
Giuseppe Vitiello- PhD
- Professor (Associate) at University of Naples Federico II
Giuseppe Vitiello
- PhD
- Professor (Associate) at University of Naples Federico II
Associate professor
About
139
Publications
22,240
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,773
Citations
Introduction
GV works at Dept. of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II. GV does research in Colloid Chemistry focusing on the design, synthesis and characterization of hybrid organic/inorganic nano-bio materials and interfaces; amphiphiles self-assembly; lipid nanosystems. The physicochemical analysis is realized by Electron Paramagnetic Resonance (EPR), UV-vis and Fluorescence Spectroscopy, Dynamic Light Scattering (DLS), Neutron Scattering (NR/SANS).
Current institution
Additional affiliations
University of Naples Federico II and Italian Center for Colloids and Surface Science (CSGI)
Position
- Professor (Associate)
January 2017 - December 2019
January 2012 - present
Education
October 2008 - December 2011
October 2006 - October 2008
October 2003 - October 2006
Publications
Publications (139)
The manipulation and control of free-standing liquid film drainage dynamics is of paramount importance in many technological fields and related products, ranging from liquid lenses to liquid foams and 2D structures. In this context, we theoretically design and introduce a device where we can reversibly drive flow regime switch between viscous-capil...
A set of protein biomarkers are largely recognized as responsible of neurodegeneration mechanisms and hence as potential targets to be detected in low abundant concentrations in body fluids for performing early diagnosis. As an example, the Tau protein experiences a transition phase from a native disorder conformation into a preaggregation state, w...
Moving from a previous investigation of eumelanin and PEDOT:PSS blends we decided to explore the possible contribution of eumelanin to thermopower improvement of PEDOT:PSS in light of the well-known radical character of the mammalian pigment. Determination of the Seebeck coefficient and conductivity showed an effective contribution of eumelanin ble...
Lipid As are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Their molecular structure has evolved to allow the bacteria survival in specific environments. In the present work, we investigate how and to what extent lipid membranes that include in their composition lipid A molecules of a bacterium of the...
Carbon quantum dots (CDs) are widely used as semiconductor systems, due to their facile synthesis and optical characteristics. CDs have been employed to enhance the light emission, UV resistance, and anticorrosive performances of epoxy nanocomposites (ENCs). Herein, we investigated the use of CDs to prepare multifunctional cycloaliphatic ENCs showi...
Melanin is a multifunctional biological pigment that recently emerged as endowed with anti-inflammatory, antioxidant, and antimicrobial properties and with high potentialities in skin protection and regenerative medicine. Here, a biomimetic magnesium-doped nano-hydroxyapatite (MgHA) was synthesized and decorated with melanin molecules starting from...
F/ZnO-QDs of R ∼ 3 nm and relative quantum yield of 22% are obtained via wet-precipitation at 5 at% nominal F content. F/ZnO-NCs of R ∼ 30 nm, high surface defects and photoactivity are obtained via the solvothermal route at 5 at% nominal F content.
Microplastics are recognized as an emerging critical issue for the environment. Here an innovative chemical approach for the treatment of microplastics is proposed, based on an oxidative process that does not require any direct energy source (irradiation or heat). Linear low-density polyethylene (LLDPE) was selected as target commodity polymer, due...
Photoacoustics (PA) is gaining increasing credit among biomolecular imaging methodologies by virtue of its poor invasiveness, deep penetration, high spatial resolution, and excellent endogenous contrast, without the use of any ionizing radiation. Recently, we disclosed the excellent PA response of a self-structured biocompatible nanoprobe, consisti...
Redox-active nano-biointerfaces are gaining weight in the field of regenerative medicine since they can act as enzymes in regulating physiological processes and enabling cell homeostasis, as well as the defense against pathogen aggression. In particular, cerium oxide nanoparticles (CeO2 NPs) stand as intriguing enzyme-mimicking nanoplatforms, owing...
Sustainable packaging materials can play a key role in minimizing the environmental footprint of packaged food by preserving its quality and avoiding environmental persistence of plastic waste. Waste to wealth approach can cope with these major challenges by providing for bioavailable active compounds from waste residues. To this regard, humic subs...
Microbial colonization of surfaces is a sanitary and industrial issue for many applications, leading to product contamination and human infections. When microorganisms closely interact with a surface, they start to produce an exo-polysaccaridic matrix to adhere to and protect themselves from adverse environmental conditions. This type of structure...
