ABSTRACT

It is increasingly recognized that stress has negative effects on growing numbers of people. Stress assessment is a complex issue, but different studies have shown that monitoring user psychophysiological parameter during daily life can be greatly helpful in stress evaluation. In this context, the European Collaborative Project INTERSTRESS is aimed at designing and developing advanced simulation and sensing technologies for the assessment and treatment of psychological stress, based on mobile biosensors. In this study a wearable biosensor platform able to collect physiological and behavioral parameters is reported. The developed mobile platform, in terms of hardware and processing algorithms, is described. Moreover the use of this wearable biosensor platform in combination with advanced simulation technologies, such as virtual reality, offer interesting opportunities for innovative personal health-care solutions to stress.

Keywords: Bio-Behavioral Methods, Electrocardiogram, Mobile Biosensor, Psychophysiology, Respiration Signal, Stress

DOI: 10.4018/ijhcr.2014010102
1. INTRODUCTION

Research interest in psychological stress and its cognitive and bodily responses has been growing over the last decades.

It is increasingly recognized that stress has negative effects on growing numbers of people (Cipresso, Gaggioli, Serino, & Riva, 2012; Villani, Grassi, Cognetta, Toniolo, Cipresso, & Riva, 2011). Chronic stress is responsible for premature mortality in Western countries, and work-related stress accounts for premature cardiovascular mortality rates.

Growing interest has surrounded the roles of cognitive appraisal and emotions in psychological stress (Blascovich, Ernst, Tomaka, Kelsey, Salomon, & Fazio, 1993; Feldman, Cohen, Hamrick, & Lepore, 2004; Feldman, Cohen, Lepore, Matthews, Kamarck, & Marsland, 1999). According to Cohen, Janicki-Deverts, and Miller (2007), psychological stress occurs when an individual perceives that the environmental demands exceed his or her adaptive ability to meet them. This gap gives rise to the label of oneself as stressed and elicits a concomitant negative emotional response.

The previous definition of stress integrates and extends the following classical approaches to stress:

1. **Response-Based Model (Selye, 1974):** “Stress is the nonspecific response of the body to any demand made upon it.”

2. **Stimulus-Based Model (Holmes & Rahe, 1967):** Stress involves “events whose advent… requires a significant change in the ongoing life pattern of the individual.”

3. **Transactional Model (Lazarus & Cohen, 1977):** Stress involves the “judgment that environmental or internal demands tax or exceed the individual’s resources for managing them.”

Within this panorama, it is easily understandable that stress assessment is a complex issue. Although discussion and verbal responses are generally the first approach in stress assessment, there are many evidences that nonverbal communication include a wider set of measures to assess stress and might represent a therapist’s tool to coping with stress. More, many psychophysiological measures have come to age in the understanding of internal states and can be greatly helpful in stress assessment too (Magagnin, Mauri, Cipresso, Mainardi, Brown, Cerutti, Villamira, & Barbieri, 2010; Mauri, Magagnin, Cipresso, Mainardi, Brown, Cerutti, Villamira, Barbieri, 2010).

In particular Mauri and Colleagues (2010) highlighted the ability to automatically detect stress through psychophysiological measures. However, the role and the advantages in using behavioural measures to improve the automatic stress detection system, are still underinvestigated in literature, above all from an empiric point of view. One of the main problem, that highly contributed to this lack, has been the difficult to objectifying subjects’ behaviours.

Several studies showed interesting results that support the feasibility of detecting affective states through psychophysiological data acquisition and analysis (Magagnin, Mauri, Cipresso, Mainardi, Brown, Cerutti, Villamira, & Barbieri, 2010; Giakoumis, Drosou, Cipresso, Tzovaras, Hassapis, Gaggioli, & Riva, 2012; Mauri, Cipresso, Balgera, Villamira, & Riva, 2011). The affective computing group at MIT, led by Rosalind Picard, published several research studies that highlighted the use of psychophysiological measures to deduce and classify emotional states while study participants were performing different kinds of PC activities (Picard, 2000).

On the other hand, there are few studies that have tested the feasibility of such platform to actually elicit affective states. This consideration needs to be reviewed further to understand its implications for behavioral health care. For example, in a therapy for a stress-related disorder in a clinical setting is essential to elicit an affective state. In fact, standard cognitive behavioral therapies, such as biofeedback and relaxation, work to modify affective states through direct elicitation of positive emotions or a stressful situation that
the subject progressively then learns (or has already learned) to manage.

