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Summary. Model-based estimation of the effect of an exposure on an outcome is generally sensitive to the choice of which
confounding factors are included in the model. We propose a new approach, which we call Bayesian adjustment for confounding
(BAC), to estimate the effect of an exposure of interest on the outcome, while accounting for the uncertainty in the choice of
confounders. Our approach is based on specifying two models: (1) the outcome as a function of the exposure and the potential
confounders (the outcome model); and (2) the exposure as a function of the potential confounders (the exposure model). We
consider Bayesian variable selection on both models and link the two by introducing a dependence parameter, ω, denoting
the prior odds of including a predictor in the outcome model, given that the same predictor is in the exposure model. In
the absence of dependence (ω = 1), BAC reduces to traditional Bayesian model averaging (BMA). In simulation studies, we
show that BAC, with ω > 1, estimates the exposure effect with smaller bias than traditional BMA, and improved coverage.
We, then, compare BAC, a recent approach of Crainiceanu, Dominici, and Parmigiani (2008, Biometrika 95, 635–651), and
traditional BMA in a time series data set of hospital admissions, air pollution levels, and weather variables in Nassau, NY
for the period 1999–2005. Using each approach, we estimate the short-term effects of PM2.5 on emergency admissions for
cardiovascular diseases, accounting for confounding. This application illustrates the potentially significant pitfalls of misusing
variable selection methods in the context of adjustment uncertainty.
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1. Introduction
Estimating the effect of an exposure on an outcome, while
properly adjusting for confounding factors, is a common goal
in biomedical research. A prominent and controversial ex-
ample arises in observational studies of the health effects of
environmental contaminants, where the choice of potential
confounders is challenging, and major policy decisions can de-
pend on it. The most common practice is currently to select
a statistical model for the estimation of the effect, and report
effect estimates and confidence intervals (CIs) that are con-
ditional on that model being correct. This does not account
for “adjustment uncertainty,” that is uncertainty about which
variables should be included in the model to properly adjust
for confounding.

It is possible to effectively convey this uncertainty by sen-
sitivity analysis, showing the variation of the effect estimate
and its interval over a range of plausible choices of con-
founders (Dominici, McDermott, and Hastie, 2004; Peng, Do-
minici, and Louis, 2006). Bayesian model averaging (BMA)
has been suggested as a more formal tool to account for
model uncertainty. Bayesian predictions that account for un-
certainty in the selection of predictors (Raftery, Madigan,
and Hoeting, 1997; Hoeting et al., 1999) are based on treat-

ing the indicators of whether each predictor is included in
the model as unknown nuisance parameters. This results in
a weighted average of predictions whose weights depend on
the support that each selection receives from the data. This
principled approach enjoys a number of desirable proper-
ties from a frequentist point of view as well, and has per-
formed competitively in out-of-sample prediction comparisons
(Chipman, George, and McCulloch, 2002; Yeung, Bumgarner,
and Raftery, 2005). The conceptual simplicity and solid logic
behind treating the unknown confounder subset as a param-
eter is attractive in adjustment uncertainty as well. Raftery
(1995) and Hoeting et al. (1999) suggested to estimate the
exposure effect by a weighted average of model-specific ef-
fect estimates, again using the model’s posterior probabili-
ties as weights. Viallefont, Raftery, and Richardson (2001)
applied this method to estimate an exposure’s odds ratio in
case-control studies. Other applications include air pollution
research (Clyde, 2000; Koop and Tole, 2004).