The existing literature survey reports rare and conflicting studies on the effect of the preparation method of metal-based semiconductor photocatalysts on structural/morphological features, electronic properties, and kinetics regulating the photocatalytic H2 generation reaction. In this investigation, we compare the different copper/titania-based p...
β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose, a substrate for fermentation to produce the carbon-neutral fuel bioethanol. Enzyme thermal stability and reusability can be improved through immobilization onto insoluble supports. Moreover, nanoscaled matrixes allow for preserving high reaction rates. In this work, BG was physic...
The waste-to-wealth strategy is encouraging the design of a plethora of new value-added materials, by exploiting the chemical and biological richness of biowastes. Humic Acids (HA) are mostly intriguing because of their amphiphilic supramolecular associations which are responsible for several assets, such as adsorption ability towards small molecul...
The mismanagement of plastics is associated with high levels of waste and release into the environment, where they can persist for long times due to the low degradation rate. Photocatalytic methods, based on the action of Reactive Oxygen Species (ROS) generated by semiconductor materials, are promising eco-friendly and low-cost process for the plas...
Nature mimicking implies the design of nanostructured materials, which can be assembled into a hierarchical structure, thus outperforming the features of the neat components because of their multiple length scale organization. This approach can be effectively exploited for the design of advanced photocatalysts with superior catalytic activity for e...
The biogenic synthesis of nanomaterials, i.e., synthesis carried out by means of living organisms, is an emerging technique in nanotechnology since it represents a greener and more eco-friendly method for the production of nanomaterials. In this line, in order to find new biological entities capable of biogenic synthesis, we tested the ability of s...
Heparin plays multiple biological roles depending on the availability of active sites strongly influenced by the conformation and the structure of polysaccharide chains. Combining different components at the molecular scale offers an extraordinary chance to easily tune the structural organization of heparin required for exploring new potential appl...
Aiming at novel tools for anticancer therapy, a ruthenium complex, covalently linked to a cholesterol-containing nucleolipid and stabilized by co-aggregation with a biocompatible lipid, is here presented. The amphiphilic ruthenium complex, named ToThyCholRu, is intrinsically negatively charged and has been inserted into liposomes formed by the cati...
CeO2 slow redox kinetics as well as low oxygen exchange ability limit its application as a catalyst in solar thermochemical two-step cycles. In this study, Ce0.75Zr0.25O2 catalysts doped with potassium or transition metals (Cu, Mn, Fe), as well as co-doped materials were synthesized. Samples were investigated by X-ray diffraction (XRD), N2 sorption...
Ibuprofen is one the most used non-steroidal anti-inflammatory drug, which is considered an emerging pollutant that may contaminate surface and underground water. Photodegradation using nanomaterials is one of the most sustainable and cheap technologies that can be used in water purification. In this study, the photodegradation efficiency of in-hou...
Endocrine Disrupting Compounds (EDCs) comprise a class of natural or synthetic molecules and groups of substances which are considered as emerging contaminants due to their toxicity and danger for the ecosystems, including human health. Nowadays, the presence of EDCs in water and wastewater has become a global problem, which is challenging the scie...
Metal oxide-organic hybrid semiconductors exhibit specific properties depending not only on their composition but also on the synthesis procedure, and particularly on the functionalization method, determining the interaction between the two components. Surface adsorption is the most common way to prepare organic-modified metal oxides. Here a simple...
Currently, palladium represents an expensive and scarce element in the Earth’s crust, with the mineral resources of Platinum group metals (PGMs) predominately localized in South Africa and Russia. The growing...
Exploring the chance to convert biowaste into a valuable resource, this study tests the potential role of humic acids (HA), a class of multifunctional compounds obtained by oxidative decomposition of biomass, as physical agents to improve gelatin’s mechanical and thermal properties. To this purpose, gelatin–HA aqueous samples were prepared at incre...
Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protec...
Following a waste-to-wealth approach, humic acid (HA) was exploited as a flame retardant additive. The effect of its addition alone and in combination with urea (UR) and ammonium polyphosphate (APP) on the thermal, fire, and mechanical performances of a bisphenol A diglycidyl ether (DGEBA)-based epoxy resin modified with (3-aminopropyl)-triethoxysi...
