Giuseppe Caire

Giuseppe Caire
Technische Universität Berlin | TUB · Department of Telecommunication Systems

PhD

About

860
Publications
82,914
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
36,881
Citations
Additional affiliations
April 2016 - April 2016
University of Southern California
Position
  • Professor (Associate)
April 2014 - present
Technische Universität Berlin
Position
  • Professor (Full)

Publications

Publications (860)
Preprint
Full-text available
This paper considers a Gaussian multi-input multi-output (MIMO) multiple access wiretap (MAC-WT) channel, where an eavesdropper (Eve) wants to extract the confidential information of all users. Assuming that both the legitimate receiver and Eve jointly decode their interested messages, we aim to maximize the sum secrecy rate of the system by precod...
Article
This paper considers the implementation of compressive sensing (CS) approaches for beam alignment (BA) in multiuser millimeter wave (mmWave) MIMO systems. We particularly consider wideband time-varying channels in the practical low SNR regime. We examine two different time scales for beam-switching in the BA training phase at both the base station...
Preprint
Full-text available
This paper investigates the achievable region and precoder design for multiple access wiretap (MAC-WT) channels, where each user transmits both secret and open (i.e., non-confidential) messages. All these messages are intended for the legitimate receiver (or Bob for brevity) and the eavesdropper (Eve) is interested only in the secret messages of al...
Preprint
Full-text available
The fundamental concepts and challenges of orthogonal time frequency space (OTFS) modulation have been reviewed in Part I of this three-part tutorial. In this second part, we provide an overview of the state-of-the-art transceiver designs for OTFS systems, with a particular focus on the cyclic prefix (CP) design, window design, pulse shaping, chann...
Preprint
Full-text available
The first two parts of this tutorial on orthogonal time frequency space (OTFS) modulation have discussed the fundamentals of delay-Doppler (DD) domain communications as well as some advanced technologies for transceiver design. In this letter, we will present an OTFS-based integrated sensing and communications (ISAC) system, which is regarded as an...
Preprint
Full-text available
This letter is the first part of a three-part tutorial on orthogonal time frequency space (OTFS) modulation, which is a promising candidate waveform for future wireless networks. This letter introduces and compares two popular implementations of OTFS modulation, namely the symplectic finite Fourier transform (SFFT)- and discrete Zak transform (DZT)...
Research
Full-text available
In this note, we show how difficult the brute-force Fourier-Motzkin elimination is, even in a simple case with three eliminating variables. Specifically, we first give a theorem, which plays quite an important role in the study of information-theoretic security for a multiple access wiretap (MAC-WT) channel, and then prove it for the case with thre...
Article
Full-text available
Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iterative shrinkage thresholding algorithm (LBISTA) th...
Preprint
The pilot contamination in cell-free massive multiple-input-multiple-output (CF-mMIMO) must be addressed for accommodating a large number of users. We have investigated a decontamination method called subspace projection (SP). The SP separates interference from co-pilot users by using the orthogonality of subspaces of each users' principal componen...
Preprint
Full-text available
We study the problem of providing channel state information (CSI) at the transmitter in multi-user massive MIMO systems operating in frequency division duplexing (FDD). The wideband MIMO channel is a vector-valued random process correlated in time, space (antennas), and frequency (subcarriers). The base station (BS) broadcasts periodically beta_tr...
Preprint
Full-text available
Motivated by automotive applications, we consider joint radar sensing and data communication for a system operating at millimeter wave (mmWave) frequency bands, where a Base Station (BS) is equipped with a co-located radar receiver and sends data using the Orthogonal Time Frequency Space (OTFS) modulation format. We consider two distinct modes of o...
Preprint
This paper considers the distributed information bottleneck (D-IB) problem for a primitive Gaussian diamond channel with two relays and Rayleigh fading. Due to the bottleneck constraint, it is impossible for the relays to inform the destination node of the perfect channel state information (CSI) in each realization. To evaluate the bottleneck rate,...
Preprint
