Parallel Waveform Relaxation and Matrix Solution for Large PEEC Model Problems

Giulio Antonini Jonas Ekman Albert Ruehli
EE. Department EISLAB IBM Research
Univ. of L’Aquila Lulea University Yorktown Heights
L’Aquila, Italy Lulea, Sweden NY, USA

October 2007
Overview

- State of Parallel Processing
- Waveform Relaxation + Partitioning of Large Problems
- Application to PEEC using WR
- Results and Conclusions

Research

Application Ready

Present Status
New Role of Parallel Processing for Electrical Package Analysis

Real Parallel Processing has Finally Arrived!

- Parallel processing was key issue at 2007 DAC
- Interest in parallel EDA algorithms + software!
- New path for speed-up (hardware + software)

Challenge: New, fast, parallel algorithms

Hardware / Software

- Multi-core chips - lower latency solutions
- Networked processors - larger latency
- Large computer systems, multiple multi-core processors - larger latency connections
Using Combined Solution Approach

Local Near - Point by Point Type Computations
- Faster for low latency algorithms!
- Mostly *localized* computations
- Used to equalize subsystem compute time

Global Far - Waveform Coupling Computations
- Use Waveform Relaxation (WR) for solution
- WR, exchange of *waveforms* rather than *point* data
- Important: Works well for parallel machines with larger latency
Application: Large EM/Ckt Problems

EM/Ckt Problems

- EM/Ckt solution with many interactions
- Real problems: Heterogeneous mix of interactions both linear/nonlinear
- Nonlinear solvers needed for drivers/loads
- High frequencies demand 3D full wave solution

Large Problems Need Partitioning

- Some problems can be naturally partitioned
- WR: Partition with iterations, errors control
Fundamental Idea of Waveform Relaxation (WR)

Two subsystems (SS_y) example

- Choose parts which interact (weakly or One-Way)
- Large problems result in many SS_ys

\[v_{i}(t) \]

System Partition \(m \)

System Partition \(m+1 \)
PEEC Model for WR-EM Solution

Waveform Relaxation with All Circuit Domain EM Solution

- Transient (and frequency) domain electromagnetic models
- Circuit domain: capacitances, inductances, resistances, voltage, current sources
- Mixed Spice circuits and EM circuit analysis
- Using modified nodal analysis (MNA) formulation
- MNA: Full spectrum - dc to daylight EM solution
Basic Derivation of PEEC Model

Equation for Total Electric Field

- **KVL**: \(v = \int \mathbf{E} \cdot d\mathbf{l} \)

\[
\bar{E}^i(\bar{r}, t) = \frac{\bar{J}(\bar{r}, t)}{\sigma} + \mu \int_{V_t} G(\bar{r}, \bar{r}') \frac{\partial \bar{J}(\bar{r}', t_d)}{\partial t} dV' \\
+ \frac{\nabla}{\varepsilon_0} \int_{V_t} G(\bar{r}, \bar{r}') q(\bar{r}', t_d) dV'
\]

(1)

PEEC Circuit Model Element Computation

- **KVL**: Voltage = \(R \ I + s \ Lp \ I + Q/C \)
- **RHS Term 1**: Resistance
- **RHS Term 2**: Partial Inductance
- **RHS Term 3**: Coefficient of Potential
(Lp,P,R,τ)PEEC Equivalent Circuit Model

PEEC Equivalent Circuits For Two Basic Cells

- Example: 3 Node Discretization of “Metal Stick”
- Path along metal conductor is strongly coupled
- Coupled Partial Inductances and Capacitances

![Diagram of Equivalent Circuit Model](attachment:image.png)
Utilization of Different Ways for Partitioning

- Break into Subsystems SSy, How?
- Special circuit based splitting, partitioning into SSy
Outline of Partitioning Approach

EM Geometry Partitioning into SSys

- Conductors are strongly coupled
- Partial inductances and potential coefficients?
- Check for strength of the couplings
- Separate at weakly coupled boundaries

Utilization of Different Couplings

- **Assemble the Subsystems** SSy
- All components in an SSy have strong couplings
- Most SSy interconnects have weak couplings
- Tradeoff between SSy size and no. of iterations
Coupling Factors for Partial Elements