Humic acids (HA) are considered a promising and inexpensive source for novel multifunctional materials for a huge range of applications. However, aggregation and degradation phenomena in aqueous environment prevent from their full exploitation. A valid strategy to address these issues relies on combining HA moieties at the molecular scale with an i...
Photocatalytic processes have shown great potential as a low-cost, green-chemical, and sustainable technology able to address energy and environmental issues [...]
Hybrid Melanin-TiO2 nanoparticles are promising bioinspired antibacterial agents for biomedical coatings and food-packaging fields. However, due to a very low colloidal stability, they showed a high tendency to self-aggregate and rapidly precipitate, making not easy their use in aqueous medium to produce homogeneous antimicrobial coatings or nanoco...
Lipopolysaccharides (LPS) are complex amphiphilic macromolecules forming the external leaflet of the outer membrane of Gram-negative bacteria. The LPS glycolipid portion, named Lipid A, is characterized by a disaccharide backbone carrying multiple acyl chains. Some Lipid A bear very-long-chain-fatty-acids (VLCFA), biosynthesized to span the entire...
In this work CeO2 nanoparticles (CeO2-NPs) were synthesized through the thermal decomposition of Ce(NO3)3·6H2O, using as capping agents either octylamine or oleylamine, to evaluate the effect of alkyl chain length, an issue at 150 °C, in the case of octylamine and at 150 and 250 °C, in the case of oleylamine, to evaluate the effect of the temperatu...
Humic acids (HAs) provide an important bio-source for redox-active materials. Their functional chemical groups are responsible for several properties, such as metal ion chelating activity, adsorption ability towards small molecules and antibacterial activity, through reactive oxygen species (ROS) generation. However, the poor selectivity and instab...
Developing advanced materials for wound dressings is a very challenging, yet unaddressed task. These systems are supposed to act as temporary skin substitutes, performing multiple functions, including fluid absorption and antimicrobial action, supporting cell proliferation and migration in order to promote the skin regeneration process. Following a...
Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical inf...
EFV12 is a small bioactive peptide produced by Lactobacillus gasseri SF1109, a human intestinal isolate with probiotic features. In this study, EFV12 antimicrobial and anti-inflammatory properties are characterised. In particular, we propose a possible mechanism of action for EFV12 involving bacterial membranes targeting. Moreover, we show that thi...
Polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA) is found in very high concentrations in a few peculiar tissues, suggesting that it must have a specialized role. DHA was proposed to affect the function of the cell membrane and related proteins through an indirect mechanism of action, based on the DHA-phospholipid effects on the lipid b...
In this work, we present particle size distribution (PSD), electron paramagnetic resonance (EPR) and Raman spectroscopy measurements of soot particles, collected across the inception region, in two ethylene-air premixed laminar flames and two flames obtained by substituting 30% of the ethylene carbon with benzene. The experimental results are used...
Diclofenac (DCF), a non-steroidal anti-inflammatory drug, is considered one of the most widespread emerging contaminants. Its incidence in water can favor the growth of drug-resistant bacteria and harm aquatic organisms endangering both the human health and the ecosystem. Advanced oxidation processes (AOPs) based on the action of reactive oxygen sp...
The abatement of organic pollutants by TiO2 photocatalysis has been established as one of the benchmark applications of advanced oxidation processes for both liquid and gas phase purification. Such solution is particularly suitable for indoor air pollution where volatile organic compounds (VOCs) represent a class of chemicals of high concern for th...
Melanins are a group of dark insoluble pigments found widespread in nature. In mammals, the brown-black eumelanins and the reddish-yellow pheomelanins are the main determinants of skin, hair, and eye pigmentation and play a significant role in photoprotection as well as in many biological functions ensuring homeostasis. Due to their broad-spectrum...
Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia and nanoplatforms for multimodal imaging and theranostic. However, the use of NPs, including SPIONs, in m...
Humic acids (HA) exhibit fascinating multifunctional features, yet degradation phenomena as well as poor stability in aqueous environments strongly limit their use. Inorganic nanoparticles are emerging as a powerful interface for the development of robust HA bio-hybrid materials with enhanced chemical stability and tunable properties. Hybrid organi...
