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ABSTRACT

N-Acetylaspartate (NAA) is considered a neuron-specific metabolite and its reduction a marker of
neuronal loss. The objective of this study was to evaluate the time course of NAA changes in vary-
ing grades of traumatic brain injury (TBI), in concert with the disturbance of energy metabolites
(ATP). Since NAA is synthesized by the mitochondria, it was hypothesized that changes in NAA
would follow ATP. The impact acceleration model was used to produce three grades of TBI. Sprague-
Dawley rats were divided into the following four groups: sham control (n 5 12); moderate TBI (n 5
36); severe TBI (n 5 36); and severe TBI coupled with hypoxia-hypotension (n 5 16). Animals were
sacrificed at different time points ranging from 1 min to 120 h postinjury, and the brain was
processed for high-performance liquid chromatography (HPLC) analysis of NAA and ATP. After
moderate TBI, NAA reduced gradually by 35% at 6 h and 46% at 15 h, accompanied by a 57%
and 45% reduction in ATP. A spontaneous recovery of NAA to 86% of baseline at 120 h was par-
alleled by a restoration in ATP. In severe TBI, NAA fell suddenly and did not recover, showing crit-
ical reduction (60%) at 48 h. ATP was reduced by 70% and also did not recover. Maximum NAA
and ATP decrease occurred with secondary insult (80% and 90%, respectively, at 48 h). These data
show that, at 48 h post diffuse TBI, reduction of NAA is graded according to the severity of insult.
NAA recovers if the degree of injury is moderate and not accompanied by secondary insult. The
highly similar time course and correlation between NAA and ATP supports the notion that NAA
reduction is related to energetic impairment.

Key words: energetic metabolism; high-performance liquid chromatography; magnetic resonance spec-
troscopy; mitochondrial dysfunction; N-acetylaspartate; traumatic brain injury
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INTRODUCTION

DIFFUSE BRAIN INJURY, defined by the absence of fo-
cal mass lesions, is associated with high morbidity

rates and considered the most common cause of severe
disability and posttraumatic persistent vegetative state
(Graham et al., 1983; Kinney and Samuels, 1994). The
pathogenesis of diffuse injury is thought to occur as a re-



sult of shearing or impulsive forces on axons (Adams et
al., 1977, 1984, 1989).

Although conventional brain imaging techniques are
useful in detecting macroscopic changes, patients with
diffuse brain injury often show a radiologically “normal
brain” (Eisenberg et al., 1990). At present, there are few
practical methods for assessing the severity of this type
of injury and its potential for recovery in the head-injured
patient. As a result, diffuse brain injury is an underdiag-
nosed entity with few prognostic elements and its patho-
physiology is not fully understood.

Recently, N-acetylaspartic acid (NAA) has been iden-
tified as an in vivo marker of neuronal density, and its
reduction is related to neuronal damage and loss in many
cerebral disorders (Davie et al., 1997; Ebisu et al., 1994;
Harms et al., 1997; Sager et al., 1995, 1999; Shino et al.,
1993). Being the most prominent compound detectable
with proton magnetic resonance spectroscopy (1HMRS)
in the human brain and therefore representing a nonin-
vasively measurable cerebral metabolite, NAA has faced
increasing scrutiny in neurotrauma research during the
past 5 years (Brooks et al., 2000; Cecil et al., 1998; Choe
et al., 1995; Friedman et al., 1998; Ross et al., 1998; Ru-
bin et al., 1997). Reduction of NAA levels following
blunt TBI is generally accepted as evidence of both post-
traumatic neuronal and axonal damage even when
demonstrated in areas of normal appearing cerebral cor-
tex (Friedman et al., 1999; Ricci et al., 1997), hemi-
spheric white matter, and corpus callosum (Cecil et al.,
1998; Garnett et al., 2000b; Smith et al., 1998). However
the precise role and significance of NAA reduction after
TBI is still controversial (Alessandri et al., 2000; Al-Sam-
sam et al., 2000).

The first objective of this study was to investigate the
time course of NAA changes in varying grades of dif-
fuse TBI to support the notion that reduction of NAA is
proportional to injury severity as recently proposed by
Garnett et al. (2000). However, the majority of the afore-
mentioned studies using 1HMRS for NAA quantification
have, by necessity, reported results in the form of ratios
of peak areas, typically NAA/creatine (Cr) or
NAA/choline (Cho). This methodology assumes con-
stancy in the concentration of either Cr or Cho, a condi-
tion not necessarily correct after trauma. To obtain 
absolute metabolite concentrations we measured whole-
brain NAA by high-performance liquid chromatography
(HPLC) analysis (Tavazzi et al., 2000).