However, though effective in some cases, traditional im-
plementations of BMA can face severe limitations in effect
estimation. Most of these can be traced to the fundamen-
tal difficulty arising with the fact that regression coefficients
may have a different interpretation across models, a fact only
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recently being introduced explicitly in the specification
of prior distributions (Consonni and Veronese, 2008).
Crainiceanu et al. (2008) noted that model uncertainty meth-
ods useful in prediction may not generally perform well in ad-
justment uncertainty. They introduced a two-step approach
(CDP) to estimate an exposure effect accounting for adjust-
ment uncertainty. In the first step, this approach regresses
exposure on a large set of potential confounders and selects
confounders that are associated with exposure. In the second
step, it regresses outcome on exposure, after including the
confounders identified in the first step. Compared to this ap-
proach, traditional BMA with vague priors on the model space
did not perform well. This is because the posterior model
probabilities used to weight the model-specific estimates of
the exposure effect might not reflect the model’s ability to
estimate the exposure effect, properly adjusting for confound-
ing. For example, it can be that large weights are assigned to
models that do not adequately adjust for confounders, lead-
ing to a biased estimate of the exposure effect. This problem
may become more serious when limited prior information is
available on the effect of interest.

Here, we develop a novel Bayesian approach to adjust-
ment uncertainty, which we call “Bayesian adjustment for con-
founding” (BAC). We consider the selection of confounders as
a random variable, as in BMA, while overcoming the pitfalls
described earlier. Our method makes explicit allowance for
the fact that the interpretation of the effects can vary across
models. BAC addresses this by explicitly focusing on models
that are fully adjusted for confounding. Our technique gener-
alizes BMA to simultaneous modeling of the exposure and the
outcome. Our approach is based on specifying two models: (1)
the outcome as a function of the exposure and the potential
confounders (the outcome model); and (2) the exposure as a
function of the potential confounders (the exposure model).
The key to our approach is the specification of a prior dis-
tribution such that, conditional on a predictor’s inclusion in
the exposure model, the same predictor should also have a
higher probability to be included in the outcome model. To
this end, our prior specification includes a dependence pa-
rameter, ω, representing the odds of including a predictor in
the outcome model given that the same predictor is in the
exposure model. This leads to a model-weighting strategy for
effect estimation accounting for adjustment uncertainty. This
strategy assigns high weights to models that are likely to in-
clude all the necessary confounders. Our method is explicitly
designed to provide competitive results even without strong
prior information on the magnitude of the effect.

Although we do not take a causal inference perspective, our
method has points of contacts with causal inference method-
ologies that are based on joint modeling of exposure and out-
come as functions of confounders (Rosenbaum and Rubin,
1983; Robins, Mark, and Newey, 1992) and with their
Bayesian counterparts (McCandless, Gustafson, and Austin,
2009). This literature strongly emphasizes, as we do, the crit-
ical role of model specification and the need for robustness
to the choice of confounders (Rubin, 1997; Bang and Robins,
2005; Greenland, 2008). From this perspective, our method-
ology achieves a combination of three desirable properties:
effect estimation efficiency, via the exposure model; variable
selection robustness, achieved by allowing the selection to be

a random variable; and bias reduction, achieved by includ-
ing prior information to favor predictors of exposure in the
selection of variables for the outcome model.

2. Bayesian Adjustment for Confounding
2.1 Models
We build a model for estimating the effect of exposure, or
treatment, X on outcome Y . We also have information on
a set of M potential confounders U = {U1, . . . , UM } iden-
tified because they are likely to affect Y, though their ef-
fects could be weak. A priori, there may be uncertainty about
whether potential confounders should be adjusted for in effect
estimation.

Although many of our ideas are more general, we discuss
our approach in the context of simultaneous linear regression
models with two equations, namely, one for exposure and one
for outcome. In each equation, potential confounders are ei-
ther included or excluded, depending on unknown vectors of
indicators αX ∈ {0, 1}M and αY ∈ {0, 1}M . Here, αX

m = 1 (or
αY

m = 1) whenever Um is included in the exposure (or out-
come) model. For brevity, we refer to the parameters, α′s as
“models.” Conditional on unknown parameters (indicated by
Greek letters), and confounders, the regression equations for
exposure Xi and outcome Yi are,

E{Xi} =
M∑

m =1

αX
m δα X

m Uim , (1)

E{Yi |Xi} = βα Y
Xi +

M∑
m =1

αY
m δα Y

m Uim , (2)

where i indexes the sampling unit. For regression coefficients,
β and δ, we use a notation that explicitly keeps track of the
fact that those coefficients differ in meaning with the α’s. This
is especially important when one attempts to make inferences
that involve estimates of the exposure effect obtained using
different models. Intercept columns can be included among
the U ’s. Some αY

m ’s can be set to one, if confounders are
deemed required.