Researchers highlighted in particular the usefulness of wearable biosensors used in mobile platforms (Villani, Grassi, Cognetta, Toniolo, Cipresso, & Riva, 2011; Cipresso, et al., 2012) and Virtual Reality environments (Villani, Repetto, Cipresso, & Riva, 2012; Raspelli, et al., 2013; Cipresso, Paglia, Cascia, Riva, Albani, & La Barbera, 2013) or both (Repetto, Gaggioli, Pallavicini, Cipresso, Raspelli, & Riva, 2013) to detect changes in the physiological and affective states. This is useful in mobile clinical settings to share that information with the subject and eventually also interested caregivers, such as professional medical staff, relatives, or even friends.

This study describes a novel wireless biomonitoring system for the continuous tracking of physiological and behavioural user parameters that, used in combination with technological-based solutions, such as virtual reality and smartphone, could offer interesting opportunities for innovative personal healthcare solutions to stress.

2. METHODS

The Personal Biomonitoring System (PBS) is a mobile platform that is conceived to be available to the patient during daily activities to collect, fuse and analyze patient behavior and his general and physiological status (Figure 1). This wireless biomonitoring system unobtrusively performs a real-time monitoring of heart rate (HR), heart rate variability (HRV) and breathing rate (BR), as meaningful physiological parameters to study stress correlation. Moreover the PBS carries out a continuous tracking of activity level and posture of the user, as behavioral parameter for patient contextual identification (Ahuja, Agarwal, Mahajan, Mehta, & Kapadia, 2003; Barbieri, Friedman, & Saul, 2002; Eckberg, 1983; Tan, Dao, Farmer, Sutherland, & Gevirtz, 2011; American Heart Association, 1996).

PBS signals, pre-elaborated on-board, are sent to a personal data assistant (PDA) which performs a provisional stress analysis useful to trigger a more accurate analysis connecting to a central database or to perform a local biofeedback strategy.

2.1. Personal Biomonitoring System (PBS)

PBS allows pervasive psychophysiological assessment through wearable biosensor both in clinical and ecological settings.

Data extracted by means of PBS are managed by a PDA for user biofeedback, and then sent to central database, where are stored also physiological parameters collected in clinical settings, such as Electroencephalography signals, Skin Conductance signals, Facial electromyography Corrugator and Zygomatic responses for advanced analysis and classifications in order to evaluate psychophysiological status of the patient, monitor his/her progress and adapt the progression of the treatment (Figure 2).

2.2. Hardware Description

Different modules are embedded in the PBS. Each component design was oriented to usability and user comfort, without leaving out the importance to achieve reliable stress-related parameters. The electrodes, positioned in the chest, are embedded in the elastic band of Figure 1 providing a portable device in a all-in-one solution for physiological (cardiac and breathing monitoring) and behavioral data acquisition.

Figure 3 shows the three different subsystems embedded in the PBS platform: i) the HUB collects all extracted parameters and send them to the smartphone via Bluetooth. The HUB is the master node of the internal network, coordinating the exchange of data with the ECG module and BR module, respectively. Moreover, the HUB provides the power supply of the whole system and includes also the circuitry for battery charge management.

ii) ECG + ACT: this is the subsystem devoted to the extraction of the cardiac parameter, the heart rate (HR) and heart rate variability (HRV), and relevant information of user activity.
(ACT). iii) The last subsystem is the one for the extraction of the breathing rate parameter (BR).

All these subsystems will be analyzed in detail in the next sections.

2.2.1. ECG System

The PBS ECG block is a 3 leads ECG sensor that samples signals at the frequency of 256Hz. The front-end is based on the INA321 instrumentation amplifier that simply cancels out the common-mode and amplifies the input differential ECG signal to about 5x.

The signal at the output of INA321 is further amplified by one of the three integrated operational amplifiers available in the microcontroller (MSP family made by Texas Instruments, MSP430FG439), to reach the total 500x amplification.

The amplified ECG signal is internally digitized using the on-chip analog-to-digital converter available in the microcontroller. The core of the system, is the low power microcontroller that elaborates and analyzes raw sensor data and extracts HR and HRV parameters directly on board.

2.2.2. BR System

There is substantial evidence that alterations in respiratory rate can be used to predict potentially serious clinical events such as cardiac arrest or...
admission to the intensive care unit (Fieselmann & Helms, 1993; AL-Khalidi, et al., 2011).