The second objective was to provide evidence that
NAA reduction in not solely related to neuronal cell loss,
but also might depend on the amply demonstrated ener-
getic impairment due to posttraumatic mitochondrial dys-
function (Ahmed et al., 2000; Fiskum, 2000; Vagnozzi

et al., 1999; Verweij et al., 2000; Xiong et al., 1997). The
background for this hypothesis is the fact that several
studies have furnished strong evidence that NAA reduc-
tion can reflect energetic disturbance secondary to mito-
chondrial dysfunction (Bates et al., 1996; Clark, 1998).
To assess energetic status, we synchronously measured
the whole-brain ATP concentration.

MATERIALS AND METHODS

Experimental Protocol and Surgical Preparation

All surgical procedures were considered and approved
by VCU Institutional Animal Care and Use Committee
Regulations, in compliance with NIH standards and
guidelines.

One hundred adult Sprague-Dawley rats, weighing
350–400 g (375.5 6 15.6 g), were randomly divided into
the following experimental groups: (1) sham control (n 5

12); (2) moderate diffuse traumatic brain injury (n 5 36);
(3) severe diffuse traumatic brain injury (n 5 36); (4) se-
vere diffuse traumatic brain injury combined with 10 min
of hypoxia-hypotension (THH-10; n 5 16). The rats were
initially anesthetized with halothane anesthesia (4%). The
animals were then intubated under direct vision and me-
chanically ventilated through an endotracheal tube with
a gas mixture of N2O (70%), O2 (30%), and halothane
(0.5–1.5%) using a Narcomed ventilator. A femoral
artery was cannulated with PE-50 tubing (Becton Dick-
inson & Company, Parsippany, NJ), for measuring
mABP and arterial blood gases. Mean arterial blood pres-
sure was maintained at 100 mm Hg. In animals that did
not undergo secondary insult, blood gases were main-
tained throughout the entire experiment with a pO2 of
100–130 mm Hg and a pCO2 of 35–40 mm Hg. The an-
imals’ temperature was maintained at 36.5–37.5°C using
a rectal temperature probe (YSI, Inc., model 73A, Yellow
Springs, OH) and a heating lamp. Following stabilization
of blood gases and blood pressure, the animal was posi-
tioned in a stereotaxic frame (David Kopf Instruments,
Tujunga, CA). A midline scalp incision was made, the
skin and periosteum were reflected, and the skull was
carefully dried. A 1-cm-round stainless steel disk was
mounted on the skull by using acrylic super glue posi-
tioned midline between bregma and lambda.

Moderate and Severe Diffuse Traumatic 
Brain Injury

The impact acceleration head injury model (Foda and
Marmarou, 1994; Marmarou et al., 1994) was used to
produce trauma. A cylindrical column of segmented brass
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weighing either 450 or 500 g was dropped through a Plex-
iglas tube onto the disc fixed to the skull vault of the an-
imal. The severity of the injury was adjusted by varying
the mass of the brass weight and/or the height it fell
through. According to the biomechanics of this model
and the pathophysiological changes previously described
in detail (Marmarou et al., 1994), an impact of 500 g from
a height of 1 m was used to induce a moderate head in-
jury; impact of 450 g from 2 m was considered a severe
head injury. A full description of the methodology of the
impact acceleration model has been reported previously
(Marmarou et al., 1994).

Briefly, after the bonding agent was dry and the metal
disk firmly fixed, the animal was disconnected from the
respirator and placed in a prone position on a foam bed
of known elastic parameters and secured in place with
two belts. The injury was delivered by dropping the cho-
sen weight from the predetermined height. After trauma,
the rat was rapidly reconnected to anesthesia and artifi-
cially ventilated. Rats that did not survive the impact or
suffered skull fractures were excluded from the study.
Sham-operated animals underwent the same procedures
with the absence of the actual impact.

Trauma Coupled with Secondary Insult

The rationale of adding a secondary insult to this group
of animals derives from the clinical setting, where early
hypotension and hypoxia has been proven to cause cata-
strophic effects on the injured brain, and is an important
indicator of poor outcome. (Chesnut et al., 1993a,b; Sig-
norini et al., 1999) The method of superimposing a sec-
ondary hypoxic-hypotensive insult after trauma was re-
cently developed in our laboratory and reported
elsewhere (Yamamoto et al., 1999). Briefly, immediately
after the 450-g/2-m trauma, in the group of animals un-

dergoing secondary insult, hypoxia and hypotension were
induced by manipulation of anesthesia (Table 1). A re-
duction of FiO2 to 12% resulted in hypotension of 35.5 6

5.3 mm Hg and hypoxia of 44.5 6 5.1 mm Hg (PaO2).
Additionally, the inspired concentration of halothane was
increased by a maximum of 2% in order to blunt the
adrenergic response and maintain the stability of the in-
sult. Hypoxia and hypotension were sustained for 10 min,
after which anesthesia was returned to pretrauma con-
figuration.

