Giuseppe Gangarossa

Giuseppe Gangarossa
  • Doctor of Philosophy
  • Professor (Full) at Université Paris Cité

About

66
Publications
11,010
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,531
Citations
Introduction
Full Professor in Neurobiology of Homeostasis at the Université Paris Cité. Junior Member of the Institut Universitaire de France (IUF).
Current institution
Université Paris Cité
Current position
  • Professor (Full)
Additional affiliations
January 2009 - August 2010
Karolinska Institutet
Position
  • MAPK/ERK cascade in the mouse dentate gyrus
January 2009 - August 2010
Karolinska Institutet
Position
  • Molecular signaling in L-DOPA -induced dyskinesia mouse model
Education
September 2002 - October 2007
University of Bologna
Field of study
  • Neuropharmacology

Publications

Publications (66)
Article
Full-text available
Background Obesity has become a global pandemic, marked by significant shifts in both the homeostatic and hedonic/reward aspects of food consumption. While the precise causes are still under investigation, recent studies have identified the role of gut microbes in dysregulating the reward system within the context of obesity. Unravelling these gut–...
Preprint
Salience attributed to stimuli predicting rewarding or aversive outcomes is critical for adaptive behavior. Dopamine (DA)-neurons play a central role in this process by modulating responses to both rewarding and aversive cues. DA-neurons are tightly and readily modulated by DA D2 autoreceptors (autoD2Rs), but their role in regulating responses to a...
Preprint
Full-text available
The vagus nerve serves as an interoceptive relay between the body and the brain. Despite its well-established role in feeding behaviors, energy metabolism, and cognitive functions, the intricate functional processes linking the vagus nerve to the hippocampus and its contribution to learning and memory dynamics remain still elusive. Here, we investi...
Article
Full-text available
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) tr...
Preprint
Full-text available
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) tr...
Preprint
Full-text available
The N -acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N -acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on the dopamine (...
Preprint
Full-text available
Brain circuits involved in metabolic control and reward-associated behaviors are potent drivers of feeding behavior and are both dramatically altered in obesity, a multifactorial disease resulting from genetic and environmental factors. In both mice and humans, exposure to calorie-dense food has been associated with increased astrocytes reactivity...
Preprint
Full-text available
Brain circuits involved in metabolic control and reward-associated behaviors are potent drivers of feeding behavior and are both dramatically altered in obesity, a multifactorial disease resulting from genetic and environmental factors. In both mice and human, exposure to calorie-dense food has been associated with increased astrocyte reactivity an...
Preprint
Full-text available
In mammals, the ability to optimize and select behavioral strategies is a cardinal and conserved psychophysiological feature for maximizing the chances of survival. However, the neural circuits and underlying mechanisms regulating this flexible feature remain yet unsolved. Here, we demonstrate that such optimization relies on dopamine D2 receptors...
Article
Background: A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the Ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the d...
Article
Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists r...
Article
Full-text available
Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug’s class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora...
Preprint
Full-text available
Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R) which is abundant in the striatum and involved in both the therapeutic and side effects of this drugs class. Pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-size spiny neurons (MSNs), leads to a plethora of mole...
Preprint
Significant evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the Taq1A polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the Ankyrin repeat and kinase domain containing 1 kinase (ANKK1) near the dopamine D2 dopami...
Article
Full-text available
The regulation of food intake and energy balance relies on the dynamic integration of exteroceptive and interoceptive signals monitoring nutritional, metabolic, cognitive, and emotional states. The paraventricular thalamus (PVT) is a central hub that, by integrating sensory, metabolic, and emotional states, may contribute to the regulation of feedi...
Article
Full-text available
The regulation of food intake, a sine qua non requirement for survival, thoroughly shapes feeding and energy balance by integrating both homeostatic and hedonic values of food. Unfortunately, the widespread access to palatable food has led to the development of feeding habits that are independent from metabolic needs. Among these, binge eating (BE)...
Article
Although food-craving episodes during pregnancy are common in humans, the neural, cellular and molecular mechanisms that underlie these eating bouts remain unknown. New work points to dopamine receptor D2-expressing neurons of the reward system as critical mediators of compulsive feeding during pregnancy.
Preprint
Full-text available
Aim The regulation of food intake and energy balance relies on the integration of exteroceptive and interoceptive signals monitoring nutritional, metabolic and emotional states. This study aims at unraveling the role of catecholaminergic (CA) inputs to the paraventricular thalamus (PVT) in scaling feeding and metabolic efficiency. Methods To tackl...