Indirect techniques that can be implemented in wearable systems are respiratory inductive plethysmography (Milledge & Stott, 1977), impedance plethysmography (de Geus, Willemsen, Klaver, & van Doornen, 1995), piezoresistive pneumography (De Rossi, Carpi, Lorussi, Mazzoldi, Paradiso, Scilingo, & Tognetti, 2003), and/or piezoelectric pneumography. These systems are minimally invasive and do not interfere with physical activity, but most of them suffer from motion artifact especially if movements are at the thorax level. Considering this, a new sensor configuration was adopted. This new configuration consists of using a piezoelectric cable, made of Polyvinylidene (PVDF), integrated in the chest band in order to increase the Signal to Noise Ratio (SNR) making the breathing signal detector

Figure 2. Schematic diagram of data exchange between PBS system, the smartphone and the Central DB

Figure 3. Block diagram of PBS system
reliable and robust (Figure 4). The working principle is to measure mechanical forces due to the chest movements and correlate them to the fundamental frequency of respiration activity. When the cable is compressed or stretched, a charge is generated between the centre core and the outer braid shield.

The charge of the sensor is converted into a proportional voltage by a current-voltage converter, and then the output signal is fed to an A/D converter unit, embedded internally in the microcontroller. The charge-voltage converter is constructed using an OPA124 by Texas Instrument.

2.2.3. Activity System

In this study, behavioral information are not considered as stress indicators but they will be used as context for physiological measures.

According to this point the well known signal magnitude area (SMA) index is extracted from a tri-axial accelerometer integrated in the cardiac module, in order to discriminate the level of activity the user performed (Luinge & Veltink, 2004; Bouten, Koekkoek, Verduin, Kodde, & Janssen, 1997).

The ADXL330 produced by Analog Device was selected for its main characteristic such as small size, thin, low power, complete 3-axis accelerometer all on a single monolithic IC.

2.3. Algorithm and Features Extraction

2.3.1. QRS Detection, HR and HRV Extraction

An ECG analysis algorithm was developed to elaborate and process signals generated from the wearable PBS. QRS complex needs to be detected to generate heart rate and RR intervals. Thus, an accurate QRS detector is important in order to extract reliable HR or RR intervals to make meaningful HRV analysis and mental stress correlation. However, an accurate QRS complex detection may be difficult due to the physiological variability of the QRS complex and various types of noise that can be present in the ECG signal.

Typical noise artifacts in ECG signals are power line interference, electrode contact noise, motion artifacts, and baseline drift (Friesen, et al., 1990). Motion artifact is the most relevant in case of wearable monitoring systems used out of clinics during activity of daily living, where it is important to measure physiological signals accurately anytime and anywhere. Thus, a novel algorithm for robust and real-time HR and HRV extraction from ECG signal was developed in order to extract further correlates to mental stress (Carbonaro, et al, 2011).

There are numerous detection methods for QRS complexes including Pan-Tompkins method (Pan & Tompkins,1985), wavelet (Chen, Chen, & Chan, 2006) and Hilbert (Benitez, Gaydecki, Zaidi, & Fitzpatrick, 2000) transforms. Moreover, morphological approaches were developed for baseline correction and noise suppression in clinical ECG signals (Sun, Chan, & Krishnan, 2002). The algorithm developed, starting from the original Pan-Tompkins idea, uses a Kalman filter to extract reliable QRS complex, reducing the noise in the ECG signal, without applying any threshold and with very low computational cost.

The novelty of the algorithm is the combination of the Kalman filter with the predictor stage. With respect to the different algorithms
present in literature that use high order low pass filter on the raw ECG signal, low time delay or amplitude attenuation are added applying the Kalman filter. Moreover, the design of the predictor stage based on assessment of the future QRS parameters allows to have R peaks and RR time distance evaluations independent from the inter-subject variability and from the measurements system used (Carbonaro, et al., 2011).

2.3.2. BR Monitoring

A previous study has demonstrated how this fundamental frequency is a good approximation of the subject BR (Lanata, et al., 2010). The choice of the PVDF satisfies the requirements of reliability, reproducibility, and high sensitivity in the human temperature range. The sensor configuration (Figure 3) permitted to obtain low contribution of the movement artifact and a maximum contribution of the signal, which is generated by the chest pressure applied to the sensor. This configuration makes the breathing signal detector reliable and robust also during user movements (Lanata, et al., 2010).