Brain Sampling and Tissue Preparation

Animals designated to survive more than 30 min were
extubated and the scalp wound sutured. At the end of the
desired survival period, rats were again anesthetized and
sacrificed. In moderate and severe injury groups, animals
(n 5 4) were sacrificed at the following time points af-
ter trauma: 1 min, 10 min, 30 min, 2 h, 6 h, 15 h, 24 h,
48 h, and 120 h. In the THH-10, group animals (n 5 4)
were sacrificed at 2 h, 6 h, 24 h, and 48 h. Sham animals
(n 5 4 for each of the three groups) were sacrificed at 
24 h.

In vivo craniectomy was performed, and the whole
brain was directly transferred from the skull into liquid
nitrogen using a surgical spatula. This procedure not only
avoids possible ischemic conditions, but also permits a
quicker and more homogeneous cerebral tissue freezing
than other commonly used brain processing techniques
such as pouring liquid nitrogen in situ (Plaschke et al.,
1999). Animals considered as shams were exposed to ex-
actly the same experimental manipulations. The frozen
brain was then weighed and the cerebral tissue depro-
teinized (Lazzarino et al., 1989) by homogenization for
60 sec in ice cold 1.2 M perchloric acid (HClO4; 1:10;
w:v) at maximum speed using an Ultra-Turrax homoge-
nizer (Janke and Kunkel, IKA-Werk, Staufen, Germany).
Perchloric acid homogenate was then centrifuged at
20,190g for 15 min at 4°C; the supernatant was saved
and the pellet was homogenized again with 2 mL of ice-
cold 1.2 M HClO4. After centrifugation, supernatants
were combined, neutralized with 5 M potassium per-
chlorate (K2CO3), and immersed for 90 sec in liquid ni-
trogen in order to optimize K2CO3 precipitation. Sam-
ples were then centrifuged (20,190g) for 10 min at 4°C,
supernatants were extracted with chloroform (1:1; v:v;
Lazzarino et al., 1991) in order to remove any lipid-sol-
uble materials, they were centrifuged again, and the up-
per aqueous phase was saved at 280°C. The neutralized
chloroform-extracted solution was filtered through a 0.45
mM HV-Millipore filter and then loaded (100 mL) onto
the column for HPLC analysis.
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TABLE 1. PHYSIOLOGICAL VARIABLES

DURING THE SECONDARY INSULT

Preinsult THH-10a Postinsultb

MABP 115.5 6 10.5 35.5 6 5.5 112.7 6 3.8
Ph 7.42 6 0.04 7.35 6 0.05 7.36 6 0.04
PaCO2 38.0 6 3.0 33.0 6 5.0 36.5 6 3.5
PaO2 120.5 6 10.5 44.5 6 5.1 130 6 10.5

aValues were obtained during secondary insult.
bValues were obtained 1 h postinsult.
Values are expressed as the mean 6 standard deviation of

four different animals.
THH-10, severe trauma combined with 10 min of hypoxia

and hypotension.



High-Performance Liquid 
Chromatography Analysis

The HPLC apparatus consisted of a Constametric 3500
dual pump system (ThermoQuest Italia, Rodano, Milan,
Italy) set at a wavelength of 190–300 nm. Data were ac-
quired and analyzed using ChromQuest software pro-
vided by the HPLC manufacturer. Concentrations of ATP
were determined on a 50-mL sample by an ion-pairing
HPLC method (Lazzarino et al., 1991) using a Kromasil
250 3 4.6 mm, 5-m particle size column, provided with
its own guard column (Eka Chemicals AB, Bohus, Swe-
den), and tetrabutylammonium hydroxide as the pairing
reagent. Different metabolites were separated as de-
scribed in detail elsewhere (Lazzarino et al., 1989;
Vagnozzi, et al., 1999) ATP was identified, and absolute
concentration was determined at 267-nm wavelength,
comparing both retention times and absorption spectra of
each sample chromatogram with the same parameters of
freshly prepared ultrapure standard.

Separation of NAA was obtained isocratically, ac-
cording to a method recently developed in our laborato-
ries (Tavazzi et al., 2000), by using a mobile phase buffer
(Buffer A) with the following composition: 2.8 mM tetra-
butylammonium hydroxide, 25 mM KH2PO4, 1.25%
methanol, pH adjusted to 7.00. The flow rate was 1
mL/min, and the temperature was kept constant at 23°C.