Article
The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich d...
Article
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergi...
Article
Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resultin...
Preprint
Full-text available
The regulation of food intake, a sine qua non requirement for survival, thoroughly shapes feeding and energy balance by integrating both homeostatic and hedonic values of food. Unfortunately, the widespread access to palatable food has led to the development of feeding habits that are independent from metabolic needs. Among these, binge eating (BE)...
Article
Neurons within the arcuate nucleus control energy balance and represent the functional substrates through which FGF1 deploys its anti-diabetic action. Alonge et al. (2020) now report that the integrity of arcuate perineuronal nets, an extracellular matrix component that enmeshes GABAergic neurons, is reversibly altered in diabetic rats and a key co...
Article
The dorsal striatum, the largest subcortical structure of the basal ganglia, is critical in controlling motor, procedural, and reinforcement-based behaviors. Although in mammals the striatum extends widely along the rostro-caudal axis, current knowledge and derived theories about its anatomo-functional organization largely rely on results obtained...
Article
Full-text available
Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pe...
Preprint
Full-text available
The control of body weight and glucose homeostasis are the bedrock of type 2 diabetes medication. Therapies based on co-administration of glucagon-like peptide-1 (GLP-1) long-acting analogues and insulin are becoming popular in the treatment of T2D. Both insulin and GLP-1 receptors (InsR and GLP1-R, respectively) are expressed in brain regions crit...
Article
Full-text available
Deep brain stimulation (DBS) of the subthalamic nucleus is a symptomatic treatment of Parkinson’s disease but benefits only to a minority of patients due to stringent eligibility criteria. To investigate new targets for less invasive therapies, we aimed at elucidating key mechanisms supporting deep brain stimulation efficiency. Here, using in vivo...
Article
Energy-dense food alters dopaminergic (DA) transmission in the mesocorticolimbic (MCL) system and can promote reward dysfunctions, compulsive feeding, and weight gain. Yet the mechanisms by which nutrients influence the MCL circuitry remain elusive. Here, we show that nutritional triglycerides (TGs), a conserved post-prandial metabolic signature am...
Article
Full-text available
The caudal part of the striatum, also named the tail of the striatum (TS), defines a fourth striatal domain. Determining whether rewarding, aversive and salient stimuli regulate the activity of striatal spiny projections neurons (SPNs) of the TS is therefore of paramount importance to understand its functions, which remain largely elusive. Taking a...
Article
The dorsal striatum exhibits bidirectional corticostriatal synaptic plasticity, NMDAR and endocannabinoids (eCB) mediated, necessary for the encoding of procedural learning. Therefore, characterizing factors controlling corticostriatal plasticity is of crucial importance. Brain-derived neurotrophic factor (BDNF) and its receptor, the tropomyosine r...
Preprint
Full-text available
The dorsal striatum exhibits bidirectional corticostriatal synaptic plasticity, NMDAR- and endocannabinoids-(eCB)-mediated, necessary for the encoding of procedural learning. Therefore, characterizing factors controlling corticostriatal plasticity is of crucial importance. Brain-derived neurotrophic factor (BDNF) and its receptor, the tropomyosine...
Preprint
Full-text available
The caudal part of the striatum, also named the tail of the striatum (TS), defines a fourth striatal domain. Determining whether rewarding, aversive and salient stimuli regulate the activity of striatal spiny projections neurons (SPNs) of the TS is therefore of a paramount importance to understand its functions, which remain largely elusive. Taking...
Article
Full-text available
Several subtypes of modulatory neurons co‐express vesicular glutamate transporters (VGLUTs) in addition to their cognate vesicular transporters. These neurons are believed to establish new forms of neuronal communication. The atypical VGLUT3 is of particular interest since in the striatum this subtype is found in tonically active cholinergic intern...
Chapter
The striatum integrates dopamine-mediated reward signals to generate appropriate behavior in response to glutamate-mediated sensory cues. Such associative learning relies on enduring neural plasticity in striatal GABAergic spiny projection neurons which, when altered, can lead to the development of a wide variety of pathological states. Considerabl...
Preprint
Deep brain stimulation of the subthalamic nucleus is a symptomatic treatment of Parkinson’s disease but benefits only to a minority of patients due to stringent eligibility criteria. To investigate new targets for less invasive therapies, we aimed at elucidating key mechanisms supporting deep brain stimulation efficiency. Here, using in vivo electr...
Article
Nuclear receptors (NR) are emerging as key players in the central nervous system (CNS) with reported implications in physiological and pathophysiological conditions. While other NR have been studied, it is unknown whether invalidation of the pregnane xenobiotic receptor (PXR, NR1I2) corresponds to neurological modifications in the adult brain. PXR-...
Article
Activity-dependent long-term potentiation (LTP) and depression (LTD) of synaptic strength underlie multiple forms of learning and memory. Spike-timing-dependent plasticity (STDP) has been described as a Hebbian synaptic learning rule that could account for experience-dependent changes in neural networks, but little is known about whether and how ST...