In developing a model for effect estimation, when a true
confounder is added or removed from the regression model,
the interpretation of the exposure coefficient changes; how-
ever, when a model includes all true confounders, and one
adds an additional variable that is not associated with X or
that is not associated with neither X nor Y, the interpretation
of the exposure coefficient does not change. This is in contrast
to prediction, where the predicted quantities typically main-
tain the same interpretation across models.

Thus, when studying confounding adjustment, it is useful
to consider the smallest outcome model that includes all the
necessary confounders. We denote it by αY

∗, and refer to it as
the minimal model. The estimand of interest—the true effect
of X on Y, is the coefficient of X in this model, or β∗ = βα Y∗ .
If there are interactions between exposure and confounders,
the estimands are model coefficients of both the main effect
and the interaction terms. Without loss of generality, we will
focus on the situation where there are no interaction terms.
Our goal is estimation of β∗ when αY

∗ is unknown. A key
observation is that all models that contain at least as many
confounders as the minimal model will provide estimates of
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Figure 1. An illustrative example. Solid arrows indicate
strong correlation, and dashed arrows indicate weak
correlation.

the exposure effect that are also interpretable as estimates
of β∗. On the other hand, a model that does not include the
minimal model, that is, a model that excludes at least one
true confounder, will provide estimates of a parameter that is
not the estimand of interest.

2.2 A Basic Illustration
It is useful to illustrate our approach using a simple example.
Consider the situation depicted in Figure 1 —U1 is strongly
correlated with both exposure and outcome; U2 is strongly
correlated with exposure, but weakly with outcome; U3 is
strongly correlated with outcome and weakly correlated with
exposure; U4 is strongly correlated with outcome and uncorre-
lated with exposure; and finally, U5 is uncorrelated with both.

In this example, U1, U2, and U3 are the true confounders
of the effect of X on Y and the minimal model that can
provide a correctly adjusted effect is αY

∗ = (1, 1, 1, 0, 0). The
true model is αY = (1, 1, 1, 1, 0); this “includes” αY

∗, that is, it
includes all the variables in αY

∗. In addition, the true model
also includes U4. Because U4 is not correlated with X , the
interpretation of βα Y is the same as that of βα Y∗ . Therefore,
the true model also allows for correct adjustment. Because U4

is correlated with Y, including it can improve overall model
fitting, which may yield smaller standard error of the X co-
efficient estimate. Thus, the true model may potentially lead
to greater efficiency than the minimal model, though greater
efficiency is not guaranteed in a finite sample. The full model
αY = (1, 1, 1, 1, 1) also contains αY

∗ and a correctly defined
coefficient. On the other hand, a model that does not include
αY
∗ will estimate a parameter that is not properly adjusted for

confounding. For example, the model αY = (1, 0, 1, 1, 0) will
estimate a βα Y that is not adjusted by U2, which is an impor-
tant confounder. Nonetheless, it may still be a useful model
for prediction and may receive relatively strong support from
the data.

To illustrate, we construct a simulated data set where the
variables satisfy the relationships of Figure 1, using the cor-
relations of Table 1, and regressions, as,

Xi = δX
1 Ui1 + δX

2 Ui2 + δX
3 Ui3 + εX

i

Yi = βXi + δY
1 Ui1 + δY

2 Ui2 + δY
3 Ui3 + δY

4 Ui4 + εY
i , (3)

where i = 1, . . . , 1000, εX
i , εY

i are independent N (0, σ2
X )