The generation and stabilization of reactive oxygen species (ROS), including the superoxide radical anion (O2⁻), have a huge potential in environmental remediation and industrial chemical processes, but they still remain a challenge. Here, we elucidate the formation, stability and reactivity of superoxide radicals spontaneously produced on the surf...
Solar radiation is becoming increasingly appreciated because of its influence on living matter and the feasibility of its application for a variety of purposes. It is an available and everlasting natural source of energy, rapidly gaining ground as a supplement and alternative to the nonrenewable energy feedstock. Actually, an increasing interest is...
Bioinspired melanin based hybrid materials hold huge promise for developing multifunctional systems for a considerable set of applications. Yet, control of melanogenic pathway is a big challenge to allow rational design of nanostructured systems with tuned structures and improved properties. This study proves the ability of titanium ions interactio...
In this work, the surface of nanostructured fluorine-doped ZnO (nZnO·F) is functionalized with protein A (PrA), and used as a model biomolecule. The chemical procedure is characterized by several analytical techniques such as Fourier Transform Infrared Spectroscopy, water contact angle analysis, and fluorescence microscopy. The surface modification...
Copper doped‐TiO2 (P25) nanomaterials have been intensively studied as promising catalysts for H2 production by photo‐reforming of selected organic compounds. However, the role of copper oxidation states on the improvement of photocatalytic activity is still debated. In this work, CuOx‐impregnated P25‐TiO2 catalysts were used for photocatalytic pro...
Nature has provided a valuable source of inspiration for developing high performance multifunctional materials. Particularly, catechol-containing amino acid l-3,4-dihydroxyphenylalanine (l-DOPA) has aroused the interest to design hybrid multifunctional materials with superior adhesive ability. DOPA oxidative polymerization mediated by either melano...
Inorganic nanoparticles (NPs) exhibit relevant physical properties for application in biomedicine and specifically for both the diagnosis and therapy (i.e. theranostic) of severe pathologies, such as cancer. The inorganic NP core is often not stable in aqueous suspension and can induce cytotoxic effects. For this reason, over the years, several coa...
Thermochemical cycles received renewed interest as CO2 and H2O energy-upgrading processes using solar energy as source. The two-step cycles, based on self-reduction in a solar reactor at high temperature (above 1300–1400 °C) and re-oxidation by CO2 and/or H2O flow, are the most interesting due to their simplicity and high theoretical solar-to-fuel...
Developing safe and high efficiency contrast tools is an urgent need to allow in vivo applications of photoacoustics (PA), an emerging biomolecular imaging methodology, with poor invasiveness, deep penetration, high spatial resolution and excellent endogenous contrast. Eumelanins hold huge promise as biocompatible, endogenous photoacoustic contrast...
Some aspects of soot formation from gas phase molecules at high temperatures are still unclear. Aromatic π-radicals may be key elements for a change in the model of carbon clustering and particle formation. However, experimental investigations are still needed on the radical nature of molecules and particles in flames and on their roles in the tran...
The potentials to use the working temperature to tune both the sensitivity and the selectivity of a chemical sensor based on a nanostructured and nanocomposite polymer layer have been investigated and described. Thus, in a single step, a peculiar chemical layer was grown up onto IDE (Interdigitated Electrode) microtransducers by electrospinning dep...
Intrinsic biocide efficacy of eumelanins can be markedly enhanced through a templated formation in the presence of a TiO2-sol, leading to hybrid TiO2–melanin nanostructures. However, mechanisms and processes behind biocide activity still remain poorly understood. This paper discloses the fundamental mechanism of action of these systems providing me...
Excellent and selective correlations between the electron-transfer (ET) or hydrogen atom transfer (HAT) capacity (DPPH and lipid peroxidation inhibition assays) and EPR indices of π-electron spin delocalization delineate specific structural...
Niosomes are self-assembled vesicles made up of single chain non-ionic surfactants combined with appropriate amounts of cholesterol or other lipids, exploited as carriers for hydrophilic or lipophilic drugs. Compared to liposomes, niosomes are typically more stable, less expensive and, being generally obtained from synthetic surfactants, more easil...
Background:
Reactive oxygen species (ROS) in biological tissues of elected biosentinels represent an optimal biomarker for eco-monitoring of polluted areas. Electron spin resonance (ESR) is the most definitive method for detecting, quantifying and possibly identifying radicals in complex systems.
Objective:
A non-invasive method for monitoring p...