Coupling factors checks for partitioning

- Find that for PEEC majority of couplings are weak
- Coupling factors $\gamma \leq 0.25, 0.5$
- Convergence in 3 to 10 iterations
- Inductive coupling: $\gamma = \frac{Lp_{12}^2}{(Lp_{11}Lp_{22})}$
- Capacitive couplings, similarly
- Inductive, capacitive far couplings weak $\gamma \ll 0.1$
- Can also use distance-size related criteria
Inductive SS_y WR Decoupling

\[V_2 = Lp_{26} sI_6 + Lp_{29} sI_9 + \cdots \]
\[; V_6 = Lp_{62} sI_2 + Lp_{69} sI_9 + \cdots \]
Capacitive SS_y WR Decoupling

$$I_2 = \frac{p_{25}}{p_{22}} I_{c5} + \frac{p_{27}}{p_{22}} sI_7 + \cdots$$
Assembling the SSys form elements

Test Coupling all Elements Between SSy Elements

- Some \(dc \) paths are directly coupled
Solution of Partitioned SSys

- Neutral Delay Differential Equations (NDDE) in Modified Nodal Analysis (MNA) form

\[C_0^* \dot{x} + G_0^* x + \sum_i G_i^* x(t - \tau_i) + \sum_i C_i^* \dot{x}(t - \tau_i) - \sum_i B_i^* u_i(t - \tau_i) = \]
\[-\sum_i C_i^+ \dot{x}(t - \tau_i) - \sum_i G_i^+ u_i(t - \tau_i) + \sum_i B_i^+ u_i(t - \tau_i) \]

- Solve the subsystems SSy in usual Spice form
- Each processor has its own Spice circuit solver
- Always use updated waveform results
- Each subsystem SSy has its own timestep
- Need multi-rate interpolation among the coupled waveforms
Ordering and Scheduling for SSy

Ordering: (Pin1: SSy1), (Pin3: SSy2), (Pin4: SSy3), (Pin5: SSy4), (Pin2, Gnd: SSy5)

- Basic schedule SSy1, SSy2, SSy4, SSy5, SSy3
Waveform Validation for WR Solution

Set of Contacts over a groundplane

- Center to center spacing is 1mm
- Example 6 contacts, $400\mu^2 \times 13\mu$

Contacts are connected to 50 Ohms
The first contact is driven by a pulse voltage source with rise time $\tau_r = 50$ ps.

Left: transient voltage; Right: magnitude spectrum.
Induced Voltage at Other Contacts

First contact terminated with a 50 Ω resistance while all the other contacts are floating. The analysis is carried out by using the standard PEEC method as well as the (WR)PEEC solver.

Voltage at contacts 2 and 6.
Induced Voltage at Other Contacts

Potential of grounded contacts 2 and 6.
Connector Problem
Connector PEEC SSy Circuits

<table>
<thead>
<tr>
<th>Inductive cells</th>
<th>Capacitive cells</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>552</td>
<td>752</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 1: Global problem.

<table>
<thead>
<tr>
<th>Inductive cells</th>
<th>Capacitive cells</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>304</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 2: Grounded pin+ground plane.

<table>
<thead>
<tr>
<th>Global [s]</th>
<th>Grounded pin+ground plane [s]</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>119.4</td>
<td>21.35</td>
<td>5.59</td>
</tr>
</tbody>
</table>

Table 3: CPU-time requirements.
Parallel Matrix Solution of SSy

- Size of each SSy is different for real problems
- Several processors to solve SSy circuits

Parallel compute time for 1 pin and pin + ground
Multi-Bar: Crosstalk Problem

MTL: 11 conductors

Multiple parallel bars
Multiple Bars Waveform Validation

Input/output port voltages (left) and near/far end port voltages (right).
Single Processor Results for WR vs. Flat

- WR Speed Up Obtained for Conductor Array
- Number of subsystems (SSy): 11
- Unk. 1188: WR: 151 s; Flat: 553 s; SpU: 3.66
- Unk. 2508: WR: 323 s; Flat: 1433 s; SpU: 4.46
- Unk. 3388: WR: 660 s; Flat: 3284 s; SpU: 4.97
Summary and Conclusions

Parallel PEEC Solution using WR

- New research area for EM/Ckt parallel processing
- Guaranteed fast convergence ≤ 10 WR iterations
- Key interchange of waveforms rather than point data!
- New algorithm is highly suitable for parallel processing
- Experiment with larger problems in progress

October, 2007