Cell-free massive MIMO is a variant of multiuser MIMO and massive MIMO, in which the total number of antennas $LM$ is distributed among the $L$ remote radio units (RUs) in the system, enabling macrodiversity and joint processing. Due to pilot contamination and system scalability, each RU can only serve a limited number of users. Obtaining the optim...
Preprint
Full-text available
We consider a scalable user-centric cell-free massive MIMO network with distributed remote radio units (RUs), enabling macrodiversity and joint processing. Due to the limited uplink (UL) pilot dimension, multiuser interference in the UL pilot transmission phase makes channel estimation a non-trivial problem. We make use of two types of UL pilot sig...
Preprint
Full-text available
We consider a hybrid delivery scheme for streaming content, combining cache-enabled Orthogonal Multipoint Multicast (OMPMC) and on-demand Single-Point Unicast (SPUC) transmissions for heterogeneous networks. The OMPMC service transmits cached files through the whole network to interested users, and users not being satisfied by this service are assi...
Preprint
Full-text available
Secure aggregation, which is a core component of federated learning, aggregates locally trained models from distributed users at a central server. The "secure" nature of such aggregation consists of the fact that no information about the local users' data must be leaked to the server except the aggregated local models. In order to guarantee securit...
Preprint
Full-text available
In this paper, we develop a beam tracking scheme for an orthogonal frequency division multiplexing (OFDM) Integrated Sensing and Communication (ISAC) system with a hybrid digital analog (HDA) architecture operating in the millimeter wave (mmWave) band. Our tracking method consists of an estimation step inspired by radar signal processing techniques...
Preprint
We investigate sensing-assisted beamforming for vehicle-to-infrastructure (V2I) communication by exploiting integrated sensing and communication (ISAC) functionalities at the roadside unit (RSU). The RSU deploys a massive multi-input-multi-output (mMIMO) array at mmWave. The pencil-sharp mMIMO beams and fine range-resolution implicate that the poin...
Preprint
Full-text available
We propose SwiftAgg+, a novel secure aggregation protocol for federated learning systems, where a central server aggregates local models of $N\in\mathbb{N}$ distributed users, each of size $L \in \mathbb{N}$, trained on their local data, in a privacy-preserving manner. SwiftAgg+ can significantly reduce the communication overheads without any compr...
Article
We construct and examine the prototype of a deep learning-based ground-motion model (GMM) that is both fully data driven and nonergodic. We formulate ground-motion modeling as an image processing task, in which a specific type of neural network, the U-Net, relates continuous, horizontal maps of earthquake predictive parameters to sparse observation...
Preprint
Full-text available
We consider a cell-free wireless system operated in Time Division Duplex (TDD) mode with localized user-centric clusters of remote radio units (RUs). Since the uplink pilot dimensions per channel coherence slot is limited, co-pilot users might incur mutual pilot contamination. In the current literature, it is assumed that the long-term statistical...
Preprint
Full-text available
We propose SwiftAgg, a novel secure aggregation protocol for federated learning systems, where a central server aggregates local models of $N$ distributed users, each of size $L$, trained on their local data, in a privacy-preserving manner. Compared with state-of-the-art secure aggregation protocols, SwiftAgg significantly reduces the communication...
Preprint
We consider the problem of estimating channel fading coefficients (modeled as a correlated Gaussian vector) via Downlink (DL) training and Uplink (UL) feedback in wideband FDD massive MIMO systems. Using rate-distortion theory, we derive optimal bounds on the achievable channel state estimation error in terms of the number of training pilots in DL...
Preprint
This paper deals with the problem of localization in a cellular network in a dense urban scenario. Global Navigation Satellite Systems (GNSS) typically perform poorly in urban environments, where the likelihood of line-of-sight conditions is low, and thus alternative localization methods are required for good accuracy. We present LocUNet: A deep le...
Preprint
Full-text available
This paper studies a novel multi-access coded caching (MACC) model in two-dimensional (2D) topology, which is a generalization of the one-dimensional (1D) MACC model proposed by Hachem et al. We formulate a 2D MACC coded caching model, formed by a server containing $N$ files, $K_1\times K_2$ cache-nodes with limited memory $M$ which are placed on a...
Preprint
Full-text available