After each chromatographic run of cerebral tissue ex-
tracts (20 mL), the column was washed for at least 20
min at a flow rate of 1.3 mL/min with a washing solu-
tion (Buffer B) with the following composition: 2.8 mM
tetrabutylammonium hydroxide, 100 mM KH2PO4, 30%
methanol, pH 5.50. Before injecting a new sample, a sub-
sequent column conditioning for 15 min at a flow rate
of 1.3 mL/min with the separating buffer A was per-
formed. Assessment of NAA concentration was made at
210-nm wavelength using the same purity criteria and
comparison of absorption spectra utilized for the ATP
identification.

Statistical Analysis

ATP and NAA levels were expressed as the mean 6

standard deviation of four animals at each time point.
For both metabolites, statistical differences between
sham-controls and injured animals at different time
points, within the same injury severity group, and be-
tween the three levels of trauma, was tested by analysis
of variances (ANOVA) and posthoc Fisher’s PLSD test.
The same procedure was used to test the difference be-
tween the injury severity groups at 2 h, 6 h, 24 h, and
48 h. The relationship between the time course of NAA
and ATP observed in moderate, severe, and THH injury

was tested by simple regression and correlation analy-
sis. A 95% confidence level was considered statistically
significant.

RESULTS

N-Acetylaspartate and ATP Changes in 
Moderate Injury

The time courses of NAA and ATP changes are rep-
resented in Figure 1. In the control group, the mean level
of NAA equaled 9.84 6 0.88 mmol/g w.w. Following
moderate TBI, NAA fell within minutes, reaching statis-
tical significance after 10 min (7.88 6 0.91 mmol/g w.w.,
p , 0.01). A further NAA reduction of 35% of the base-
line level was detected at 6 h (6.15 6 0.1 mmol/g w.w.,
p , 0.0001), while maximum decrease was evident at 
15 h postinjury when NAA reached 46% of the control
value (5.34 6 1.14 mmol/g w.w., p , 0.0001). From this
time point up to 5 days postinjury, NAA showed a pro-
gressive recovery, reaching 86% of the baseline at 120 h
(p 5 0.04).

The time course of ATP changes mirrored the NAA
changes. The mean ATP concentration in control animals
equaled 2.41 6 0.15 mmol/g w.w. A gradual reduction of
ATP started within minutes and reached statistical sig-
nificance at 2 h postinjury, at which time ATP concen-
tration was diminished by 38% of baseline (1.9 6 0.38
mmol/g w.w., p , 0.005). The lowest ATP value was
found at 6 h postinjury showing a decrease of 57%
(1.03 6 0.14 mmol/g w.w., p , 0.0001). At 15 h postin-
jury, ATP remained 45% below baseline, despite a trend
toward recovery. ATP restoration continued at later time
points, reaching 78% of baseline at 48 h (1.88 6 0.26
mmol/g w.w., p , 0.05), and at 120 h postinjury ATP re-
duction in injured animals was not significantly different
from control animals.

N-Acetylaspartate and ATP Changes in 
Severe Injury

The time course of NAA and ATP changes are repre-
sented in Figure 2. One minute following severe TBI,
NAA had fallen by 25% compared with control (7.43 6

0.57 mmol/g w.w., p , 0.0001). From this time point up
to 24 h, there was no further significant reduction in NAA
concentrations. In the 24-h group, NAA was significantly
higher than in the 15-h group (8.65 6 0.92 mmol/g w.w.
and 7.18 6 0.67 mmol/g w.w., respectively, p , 0.01),
but was still diminished with respect to the baseline (11%
decrease, p , 0.05). After this period of apparent partial
recovery, a dramatic reduction by a further 48% of the
control values occurred at 48 h postinjury (5.13 6 0.98
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FIG. 1. Concentrations of NAA and ATP determined by HPLC analysis of perchloric acid brain tissue extract. Following mod-
erate diffuse TBI, recovery of NAA is observed, and it is paralleled by restoration of ATP.
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mmol/g w.w., p , 0.0001), reaching a 59% reduction at
120 h (4.06 6 0.47 mmol/g w.w.).