2.3.4. RR Intervals Elaboration

Cardiovascular and respiratory activity is monitored to evaluate both voluntary and autonomic effect of respiration on heart rate, analyzing R-R interval extracted from electrocardiogram (ECG) and respiration (RSP) from chest strip sensor, and their interaction. According to the guidelines of Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, typical Heart Rate Variability (HRV) spectral indexes can be extracted to evaluate the autonomic nervous system response (Magagnin, et al., 2010; Mauri, 2010; Malik, 1996). Spectral analysis can be performed using Fourier spectral methods. The rhythms can be classified as very low frequency (VLF, i.e. less than 0.04 Hz), low frequency (LF, from 0.04 to 0.15 Hz), and high frequency (HF, from 0.15 to 0.5 Hz) oscillations. This procedure allow us to calculate the LF/HF ratio, also known as the sympathovagal balance index (Malik, 1996). Cardiovascular and respiratory activity interaction can also be taken into account through Respiratory Sinus Arrhythmia (RSA) index (Magagnin, et al., 2010; Malik, 1996). As temporal domain measure of heart rate variability are generally calculated NN50 index, i.e. the number of interval differences of successive NN intervals greater than 50 milisecond. This index describe the short-term NN variability. Just to simplify NN intervals can be seen as a sort of beat-to-beat representation of heart rate; according to Malik and Colleagues (Malik, 1996), “In a continuous ECG record, each QRS complex is detected, and the so-called normal-to-normal (NN) intervals (that is, all intervals between adjacent QRS complexes resulting from sinus node depolarizations) or the instantaneous heart rate is determined.”

2.3.5. Activity Elaboration

The accelerometer measures the acceleration and local gravity that it experiences. Considering a calibrated tri-axial accelerometer (i.e. offset and sensitivity are compensated and the output is expressed in unit of g), the accelerometer signal \(y\) contains two factors: one is due to the gravity vector \(g\) and the other is due to the system inertial acceleration \(a\), both of them expressed in the accelerometer reference frame (Karantonis, Narayan, Mathie, Lovell, & Celler, 2006):

\[
y = a - g = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} - \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix}
\]

In static conditions only the factor due to gravity is present and the inclination of the accelerometer with respect to the vertical is known. In dynamic conditions, an estimation of the inclination is unreliable simply by using the raw accelerometer signal since the inertial acceleration is added to the gravity factor. This estimation error gets more important as the subject performs faster movements (e.g, running, jumping).
In order to estimate the activity intensity, the Signal Magnitude Area (SMA) is extracted from the inertial acceleration components detected by the worn sensor. The SMA is equal to the sum of the axis acceleration magnitude summations over a time window and normalized by the window length (Curone, et al., 2010). The SMA discrete form is given by:

$$SMA(k) = \frac{1}{N} \left(\sum_{N_k}^{N(k+1)-1} |a_1| + \sum_{N_k}^{N(k+1)-1} |a_2| + \sum_{N_k}^{N(k+1)-1} |a_3| \right)$$

where N is the window length and (a1, a2, a3) are the three components of the inertial acceleration estimated by the accelerometer signal. At each time, the last available SMA value can be used to understand if the subject is resting, performing mild activities (among which walking) or intense activities (among which running). Considering the gravity component g as a slowly varying one, the inertial component a can be approximated by means of a third order IIR high-pass digital filter with a cut-off frequency of 0.3 Hz and applied to the y components. This technique has been proved to be effective in order to classify the activity level (Karantonis et al., 2006; Curone et al. 2010).

3. TEST AND RESULTS

Different experiments were performed in laboratory setting in order to test and validate the capability of each subsystem to perform robust and reliable extraction of the selected parameters.

Regarding ECG module, the algorithm developed allows to have an R peaks and RR time distance evaluations independent from the inter-subject variability and baseline wandering. In fact, in respect to the different algorithms present in literature that use high order low pass filter on the raw ECG signal, no time delay or amplitude attenuation are added applying the Kalman filter. Moreover, the filtering technique and the QRS complex detection are adaptive both to ECG signal, related to inter-subject variability, and to the measurement system, related to artifact noise. The method has been tested on all the MIT-BIH available records and showed very good results in terms of Sensitivity (Se =99.95). Furthermore, several tests were carried out in order to analyse the capability of the realized hardware to acquire and elaborate real ECG signal.