Coded caching has been shown as a promissing method to reduce the network load in peak-traffic hours. In the coded caching literature, the notion of privacy is considered only against demands. On the motivation that multi-round transmissions almost appear everywhere in real communication systems, this paper formulates the coded caching problem with...
Preprint
Full-text available
We consider the cache-aided multiple-input single-output (MISO) broadcast channel, which consists of a server with $L$ antennas and $K$ single-antenna users, where the server contains $N$ files of equal length and each user is equipped with a local cache of size $M$ files. Each user requests an arbitrary file from library. The objective is to desig...
Article
This paper investigates the secrecy capacity region of multiple access wiretap (MAC-WT) channels where, besides confidential messages, the users have also open messages to transmit. All these messages are intended for the legitimate receiver (or Bob for brevity) but only the confidential messages need to be protected from the eavesdropper (Eve). We...
Preprint
Full-text available
We consider a scalable user-centric wireless network with dynamic cluster formation as defined by Bj\"ornsson and Sanguinetti. After having shown the importance of dominant channel subspace information for uplink (UL) pilot decontamination and having examined different UL combining schemes in our previous work, here we investigate precoding strateg...
Article
This paper proposes a deep reinforcement learning-based video streaming scheme for mobility-aware vehicular networks, e.g., vehicles on the highway. We consider infrastructure-assisted and mmWave-based scenarios in which the macro base station (MBS) cannot directly provide the streaming service to vehicles due to the short range of mmWave beams so...
Preprint
Full-text available
We investigate sensing-assisted predictive beamforming schemes for vehicle-to-infrastructure (V2I) communication by exploiting the integrated sensing and communication (ISAC) functionalities at the roadside unit (RSU). The RSU deploys a massive multi-input-multi-output (mMIMO) array and operates at millimeter wave (mmWave) frequencies. The pencil-s...
Article
This paper formulates a distributed computation problem, where a master asks N distributed workers to compute a linearly separable function. The task function can be expressed as Kc linear combinations of K messages, where each message is a function of one dataset. Our objective is to find the optimal tradeoff between the computation cost (number o...
Preprint
This paper proposes a deep reinforcement learning-based video streaming scheme for mobility-aware vehicular networks, e.g., vehicles on the highway. We consider infrastructure-assisted and mmWave-based scenarios in which the macro base station (MBS) cannot directly provide the streaming service to vehicles due to the short range of mmWave beams so...
Preprint
In massive MIMO systems, the knowledge of channel covariance matrix is crucial for MMSE channel estimation in the uplink and plays an important role in several downlink multiuser beamforming schemes. Due to the large number of base station antennas in massive MIMO, accurate covariance estimation is challenging especially in the case where the numbe...
Article
Visible light communications (VLC) as a wireless communication technology complementing the radio frequency-based wireless fidelity (WiFi). The hybrid VLC/WiFi, offers the best of both worlds, which are of particular interested in vehicular VLC (V-VLC) that have not yet been explored yet. In this paper, we propose an upper layer hybrid VLC-WiFi net...
Preprint
Full-text available
In this work, we propose a Deep neural network-assisted Particle Filter-based (DePF) approach to address the Mobile User (MU) joint synchronization and localization (sync\&loc) problem in ultra dense networks. In particular, DePF deploys an asymmetric time-stamp exchange mechanism between the MUs and the Access Points (APs), which, traditionally, p...
Preprint
Full-text available
In this work we treat the unsourced random access problem on a Rayleigh block-fading AWGN channel with multiple receive antennas. Specifically, we consider the slowly fading scenario where the coherence block-length is large compared to the number of active users and the message can be transmitted in one coherence block. Unsourced random access ref...
Preprint
Full-text available
The performance of millimeter wave (mmWave) communications strongly relies on accurate beamforming both at base station and user terminal sides, referred to as beam alignment (BA). Existing BA algorithms provide initial yet coarse angle estimates as they typically use a codebook of a finite number of discreteized beams (angles). Towards emerging ap...