Microbial contamination still remains a major issue of the modern era, due to widespread drug- resistant pathogens. This has prompted researchers to come up with novel antimicrobial systems that could overcome antibiotic-resistance.In this context, nature can provide inestimable source of inspiration to design high-performance multifunctional mater...
Combining TiO2 with graphene or with graphene related materials (GRMs) is an attractive strategy for enhancing the TiO2 photocatalytic activity through charge separation at the TiO2/GRMs hetero-interface. With the aim of shed light on the various factors that can affect the actual TiO2/GRMs charge transfer behavior, in the present work two series o...
We disclose herein the first example of stable monodispersed hybrid nanoparticles (termed MelaSil-NPs) made up of eumelanin biopolymer intimately integrated into a silica nanoscaffold matrix and endowed with high antioxidant and cytoprotective effects associated with a specific subcellular localization. MelaSil-NPs have been fabricated by an optimi...
Deposition of copper on titanium dioxide holds great promise in producing materials with high activity in the photo-production of hydrogen by aqueous reforming of alcohols. This work aims at comparing hydrogen evolution through photoreforming of alcohols over photocatalysts prepared by in situ photodeposition of copper on three TiO2 commercial samp...
An amphiphilic derivative of guanosine, carrying a myristoyl group at the 5'-position and two methoxy(triethylene glycol) appendages at the 2' and 3'-positions (1), endowed with high ionophoric activity, has been here studied in its interaction mode with a model lipid membrane along with its 5'-spin-labelled analogue 2, bearing the 5-doxyl-stearic...
Different spectroscopic techniques have been applied to fluorine doped ZnO powders prepared through hydrothermal synthesis, to discern the effective capability of F atoms to improve ZnO conductivity. From XRD analysis, no lattice distortion was observed up to F doping 5 at% concentration. Photoluminescence measurements and electron paramagnetic res...
Eco-friendly hybrid Eumelanin-TiO2 nanostructures, recently obtained through in situ methodology based on hydrothermal route, have shown a striking antimicrobial activity, after exposure to oxidative environment, even under visible light induction condition. Nevertheless, the role of each component in defining the efficacy of these biological prope...
SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) represent a suitable system for several applications especially in nanomedicine. Great efforts have been made to design stable and biocompatible functionalized SPIONs suitable for diagnostics and drug delivery. In particular, zwitterionic-surfactant functionalized SPIONs, obtained through a coatin...
A combination of biomedical and technological applications is generating, over the past decades, the well-established interest toward melanins and melanogenesis. Several compounds have been explored to promote/catalyze oxidative polymerization of melanogenic precursors, such as 5,6-dihydroxyindole-2-carboxylic acid (DHICA), to melanin-like biopolym...
The hybrid sol-gel zirconia-acetylacetonate amorphous material (HSGZ) shows high catalytic activity in oxidative degradation reactions without light or thermal pre-treatment. This peculiar HSGZ ability derives from the generation of highly reactive oxide radical species (ROS) upon exposure to air at room conditions. We disclose the origin of such u...
Hydrogen production through the photoreforming of organic species using copper-modified TiO2 photocatalysts is attracting a considerable attention. In particular, the use of catalysts, prepared by in situ photodeposition processes, with nanometric sizes could represent a straightforward promising strategy to improve the process efficiency. In this...
Nanostructured hydrogels composed by biocompatible molecules are formulated and characterized. They are based on a polymer network formed by hydrophobic ally modified chitosans (HMCHIT or CnCHIT) in which vesicles of monoolein (MO) and oleic acid or sodium oleate (NaO), depending on pH, are embedded. The best conditions for gel formation, in terms...
Aiming for novel tools for anticancer therapies, a ruthenium complex, covalently linked to a cholesterol-containing nucleolipid and stabilized by co-aggregation with a biocompatible lipid, is here presented. The amphiphilic ruthenium complex, named ToThyCholRu, is intrinsically negatively charged and has been inserted into liposomes formed by the c...
A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membran...
Organic materials are widely employed to tune surface chemistry and/or as structuring agent of inorganic materials. Here, we propose a novel synthetic approach whereby TiO2 not only promotes 5,6-dihydroxyindole-2-carboxylic acid (DHICA) polymerization but also acts as templating agent for the forming eumelanin itself. Hybrid TiO2-DHICAmelanin nanos...