Article
Nuclear receptors (NRs) are a group of transcription factors emerging as key players in normal and pathological CNS development. Clinically, an association between the constitutive androstane NR (CAR) and cognitive impairment was proposed, however never experimentally investigated. We wished to test the hypothesis that the impact of CAR on neurophy...
Article
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons. The gold standard therapy relies on dopamine (DA) replacement by the administration of levodopa (l-DOPA). However, with time l-DOPA treatment induces severe motor side effects characterized by abnormal and involuntary movements, or dyskinesia. Although earlier st...
Article
Exacerbated hippocampal activity has been associated to critical modifications of the intracellular signaling pathways. We have investigated rapid hippocampal adaptive responses induced by maximal electroshock (MES) stimulation. Here, we demonstrate that abnormal and exacerbated hippocampal activity induced by MES triggers specific and temporally d...
Article
T-type (Cav3) calcium channels play important roles in neuronal excitability, both in normal and pathological activities of the brain. In particular, they contribute to hyper-excitability disorders such as epilepsy. Here we have characterized the anticonvulsant properties of TTA-A2, a selective T-type channel blocker, in mouse. Using the maximal el...
Article
Full-text available
Type 10A phosphodiesterase (PDE10A) is highly expressed in the striatum, in striatonigral and striatopallidal medium-sized spiny neurons (MSNs), which express D1 and D2 dopamine receptors, respectively. PDE10A inhibitors have pharmacological and behavioral effects suggesting an antipsychotic profile, but the cellular bases of these effects are uncl...
Article
Full-text available
Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psyc...
Article
The acute activation of the dopamine D1-like receptors (D1R) is involved in a plethora of functions ranging from increased locomotor activity to the facilitation of consolidation, storage and retrieval of memories. Although much less characterized, epileptiform activities, usually triggered by disruption of the glutamate and GABA balance, have also...
Article
Increasing evidences suggest that dopamine facilitates the encoding of novel memories by the hippocampus. However, the role of dopamine D2 receptors (D2R) in such regulations remains elusive due to the lack of the precise identification of hippocampal D2R-expressing cells. To address this issue, mice expressing the ribosomal protein Rpl22 tagged wi...
Article
Full-text available
The fine-tuning of neuronal excitability relies on a tight control of Ca(2+) homeostasis. The low voltage-activated (LVA) T-type calcium channels (Cav3.1, Cav3.2 and Cav3.3 isoforms) play a critical role in regulating these processes. Despite their wide expression throughout the central nervous system, the implication of T-type Cav3.2 isoform in br...
Article
Full-text available
The circadian clock comprises a set of genes involved in cell-autonomous transcriptional feedback loops that orchestrate the expression of a range of downstream genes, driving circadian patterns of behavior. Cognitive dysfunction, mood disorders, anxiety disorders, and substance abuse disorders have been associated with disruptions in circadian rhy...
Article
Full-text available
The striatum projection neurons are striatonigral and striatopallidal medium-sized spiny neurons (MSNs) that preferentially express D1 (D1R) and D2 (D2R) dopamine receptors, respectively. It is generally assumed that these neurons are physically intermingled, without cytoarchitectural organization although this has not been tested. To address this...
Article
Full-text available
The nucleus accumbens (NAc) is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs) constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core...
Article
The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within...
Article
Full-text available
Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs sp...
Article
Food palatability produces behavioral modifications that resemble those induced by drugs of abuse. Palatability-induced behavioral changes require both, the activation of the endogenous cannabinoid system, and changes in structural plasticity in neurons of the brain reward pathway. The ERK intracellular pathway is activated by CB(1) receptors (CB(1...
Article
Therapeutic agents and drugs of abuse regulate the extracellular signal-regulated kinase (ERK) cascade signaling in the medium-sized spiny neurons (MSNs) of the striatum. However, whether this regulation is associated with specific cortical and thalamic inputs has never been studied. We used Drd2-EGFP BAC-transgenic mice to undertake a topographica...
Article
The perirhinal cortex (PRh) is strategically located between the neocortex and memory-related structures such as the entorhinal cortex and the hippocampal formation. The pattern of strong reciprocal connections between these areas, together with experimental evidence that PRh damage induces specific memory deficits, has placed this cortical region...
Article
Full-text available
Activation of dopamine D1 receptors (D1Rs) has been shown to induce epileptiform activity. We studied the molecular changes occurring in the hippocampus in response to the administration of the D1-type receptor agonist, SKF 81297. SKF 81297 at 2.5 and 5.0 mg/kg induced behavioural seizures. Electrophysiological recordings in the dentate gyrus revea...

Network

Cited By