A similar time course was seen in the ATP concen-
trations. Ten minutes after trauma, a significant reduc-

tion of ATP (20% of the control values) was already de-
tectable (2.12 6 0.34 mmol/g w.w., p , 0.01), and after
30 min a 28% decrease was observed (1.91 6 0.17
mmol/g w.w., p , 0.001). At 2 h postinjury, ATP had de-
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FIG. 2. Concentrations of NAA and ATP after severe diffuse TBI. NAA shows a sudden reduction followed by a plateau. Be-
tween 24 and 48 h, maximal NAA decrease occurs with no recovery. The lacking of ATP restoration testifies to the persistent
energetic crisis.
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creased by 44% of baseline (1.5 6 0.26 mmol/g w.w.,
p , 0.0001). This value represented a plateau with no
further statistically significant reduction detectable up to
24 h. However, at 24 h postinjury, ATP showed a par-
tial recovery, reaching 62% of baseline values (1.64 6

0.33 mmol/g w.w., p , 0.005). At 48 h, a second dra-
matic reduction of ATP (58% of the control values) was
observed, with no further significant changes occurring
up to 5 days postinjury (1.12 6 0.15 mmol/g w.w., p ,

0.0001).
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FIG. 3. Concentration of NAA and ATP after severe diffuse TBI, coupled with 10 min of posttraumatic hypoxia-hypotension.
Secondary insult strongly reduces NAA concentrations at 48 h. Severe energetic unbalance is testified by a 90% reduction in
ATP at this time point.
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Severe Head Injury Coupled with 
Secondary Insult

The time courses of NAA and ATP changes for severe
injury with secondary insult are represented in Figure 3.
Following hpoxia-hypotension, a sharp and more severe
reduction of NAA was observed. At 2 h postinjury, NAA
was reduced by 30% compared with control values and
by 52% at 6 h (6.18 6 0.51 mmol/g w.w., p , 0.0001,
and 4.76 6 0.13 mmol/g w.w., p , 0.0001, respectively).
No further statistically significant changes were observed
up to 24 h. At 48 h postinjury a dramatic decrease of 81%
compared with baseline was observed (1.97 6 0.5
mmol/g w.w., p , 0.001 compared to the 24-h group).

Two hours following injury, ATP already showed a
73% reduction (0.64 6 0.1 mmol/g w.w.) compared with
the control group. After this time, although slight reduc-
tions were noticed at 24 h and 48 h postinjury, no fur-
ther significant changes were detected. However, it is
noteworthy that the mean value of ATP at 48 h showed
a 90% reduction.

Comparison of Injury Severity and 
NAA-ATP Reduction

Analysis of the three different levels of trauma at 2 h
postinjury showed no statistical difference with respect
to NAA reduction. At 6 h and 24 h postinjury, the mod-

erate and severe injury groups did not exhibit differences;
only the THH group showed a significant NAA reduc-
tion. ATP differences were significant at 2 h but only in
THH animals, with a 53% reduction compared to the
other trauma groups. At 48 h postinjury, the three levels
of injury showed the most significant differences (Fig.
4). Most importantly, both NAA and ATP were restored
at later time points in moderate injury. Compared to this
“recovering” group, in the severe injury and THH groups,
NAA was reduced by 38% and 77%, respectively. ATP
exhibited a proportional reduction of 40% and 85% at the
same time point.

DISCUSSION

The results of the present study demonstrate that, af-
ter diffuse TBI, the reduction of NAA observed at 48 h
postinjury is graded according to the severity of insult.
Following moderate injury, NAA reduced gradually and
recovered spontaneously to reach baseline levels. Severe
trauma and severe trauma coupled with secondary insult
showed a sudden and progressive NAA fall, which was
irreversible up to 5 days. The difference in NAA levels
between the three grades of injury was obvious at 48 h,
with maximum NAA reduction occurring in the sec-
ondary insult group. With regard to our second objective,
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FIG. 4. Concentration of NAA and ATP at 48 h postinjury showing that graded levels of injury correspond to graded bio-
chemical damage. In moderate trauma, ATP and NAA recover. In severe trauma alone and in trauma with secondary insult, re-
duction of NAA and ATP is proportional to the severity of injury.
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the time course of ATP change closely followed the pat-
tern of NAA change. Recovery of ATP coincided with
NAA recovery in moderately injured animals, while in
severe injuries, with sustained ATP depletion, NAA loss
persisted. This provides compelling evidence to support
the notion that NAA reduction can serve as an indicator
of energetic metabolism impairment.

N-Acetylaspartate Reduction after Traumatic
Brain Injury

While the exact function of NAA is as yet uncharac-
terized, many different roles have been suggested (Birken
and Oldendorf, 1989; Clarke et al., 1975; D’Adamo et
al., 1968; Mehta and Namboodiri, 1995; Patel and Clark,
1980; Taylor et al., 1995).

In a previous report by Rubin et al. (1997) a signifi-
cant posttraumatic reduction of NAA was observed in the
rodent using a parasagittal fluid percussion model. Using
high-resolution 1HMRS, a progressive loss of NAA was
documented at 1 h postinjury over a period of 14.5 min.

