motion in the vertical Jeans

models, while still being able to do a discrete likelihood fit with
MCMC parameter inference, even for many thousands of stars at
the same time. Among other benefits, this will enable a much more
accurate measurement of the local dark matter density, especially
with upcoming data from Gaia and spectroscopic follow-up surveys
such as Gaia-ESO (Gilmore et al. 2012) and 4MOST (de Jong et al.
2012).
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APPENDIX A: EFFECT OF NON-AXISYMMETRY ON
TILT ANGLE

As described in Section 2.2, the tilt of the velocity ellipsoid is in-
dependent of the azimuthal velocity in case of axisymmetry. In the
bottom panels of Fig. A1, we show that excluding or including vφ
yields consistent results for the velocity ellipsoid components in the
meridional plane, σR, σz and vRvz, that make up the title angle. For
an α-old (red) and an α-young (blue) sub-population selected as in-
dicated in the top-left panel, the open circles adopt a multivariate
Gaussian of rank 2 in the likelihood fitting described in Section 2.3,
while the filled squares include the azimuthal velocities in the fit by
adopting a multivariate Gaussian of rank 3. The inferred values are
nearly indistinguishable, so that including vφ is not needed and ac-
tually and would lead to slightly larger uncertainties as well as the
complication that the distribution in vφ is typically non-Gaussian.
Even so, the inferred azimuthal mean velocity vφ and velocity dis-
persion σφ, shown in the top-middle and top-right panel, are as ex-
pected for a dynamical warmer α-old sub-population with vφ/σφ
smaller than an dynamically colder α-younger sub-population.

Restricting to the meridional plane, the mean radial and verti-
cal motion are zero in case of axisymmetry and hence should not
effect the tilt angle. In Fig. A2, we show that even though vR and vz
are observed to be mildly non-zero there is no significant effect on
the velocity ellipsoid components and corresponding tilt angle. For
the same α-old (red) and an α-young (blue) sub-population as in
Fig. A1, the open circles show the latter quantities measured in case
we set vR = vz = 0, while in case of the filled squares the means of
the bivariate Gaussians are free parameters. The measured velocity
ellipsoid components and corresponding tilt angle are again nearly
indistinguishable, so that the means of the bivariate Gaussians can
be safely set to zero; the number of free parameters are reduced, so
that the statistical uncertainty on particular vRvz and thus also the
tilt angle decrease. When left free, both vR and vz show small but
significant deviations of a few km s−1 from zero, consistent with
earlier findings (e.g. Williams et al. 2013) and in line with devia-
tions from axisymmetry due to spiral structures (Faure et al. 2014).

This paper has been typeset from a TEX/ LATEX file prepared by the
author.
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Figure A1. Top left: [α/Fe] abundances and [Fe/H] metallicities of the G-dwarf stars, identical to Fig. 2. The red and blue boxes show the selections for the
α-old and α-young subpopulations, respectively. These same colours are used in all other panels. Top middle and right: Azimuthal mean velocity and velocity
dispersion as function of height |z| away from the mid-plane at the Solar radius. Bottom row: Radial and vertical velocity dispersion and their correlated
second velocity moment for the two sub-populations. The open symbols show the results for the multivariate Gaussian velocity distribution of rank 2, while
the filled symbols show the corresponding results of a multivariate Gaussian of rank 3.
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Figure A2. Dynamical profiles for the α-old (red) and α-young (blue) as a function of distance from the mid-plane at the solar radius. Top left: mean
radial velocity. Top middle: mean vertical velocity. Top right: tilt angle of the velocity ellipsoid. Bottom left: radial velocity dispersion. Bottom middle:
vertical velocity dispersion. Bottom right: correlated second velocity moment. In the latter four panels, the open symbols show the case for which we assume
vR = vz = 0 and the filled symbols show the case where vR and vz are free parameters in the likelihood function (equation 1).
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