It is possible to underline that Figure 5 shows the PBS good capabilities to carefully reconstruct the typical ECG waveforms. Moreover, Figure 4 b) points out the ability of the system to follow baseline variation due to motion artifact and to accurately reproduce cardiac peculiarity waves (QRS complex). The proved signal quality, reached also during motion activity, allows to extract reliable and robust meaningful cardiac parameters.

Regarding BR analysis, the choice of the PVDF satisfies the requirements of reliability, reproducibility, and high sensitivity in human temperature range. The sensor configuration permitted to obtain low contribution of movement artifact and a maximum contribution of the signal, which is generated by the chest pressure applied to the sensor. In Figure 6 the signal acquired by the PBS BR block is reported.

In particular it is represented the tracking of the user breathing signal and the real-time evaluation of its respiratory rate in resting condition, Figure 6 a), and during fast respiration activity, Figure 6 b).

Considering the behavioral user information, the algorithm showed very good capabilities in distinguishing activity level performed by 9 subject during more than 5 hours of acquisition. The good performance of the algorithm is reported in Figure 7, where the algorithm accurately classifies user activity between three different class of activity level (“none,” “mild,” “intense”).

4. BIOFEEDBACK

Psychological treatments can be extended beyond the traditional research and clinical setting by using mobile and wearable technologies to
deliver real-time interventions during daily activities. In particular, we focused on HRV biofeedback as a promising approach aimed to assess and manage psychological stress. Recent research, in fact, demonstrated that low HRV is associated with a wide variety of medical and psychological health problems, such as cardiovascular diseases, metabolic syndrome, depression, anxiety and psychological stress. Within the EU-funded INTERSTRESS research program (FP7-247685), we developed an HRV biofeedback aimed to help subjects in managing and coping psychological stress. The system collects data from the wireless wearable PBS system. Then, the mobile application, running on a smartphone with Android OS, provides a real-time and graphical visualization of user’s physiological parameters. For example, by controlling the respiration rate, variations in the HRV indexes controls the increase or the decrease of the size of a campfire in a valley or the movement of the waves in a beach.

These mobile-based virtual environments are used in clinical setting and are fully controlled by the clinicians. These virtual worlds uses the sense of presence provided by the engaging virtual experience to practice several stress management exercises: relaxation techniques; VR biofeedback, assertiveness training, time management training, and problem-solving training (Figure 8).

The advantages in using a mobile biofeedback in support of traditional clinical methods for stress management are potentially several: a) it provides subjects an effective and easy-to-use support in their natural contexts; b) participants have the opportunity to apply immediately new acquired skills to their actual experiences; c) it
helps clinicians to assign to subjects relaxing exercises or “homeworks”; d) it is possible to schedule the timing and the modality of these exercises beyond a research or clinical setting; d) it enhances ecological validity of the intervention; e) it is less expensive than traditional stress management techniques (Serino, et al., n.d.).

Preliminary results demonstrated the feasibility and the efficacy of our mobile HRV biofeedback as an effective and user-friendly tool to manage psychological stress in everyday life.

5. DISCUSSION AND CONCLUSIONS

Recent advances in wearable biosensors and the remarkable spread of mobile electronic devices have lead to ubiquitous and unobtrusive recorder systems that allow naturalistic and multimodal assessment of psychophysiological parameters (Cohen, et al., 2007; Selye, 1974; Holmes & Rahe, 1967). Since psychological stress could be defined as a continuous person-environment transaction (Lazarus & Cohen, 1977; Magagnin, et al., 2010; Mauri, et al., 2010), this integrated and mobile assessment offers the opportunity to analyze the real-time interaction between challenges and skills occurring in daily life situations.

Cognitive Behavioral Therapy (CBT) approach can be considered one of the best validated approach for stress management and stress treatment. Even if CBT is the treatment of choice for psychological stress, there is still room for improvement.

Figure 6. Breathing rate evaluation. The blue line represents the acquired breathing signal and the red one the recognition of the peak level useful for the evaluation of the breathing rate.
In particular new paradigm based on ubiquitous health tools can better fit to the needs of specific situations that stressed people need to consider.