In another 1HMRS study, Smith et al. (1998) described
a 20% drop in NAA acutely after diffuse brain injury in
the miniature swine model. This reduction was observed
in regions of histologically confirmed axonal pathology,
starting from 1 h postinjury and lasting up to 7 days
postinjury.

In our attempt to test the hypothesis that the amount
of NAA reduction is proportional to the degree of injury,
we used a model of diffuse TBI producing graded neu-
ronal and axonal damage, and we found consistent re-
sults of an acute 25% reduction of NAA in severe injury.
However, the analysis of moderate injury showed nearly
complete spontaneous NAA recovery after 5 days. These
data are consistent with previous histological characteri-
zation of this type of injury (Foda and Marmarou, 1994),
which did not reveal extensive axonal damage and was
comparable to grade I diffuse axonal injury (DAI) ac-
cording to Adams’ classification (Adams et al., 1989).
The findings are also consistent with long-term behav-
ioral observations in moderately injured animals, which
showed only slight differences compared with sham-in-
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FIG. 5. Scatterplot showing the relationship between NAA and ATP variation following varying grades of diffuse traumatic
brain injury. Each point represents NAA and ATP measurement in the individual animals (n 5 4) at 2, 6, 24, and 48 h postin-
jury. The high correlation suggests that NAA and ATP reductions share similar mechanisms, although the nonlinear relationship
reveals that these process are not tightly coupled.

http://www.liebertonline.com/action/showImage?doi=10.1089/08977150152693683&iName=master.img-004.jpg&w=440&h=311
http://www.liebertonline.com/action/showImage?doi=10.1089/08977150152693683&iName=master.img-004.jpg&w=440&h=311
http://www.liebertonline.com/action/showImage?doi=10.1089/08977150152693683&iName=master.img-004.jpg&w=440&h=311


jured animals, with the main differences being present 1
day postinjury with consistent improvement over time
(Beaumont et al., 1999). This observation supports the
potential role of NAA in quantifying neuronal damage
(Cecil et al., 1998) and predicting neuropsychological
outcome after TBI (Friedman et al., 1998, 1999). A pre-
vious demonstration of NAA recovery in experimentally
induced DAI was reported by Rango et al. (1995) in a
study that documented a 72-h reduction in NAA/Cr and
a return to normal levels 7 days post injury. Finally,
restoration of NAA has been observed in patients recov-
ering from acute demyelinating lesions, stroke, epilepsy,
and carotid occlusive disease in conjunction with resolu-
tion of neurological deficits (Cendes et al., 1997; De Ste-
fano et al., 1995; Kalra et al., 1998; Uno et al., 1996).

In the present study, we measured NAA using the
HPLC technique, a methodology that measures whole-
brain metabolite concentrations, but which is relatively
uninformative about changes at the single cell level.
Hence, especially at the latest time points, it is difficult
to delineate whether an absolute percentage reduction in
metabolite concentration represents a uniform reduction
within dysfunctional cells or rather a reduction caused by
neuronal depletion with normal residual cells. Our find-
ing of NAA recovery in the moderate injury group im-
plies that at least one process leading to NAA reduction
is reversible and not simply due to cell death. In the se-
verely injured brain, we found almost 60% reduction in
NAA; however in this model, 60% reduction in the neu-
ronal population is not seen. A possible source of error
in estimating NAA reduction at later time points is pos-
sible change in nonneuronal protein due to posttraumatic
glial hypertrophy and invasion. Nevertheless, in this
model of trauma, with no secondary insult, these phe-
nomena are of limited importance in accounting for a
50% NAA reduction at 48 h (Bodjarian et al., 1997; 
Dietrich et al., 1999; Ito et al., 1996).

Biochemical Analysis

Absolute NAA determinations using 1HMRS require
either internal or external standards, each with its own
advantages and limitations. A crucial assumption nor-
mally made is the use of tabulated values for brain wa-
ter content, a situation clearly unsatisfactory because of
differences in tissue type and the presence/absence of
edema (Barker et al., 1993; Friedman, et al., 1999). This
problem has led to widely varying reported levels of tis-
sue NAA (Keevil et al., 1998) with limited work focused
to document the accuracy and reliability of this technique
(Florian et al., 1996; Strauss et al., 1997). In a previous
report from this laboratory investigating the accuracy of
an in vivo estimation of absolute NAA concentration by

1HMRS using cerebral water as an internal reference
standard, we found good agreement with the HPLC mea-
surements only in control animals. In the traumatized an-
imal, 1HMRS NAA reduction at 4 h postinjury was less
accurate with respect to HPLC (14% versus 24%, re-
spectively; Fatouros et al., 2001).