and N (0, σ2
Y ), respectively, and the Um ’s are independent

N (0, σ2
U ). We set δX = (1, 1, 0.1), δY = (1, 0.1, 1, 1), β = 0.1,

and σ2
X = σ2

Y = σ2
U = 1. Using data so generated, we estimate

β by maximum likelihood using two models—one is the true

Table 1
The correlation matrix of the simulated data set in

Section 2.2
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X U1 U2 U3 U4 U5 Y
X 1.00 0.57 0.58 0.04 0.01 −0.01 0.41
U1 0.57 1.00 0.00 −0.06 0.03 −0.03 0.51
U2 0.58 0.00 1.00 −0.02 0.01 0.04 0.09
U3 0.04 −0.06 −0.02 1.00 0.02 −0.03 0.48
U4 0.01 0.03 0.01 0.02 1.00 −0.01 0.50
U5 −0.01 −0.03 0.04 −0.03 −0.01 1.00 −0.02
Y 0.41 0.51 0.09 0.48 0.50 −0.02 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

model and the other is the smaller model αY = (1, 0, 1, 1, 0),
which, unlike (3) does not include the true confounder U2.
Results are summarized in Table 2.

The BICs (Schwarz, 1978) for the true model and the
smaller model are similar (2882.228 for true model and
2878.249 for smaller model), indicating that they fit the data
comparably. The likelihood ratio test for the difference be-
tween them has p-value 0.087. However, the two models pro-
vide widely different estimates of β. The estimate from true
model is 0.121 (95% CI 0.059–0.183), whereas that from
smaller model is 0.160 (95% CI 0.116–0.204). In fact, the two
estimates have different interpretations. In this case, only the
larger and true model provides an estimate of the exposure
effect that is properly adjusted for confounding. This simple
example illustrates that model selection approaches for ad-
justment uncertainty in effect estimation should be different
from model selection approaches whose goal is prediction of
the outcome. In the former, models are valuable to the extent
that they correctly estimate a single parameter of interest.
In the latter, models are valuable to the extent that they ac-
curately predict the outcome—which can often be achieved
even by models that provide systematically biased estimates
of the exposure effect.

2.3 Prior Distributions and Implementation of BAC
The importance of including in the outcome model all the
potential confounders that belong to the minimal model sug-
gests that an approach that acknowledges the fact that only
a fraction of the models harbor the coefficient of interest with
the correct interpretation, could be successful in addressing
adjustment uncertainty from a Bayesian standpoint. We pro-
pose to pursue this idea via a novel approach called BAC,
which jointly considers the exposure and outcome models, as
in equations (1) and (2), and includes unknown model selec-
tion parameters, αX and αY . We specify a prior distribution
on αY |αX , such that

P
(
αY

m = 1
∣∣αX

m = 1
)

P
(
αY

m = 0
∣∣αX

m = 1
) = ω,

P
(
αY

m = 1
∣∣αX

m = 0
)

P
(
αY

m = 0
∣∣αX

m = 0
) = 1, m = 1, . . . , M, (4)

where ω ∈ [1,∞] is a dependence parameter denoting the prior
odds of including Um into the outcome model, when Um is in-
cluded in the exposure model. When ω = ∞, the first equation
in (4) becomes P (αY

m = 1|αX
m = 1) = 1, and requires that any
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Table 2
Comparison of model posteriors from BMA, BAC, and TBAC. The estimate of β from BMA is 0.157 with 95% credible interval

(0.105, 0.203), that from BAC is 0.121 with 95% credible interval (0.059, 0.182), and that from TBAC is 0.121 with 95%
credible interval (0.059, 0.183). BMA is implemented forcing the exposure to always be in the model (FBMA). The dependence

parameters, ω, in both BAC and TBAC are set to ∞
95% Confidence BMA BAC TBAC

Model β̂ interval BIC weight weight weight

(1,1,1,1,0; true model (3)) 0.121 (0.059, 0.183) 2882.228 0.060 0.985 0.970
(1,0,1,1,0) 0.160 (0.116, 0.204) 2878.249 0.927 0.000 0.000
(1,1,1,1,1) 0.122 (0.060, 0.184) 2888.834 0.001 0.015 0.030
(1,0,1,1,1) 0.160 (0.116, 0.204) 2884.771 0.012 0.000 0.000
(1,1,1,0,0) 0.096 (0.009, 0.183) 3545.253 0.000 0.000 0.000

Note: The weight in each of the three methods is defined as P (αY |D), the posterior of αY. This posterior is calculated differently in each
method. The posterior from BMA is calculated using a uniform prior on αY ; that from BAC is calculated from the marginal of P (αX, αY |D),
where the prior of P (αX, αY ) is defined in equation (5); and that from TBAC is calculated by using P (αY |X ) defined in equation (7) as the
prior on αY.