Riva and colleagues (Riva et al., 2010; Serino, Cipresso, Gaggioli, & Riva, 2013) recently introduced a new paradigm for e-health—“Interreality”—that integrates assessment and...
treatment within a hybrid environment, bridging physical and virtual world. By creating a bridge between virtual and real worlds, Interreality allows a full-time closed-loop approach actually missing in current approaches to the assessment and treatment of psychological stress: first, the assessment is conducted continuously throughout the virtual and real experiences: it enables tracking of the individual’s psychophysiological status over time in the context of a realistic task challenge; second, the information is constantly used to improve both the appraisal and the coping skills of the patient: it creates a conditioned association between effective performance state and task execution behaviors. The potential advantages offered to stress treatments by this approach are: (a) an extended sense of presence: Interreality uses advanced simulations (virtual experiences) to transform health guidelines and provisions in experience; (b) an extended sense of community: Interreality provides social support in both real and virtual worlds; (c) a real-time feedback between physical and virtual worlds: Interreality uses bio and activity sensors and devices (PDAs, smartphones and tablet) both to track in real time the behaviour and the health status of the user and to provide suggestions and guidelines.

Within this framework the mobile biosensors platform here presented can meaningfully be considered as one of the few that totally integrates with the virtual environments (VE) developed with NeuroVR (www.neurovr.org) (Riva, et al., 2007).

The PBS device is integrated around two subsystems: the Clinical Platform (in patient treatment, fully controlled by the therapist) and the Personal Mobile Platform (real world support, available to the patient and connected to the therapist) that allow a) monitoring of the patient behavior and of his general and psychological status, early detection of symptoms of critical evolutions and timely activation of feedbacks in a closed loop approach; b) Monitoring of the response of the patient to the treatment, management of the treatment and support to the therapists in their therapeutic decisions.

The clinical use of these technologies in the Interreality paradigm is based on a closed-loop concept that involves the use of technology for assessing, adjusting and/or modulating the emotional regulation of the patient, his/her coping skills and appraisal of the environment (both virtual, under the control of a clinician, and real, facing actual stimuli) based upon a comparison of that patient’s behavioural and physiological responses with a baseline or performance criterion.

In this study we considered Psychophysiological aspects for the management and treatment of stress-related disorders. One of the widely used instrument to analyze these aspects is the electrocardiogram (ECG) and, widely, the cardiorespiratory activity. In particular the Heart Rate Variability (HRV) measures have been generally used, giving evidences that lower variability seems to be higher related to negative moods, such as stress. In particular “stress detection” through ECG deserve an important consideration: there aren’t empirical evidences to exactly discern stress-state components; in these aspects INTERSTRESS project will play an interesting role: the elicitation through hybrid environment could be a good chance to better discriminate a part of these components.

ACKNOWLEDGMENT

The present work was supported by the European funded project “Interstress” – Interreality in the management and treatment of stress-related disorders (FP7- 247685).

REFERENCES

Nicola Carbonaro, PhD is a postdoc researcher working at the Research Centre “E. Piaggio” since 2005. He graduated in Electronic Engineering at the University of Pisa in 2004. In 2010 he earned a PhD in Information Engineering from University of Pisa working on the development of wearable system for human activity classification. In 2009 he spent six months as a visiting researcher at the “Neural Control of Movement” Laboratory of Arizona State University. His research is mainly focused on hardware and software development for wearable sensing technology for physiological and behavioural human monitoring. Dr. Carbonaro has collaborated on different research projects both at a National and European level and he has published several papers, contributions to international conferences and books’ chapters.
Pietro Cipresso, Ph.D. was born in 1977. He graduated at Bocconi University of Milan in economics, major in statistics and operational research in 2004 with a thesis in nonparametric methods for spectral estimation, and received his Ph.D. in communication and new technologies, major in psychology in 2010, from IULM University of Milan, with a dissertation in computational communication and emotions. Since May 2010, he has been Advanced Researcher at Applied Technology for Neuro-Psychology Lab - ATN-P Lab, IRCCS Istituto Auxologico Italiano, Milan and since November 2011 Contract Professor at Catholic University of Milan, where since February 2013 received also a Research Fellowship in Psychometrics. Cipresso has been Visiting Research Scholar at Massachusetts Institute of Technology (MIT) and won the 2012 Clinical Cyberpsychology New Investigator Award. He is in charge of projects coordination, collaborating in many international and European projects. Cipresso is the Editor-in-Chief of Contactless Bio-behavioral Research Methods, Editor of the Central European Journal of Medicine, Associate Editor of the Versita Open Access Books program in Psychology, and the author in the last three years of more than 50 peer-reviewed scientific publications and of the books “Modeling Emotions At the edge of chaos: from psychophysiology to networked emotions,” and “Computing paradigms for mental health”.