To assess NAA concentrations, we used a new method
of ion-pairing HPLC (Tavazzi et al., 2000). Under these
previously described chromatographic conditions, N-
acetylated amino acids NAA and NAG were eluted with
a k9 5 6.77 and 9.06, respectively, and were fully re-
solved from other compounds injected. The method was
linear for concentrations of NAA and NAG ranging be-
tween 0.25 and 500 mM for both compounds (0.05–100
nmol injected). By using an appropriate buffer composi-
tion for the chromatographic elution, NAA and NAG
were fully separated from other compounds commonly
present in brain tissue. We can be confident that there
was no cross-contamination of NAA or ATP signals,
since respective absorbances were at 210- and 267-nm
wavelength.

In a recent study, using the same injury model, NAA
was assessed using the method described by Koller et al.
(1984). In that study, values of control NAA equaled
8.490 6 0.44 mmol/g, and surprisingly no significant
variations were observed 4 h following severe TBI
(8.690 6 0.49 mmol/g w.w.; Al-Samsam et al., 2000).
After adding the secondary insult, NAA concentration
was only reduced by 19% (0.704 6 0.55 mmol/g w.w),
showing no difference between trauma coupled with sec-
ondary insult and secondary insult alone (HH). Those
findings are in contrast to the present study, which re-
vealed higher sham values and a proportional reduction
of NAA according to the injury severity (p , 0.0001).
Furthermore, histological analysis performed in the same
model at similar time points has revealed a marked dif-
ference in neuronal damage between HH and THH (Ya-
mamoto et al., 1999).

With the HPLC method utilized in the present paper,
the lowest limit of detection for NAA was 10 pmol of in-
jected sample. This high level of sensitivity was obtained
by virtue of the diode array detector, equipped with a
flow cell of 5-cm light path. We believe that the better
resolution of NAA changes seen in this study relates to
the greater sensitivity of this HPLC method compared
with the Koller technique. It is worth recalling that the
Koller technique used in the previous study does not
guarantee the separation of NAA from several other brain
metabolites (oxypurines, nucleosides), the concentrations
of which are subjected to profound fluctuation under
pathological conditions. The successful, direct, simulta-
neous determination of NAA and other cerebral metabo-
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lites constitutes a major advantage with respect to previ-
ously described HPLC methods for NAA assay (Burri et
al., 1990; Koller et al., 1984; Korf et al., 1991).

Effect of Diffuse Traumatic Brain Injury on
Energetic Metabolism

One of the most important findings to arise from this
study was the reversibility of NAA change following
moderate brain injury and its association with restoration
of ATP levels. Interestingly, NAA reduction in the early
phases after trauma was comparable in all three grades
of injury severity, and significant differences between the
groups only fully appeared at 48 h after injury (Fig. 4).
In contrast, significant differences in ATP levels were
seen at earlier time points, thus suggesting that the un-
derlying energetic disarrangement was different.

Although several studies measuring ATP using 31P
MRS have not been able to demonstrate a posttraumatic
reduction, several reports have documented an ATP re-
duction following TBI, always related to mitochondrial
dysfunction. Sullivan et al. (1998) reported a significant
time-dependent alteration in synaptosomal mitochondria
describing an immediate ATP reduction within 10 min
following cortical contusion injury. Vagnozzi et al.
(1999) described significant ATP, GTP, and mitochon-
drial nicotinic coenzyme (NAD and NADP) reduction 
after mild diffuse TBI starting 2 h postinjury. More re-
cently, Ahmed et al. (2000) reported altered mitochon-
drial membrane potentials and a 22–28% cellular ATP
reduction in mixed neuronal plus glial cultures undergo-
ing stretch-induced injury, starting 15 min posttrauma.

A criticism of our study could arise from the observa-
tion that ATP reduction might represent a simple meta-
bolic mismatch between energy demand and supply.
However, it is important to consider that these metabolic
alterations occurred in a trauma model characterized by
adequate cerebral blood flow (Barzo et al., 1996; Ito 
et al., 1996). In this situation, a mismatch would mean a
hypermetabolic state, while many studies have docu-
mented a reduced cerebral metabolic rate of oxygen
(CMRO2) and normal arteriovenous oxygen difference
(ADVO2; Bergsneider et al., 1997; Kushi et al., 1999;
Martin et al., 1997; Robertson et al., 1987; Valadka et
al., 2000). A marked posttraumatic increase in
lactate/glucose ratio and reduced oxygen consumption
(VO2) have recently been described at 4–6 h postinjury
with preserved CBF (Levasseur et al., 2000). These facts
rule out an ischemic etiology but rather suggest an in-
crease in anaerobic glycolysis in order to restore ATP,
confirming that the mitochondria are dysfunctional. Fi-
nally, intracellular ATP repletion rapidly restored the