Um for which αX
m = 1 is automatically included in the out-

come model. When 1 < ω < ∞, our prior on αY |αX provides
a chance to rule out the predictors that are only associated
with X but not associated with Y . To account for the feed-
back effect of αY on αX, we also set

P
(
αX

m = 1
∣∣αY

m = 0
)

P
(
αX

m = 0
∣∣αY

m = 0
) =

1
ω

,
P

(
αX

m = 1
∣∣αY

m = 1
)

P
(
αX

m = 0
∣∣αY

m = 1
) = 1,

to assign low probabilities for predictors not selected by the
outcome model to be included in the exposure model. The
joint prior of (αX, αY ) implied by these conditional specifica-
tions is,

P
(
αX

m = 0, αY
m = 0

)
= P

(
αX

m = 0, αY
m = 1

)
= P

(
αX

m = 1, αY
m = 1

)
= ω/(3ω + 1)

P
(
αX

m = 1, αY
m = 0

)
= 1/(3ω + 1). (5)

The conditional prior of αY given αX in (4) plays a key
role in approximating the marginal posterior distribution of
the exposure coefficient under the minimal model, β∗,

P (β∗|D) =
∑
α Y

P (β∗|αY, D)P (αY |D),

where D = (X, Y ) contains vectors of observed data for X
and Y . Our analysis is also conditional on observed data for
potential confounders U , and they will not be noted in pos-
teriors for simplicity of notation. When ω is large, the condi-
tional prior in (4) greatly increases the chance for predictors
strongly correlated with X to be included in the outcome
model. These predictors are confounders if they are also cor-
related with Y . Therefore, the prior leads to a posterior distri-
bution of αY (P (αY |D)) that assigns mass mostly to models
that are fully adjusted for confounding, that is, models con-
taining the minimal model. For these models, βα Y = β∗ so
that P (β∗|αY, D) = P (βα Y|αY, D). Therefore, approximately,

P (β∗|D) .=
∑
α Y

P (βα Y|αY, D)P (αY |D), (6)

where P (βα Y|αY, D) can be directly estimated from ob-
served data. This approximation will be further discussed in
Section 3.

Our goal is to calculate the posterior distribution of
the parameters of interest (αX, αY, β∗) in equations (1) and
(2). In our implementation, we assume the following priors
for model parameters: δα X|(αX, τX) ∼ N (μ0α X, (τX)−1φ2Σ0α X ),
(βα Y

, δα Y )|(αY, τY ) ∼ N (μ0α Y, (τY )−1φ2Σ0α Y ), τX, τY ∼Gamma
(ν/2, νλ/2), where ν, λ, φ, the M -vector μ0α X, the (M + 1)-
vector μ0α Y, the M × M -matrix Σ0α X, and the (M + 1) ×
(M + 1)-matrix Σ0α Y are hyperparameters that are selected
as in Raftery et al. (1997). To implement the Markov chain
Monte Carlo (MCMC) algorithm, we make the following as-
sumptions:

A1: (βα Y
, X) are independent of αY given (αX, Ỹ ), where

Ỹ = Y − βα Y
X .

A2: X is independent of αY given αX.
A3: (βα Y

, Y ) are independent of αX given (αY, X).
A4: Ỹ is independent of αX given αY.

The assumptions can be interpreted as follows. A1: Given
a known Ỹ and a known exposure model, the selection of the
outcome model should no longer depend on the exposure and
its effect on Y. A2: Given that we know the covariates that
are included in the exposure model (i.e., αX ), the outcome
model should not provide additional information on X . The
two remaining assumptions can be interpreted similarly, ex-
cept that they are conditioning on the outcome model instead
of the exposure model.