Alessandro Tognetti, PhD is an Assistant Professor of Electronic and Information Bioengineering at University of Pisa. He graduated in Electronic Engineering at the University of Pisa in 2001. In 2005, he received the PhD degree in Robotics, Automation and Bioengineering at the Department of Electrical Systems and Automation of the School of Engineering of the University of Pisa. He is currently working at the Research Center “E. Piaggio” on the design and development of wearable sensing interfaces for both physiological and movement/activity monitoring. His main research interests are in sensor design and signal and information processing. From 2006 to 2010, as work-package leader of the ProeTEX European project, he has leaded a group of 12 European organizations focused on the development of sensors for emergency personnel monitoring. He is author of several papers, contributions to international conferences and chapters in international books.

Gaetano Anania, is an Electronic Engineer graduated at the University of Pisa in 2007. Since 2007 he is doing activity research at the Research Centre “E. Piaggio” mainly focused on developing wearable system for physiological and behavioural human monitoring. Currently he is a temporary research fellow working on study and implementation of signal elaboration techniques for wearable systems based on inertial devices and monitoring sensors for physiological parameters. He has collaborated on different research projects, European and National level, and he is author of several papers, contributions to international conferences and books’ chapters.

Danilo De Rossi, full professor of Bioengineering and Director of the Research Centre “E. Piaggio”. He received the “Laurea” degree in Chemical Engineering from the University of Genoa in 1976. He had appointments for teaching and research in Australia, Brazil, France Japan and USA. He joined the Faculty of Engineering in the University of Pisa in 1982. His scientific activities are related to the physics of organic and polymeric materials, and to the design of sensors and actuators for bioengineering and robotics. He is author of over 270 peer-reviewed papers on international science journals and peer reviewed proceedings, co-inventor of 14 patents and co-author of 8 books.
Andrea Gaggioli was born in Florence, Italy in 1974. He received the M.S. degree in Psychology from the University of Bologna, Bologna, Italy, in 1999, and the Ph.D. degree in Psychobiology from the Public University of Milan, Milan, Italy, in 2005. Since 2001, Dr. Gaggioli is Senior Researcher at the Applied Technology for Neuro-Psychology Lab. - ATN-P Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy. In 2006, he joined the Department of Psychology at the Catholic University of Milan, as Assistant Professor. His current research interests include pervasive computing applications in mental health research and practice. He is currently coordinator of the EU-funded project “INTERSTRESS” (http://www.interstress.eu). He was the recipient of the Prize of the European Academy of Rehabilitation Medicine in 2004.

Federica Pallavicini was born in Sondrio in 1984. She received her degree in Psychology at the University Vita Salute San Raffaele of Milan, with a thesis on emotional decision-making in Obsessive Compulsive Disorder. From July 2009 she is collaborating with the Istituto Auxologico Italiano Hospital, as a Young Researcher at the Applied Technology for Neuro-Psychology Lab (ATN-P LAB), where she is studying the opportunity of New Technologies (Smartphone, Virtual Reality and Wearable Biosensors) for Psychology, Health and Neuroscience. She obtained her Ph.D. in 2013 at Milano-Bicocca University (Italy), Department of Human Sciences for Education, “Wellbeing, Health, and Intercultural Communication” Curriculum. Her doctoral thesis was an in-depth analysis on the effect of incidental stress on psychophysiological mechanisms underlying emotional decision making.

Giuseppe Riva was born in Milan, Italy in 1966. Prof. Riva, Ph.D., is Director of the Interactive Communication and Ergonomics of NEw Technologies – ICE-NET- Lab. at the Catholic University of Milan, Italy, and Head Researcher of the Applied Technology for Neuro-Psychology Laboratory - ATN-P Lab., Istituto Auxologico Italiano, Verbania Italy. Prof. Riva is currently the President of the International Association of CyberPsychology, Training, and Rehabilitation (http://iactor.ning.com/). Riva is also the Scientific Committee Chair of the CyberTherapy and CyberPsychology Conference (http://www.e-therapy.info/), Workshop Organizer at UbiHealth: The International Workshop on Ubiquitous Health and Wellness (http://www.e-therapy.info/) and Organizing Committee Member for the NextMed – Medicine Meets Virtual Reality Conference (http://www.nextmed.com/mmvr_committee.html).