resting membrane potential to normal levels, thus sug-
gesting that mitochondrial ATP is the major limiting fac-
tor for the restoration of homeostasis after TBI (Tavalin
et al., 1997). Within the monitoring time, in moderately
and severely injured animals, no significant episodes of
systemic hypotension or hypoxia were reported, thus ex-
cluding a possible ischemic etiology. Although from our
data we cannot exclude local ischemic phenomena, pos-
sibly mediated by various molecules (cathecolamines,
entdothelin, cytokines) rather than due to the lack of sub-
strates, ATP deficiency seems related to the extent of mi-
tochondrial damage directly triggered by the traumatic
insult (Fiskum, 2000; Vagnozzi et al., 1999; Xiong et al.,
1997). As a clinical implication, it is noteworthy to re-
call that, in the majority of TBI patients (65%), neuro-
logical function is transiently or permanently lost in the
presence of adequate cerebral blood flow (Obrist et al.,
1984).

N-Acetylaspartate as a Potential Marker of
Mitochondrial Dysfunction

Previous studies have furnished strong evidence to
support the view that NAA reduction is not only related
to neuronal death, but also could serve as an indicator of
mitochondrial dysfunction (Brenner et al., 1993; Clark,
1998; Goldstein, 1969; Heales et al., 1995; Knizley,
1967; Patel and Clark, 1979; Saragea et al., 1965). Re-
cently, a close linear relationship between ATP synthe-
sis and the ability to synthesize NAA was described
(Bates et al., 1996).

In our study, the high statistical correlation between
ATP and NAA levels (R2 5 0.84) would suggest that de-
pletion of NAA and ATP following TBI share a common
process. However, the metabolites’ relationship was not
linear (Fig. 5), which also suggests that the two com-
pounds are not tightly coupled. The fact that NAA and
ATP recovery was seen only following moderate trauma
indicates that there may be a threshold of ATP depletion,
beyond which NAA recovery is prevented.

In a recent report (Braun et al., 1999) in which both
1H and 31P MRS were performed in a model of experi-
mentally induced chronic hydrocephalus, NAA reduction
was not accompanied by a concomitant ATP reduction,
although a significant increase in lactate was described.
We believe that these data are not in conflict with our re-
sults and only support the notion that spectroscopic ratio
data are still approximate and difficult to interpret. The
levels of NAA reduction in Braun’s study are compara-
ble with our moderate injury data at 5 days, in which
NAA was reduced by 14% and ATP was normal. We
agree with Braun’s interpretation that moderate NAA 
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reductions may not reveal significant ATP depletion
since ATP synthesis may be compensated for by an in-
crease in anaerobic metabolism.

Our findings of NAA reduction within 1-min post-
trauma are interesting. There is substantial evidence in
the literature supporting the rapidity of the effect of a me-
chanical insult on mitochondrial dysfunction (Sullivan et
al., 1998), which may be largely a calcium-dependent
process occurring immediately after trauma (LaPlaca and
Thibault, 1998; Peng and Greenamyre, 1998). However,
the present study has a limitation due to the fact that mi-
tochondrial function was not directly measured. Although
NAA synthesis is energy-dependent and requires ATP
availability (Baslow, 1997), further studies are necessary
to establish a causal relationship between the two metabo-
lites and to exclude the possibility of examining two
epiphenomenon of the same process. The highly similar
time course would suggest that measurement of NAA as
an informative surrogate marker of tissue energetic meta-
bolic dysfunction is useful. However, further studies are
necessary to investigate the relationship between NAA
reduction and posttraumatic mitochondrial dysfunction.

CONCLUSION

The reduction of NAA following diffuse TBI is pro-
portional to the severity of traumatic insult. NAA falls
within minutes of injury and potentially may recover if
the traumatic insult is moderate. Adjunctive hypoxic-hy-
potensive insult strongly exacerbates the biochemical
damage blunting the recovery process. The concomitant
reduction of NAA with ATP observed in this model of
diffuse injury provides supportive evidence that NAA is
decreased as result of energetic disturbances. Most im-
portantly, recovery of NAA has been observed only in
concert with restoration of ATP. These data imply that
NAA reduction can be a reversible phenomenon, and fur-
ther studies are necessary to demonstrate whether phar-
macological attempts to preserve mitochondrial function
will affect NAA recovery and ultimately the prognosis
of diffuse TBI.
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