We use a MCMC algorithm to draw posterior samples
of (αX, αY, βα Y ) to approximate P (αX, αY, β∗|D). These pos-
terior samples are obtained by iteratively sampling from
P (αX |βα Y

, αY, D), P (αY |βα Y
, αX, D) and P (βα Y |αX, αY, D).

Sampling from the first two full conditionals is achieved by
the MC3 method (Madigan and York, 1995). The derivation
of these full conditionals is described in Web Appendix A.

2.4 Two-stage Bayesian Adjustment for Confounding (TBAC)
In this subsection, we consider a second approach which, when
calculating the posterior distribution of (βα Y

, αX, αY ), cuts the
feedback from αY to αX. This approach, called two-stage BAC
(TBAC), treats the exposure and outcome models separately
in two stages.
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TBAC requires Assumption A2 as well as the following
assumption:

A1′: βα Y is independent of αY given Ỹ .

Assumption A1′ is similar to Assumption A1 except that
X is not taken into account because TBAC will treat X as
fixed when considering the outcome model in its second stage.

In stage one of TBAC, we specify a uniform prior on αX, a
conditional prior on αY |αX as defined in equation (4) and use
the exposure model only to calculate P (αX|X) and P (αY |X).
These two posterior distributions are calculated as follows:

P (αX|X) ∝ P (X|αX )P (αX )

P (αY |X) =∑
α X

P (αY |αX , X)P (αX|X)
using A2
====

∑
α X

P (αY |αX )P (αX|X),

(7)

where the expression of P (X |αX) is given in Web
Appendix A.

In stage two of TBAC, we use P (αY |X) as prior on αY

and approximate P (αY, β∗|D) by P (αY, βα Y|D). We assume the
same prior distributions for model parameters as in BAC and
implement two separate MCMC algorithms for each of the
two stages. Details on the sampling algorithms are described
in Web Appendix A.

TBAC can be considered as a BMA method on the out-
come model with an informative model prior P (αY |X) ob-
tained from stage one. This prior is the key difference be-
tween TBAC and traditional BMA, in which a flat uniform
prior on the outcome model is typically assumed. In the fol-
lowing section, we will provide a detailed comparison between
BAC/TBAC and BMA.

3. Relation to BMA
In the context of effect estimation, several authors (Raftery,
1995; Hoeting et al., 1999) suggested to calculate the posterior
distribution of the effect by taking an average over models,
weighted by their posterior probabilities,∑

α Y

P (βα Y|αY , Y )P (αY |Y ). (8)

This corresponds to marginalization, according to the law of
total probabilities, but only if the parameters βα Y have the
same interpretation.

From the perspective of adjustment uncertainty, (8) can be
decomposed into two parts, which are, the sum over models
that include the correct estimand, and the rest. That is,∑

α Y ⊇α Y∗

P (β∗|αY, Y )P (αY |Y )

+
∑

α Y �α Y∗

P (βα Y|αY, Y )P (αY |Y ), (9)

where α ⊇ α′ indicates that model α contains all the variables
that are also contained in model α′. The second term of (9)
averages across models that do not include αY

∗, and therefore,
do not estimate the same effect.

In BMA, one needs to be careful about not assigning large
weights to the models in the second term of equation (9). A
common practice in traditional implementations of BMA is
to use uniform, or highly dispersed, priors on the αY s and
often on the effect of interest as well. When the prior is the
same for all models, the ratio of the weights given to models
α1 and α2 is the Bayes Factor (P (Y |α1)/P (Y |α2); Kass and
Raftery, 1995) and the posterior model probabilities in BMA
are driven by a model’s predictive ability, which may differ
from its ability to properly adjust for confounding in effect
estimation.

To illustrate, the fifth column in Table 2 lists model weights
used by BMA in the simulated data set in Section 2.2. Most
of the weight (92.7%) is assigned to model (1, 0, 1, 1, 0), which
does not include all requisite confounders, and estimates the
effect at 0.160 (95% CI 0.116–0.204). In contrast, only 6.0% of
the weight is assigned to the true model (3) which estimates
the correct β∗. Thus, the BMA estimate of β (which is equal
to 0.157) is severely biased and its associated 95% credible
interval (0.105, 0.203) does not cover the true value of 0.1.
We repeated the simulation 1000 times. The coverage rate for
the 95% credible interval is only 0.79.

BAC and TBAC are constructed using the same general
principles as BMA, but, in our view, offer a far more appropri-
ate prior for the model αY . The conditional prior P (αY |αX )
defined in equation (4) includes BMA as a special case of
ω = 1, where a flat uniform prior is assigned to αY . But when
ω is larger than one, the prior of αY |αX is informative and
incorporates information on which U ′s are good predictors
of X . TBAC exploits the exposure model to identify con-
founders highly correlated with X . Some of these confounders,
if weakly correlated with Y, may not be identified by the out-
come model alone. BAC shares the same property as TBAC,
and in addition uses a full Bayesian approach in its imple-
mentation, which includes feedback from the outcome model
to the exposure model. Therefore, compared to BMA, BAC,
and TBAC attempt to place most of the posterior weights
P (αY |D) on the first term in equation (9) and away from the
second. To illustrate, Table 2 lists the model posterior weights
based on BAC—98.5% of the weight is assigned to the true
model, compared to only 6.0% assigned to the same model as
the one selected by BMA. No weight is assigned to models
not nesting the minimal model, compared to 93.9% in total
assigned by BMA. This result illustrates that linking the two
variable selection problems can assign large weights to models
including the minimal model, in cases when BMA can fail to
do so. This is also the heuristic behind approximation (6).

4. Simulations
In this section, we conduct simulation studies to illustrate
and compare the practical properties of BAC, TBAC, CDP
(a two-step frequentist approach accounting for adjustment
uncertainty by Crainiceanu et al., 2008), traditional BMA
(Raftery, 1995; Hoeting et al., 1999), and standard stepwise
selection (Mickey and Greenland, 1989). We consider two
simulation scenarios. The first shows that BMA can provide
a very biased estimate of the exposure effect even under a
very simple setting with only two confounders in the true
model. In contrast, BAC can fully adjust for confounding and
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Table 3
Comparison of estimates of β from six methods, along with

the gold standard (true model) in the first simulation scenario.
BIAS is the difference between the mean of estimates of β and
the true value, SEE is the mean of standard error estimates,
SSE is the standard error of the estimates of β, MSE is the
mean square error, and CP is the coverage probability of the

95% CI or credible interval

Method BIAS SEE SSE MSE CP

True model 0.000 0.044 0.044 0.002 0.95
BAC ω = ∞ 0.000 0.044 0.044 0.002 0.94

ω = 10 0.018 0.047 0.050 0.003 0.91
ω = 4 0.027 0.046 0.052 0.003 0.87
ω = 2 0.034 0.045 0.052 0.004 0.84

TBAC ω = ∞ 0.000 0.044 0.044 0.002 0.95
ω = 10 0.018 0.047 0.050 0.003 0.92
ω = 4 0.026 0.046 0.051 0.003 0.89
ω = 2 0.034 0.045 0.051 0.004 0.84

CDP 0.000 0.044 0.045 0.002 0.95
FBMA 0.041 0.044 0.051 0.004 0.78
NBMA −0.009 0.050 0.074 0.006 0.72
Stepwise 0.019 0.039 0.058 0.004 0.72

provide unbiased parameter estimates. The second shows sim-
ilar results in a more complex setting.

In our simulations, we consider both BAC and TBAC
with ω = 2, 4, 10 or ∞. For BMA, we consider two different
implementations—the first is forcing the exposure to always
be in the model (FBMA), whereas the second (NBMA) is not.
For the stepwise method, the threshold for adding a variable
into the model is taken as 0.20, and the threshold for removing
a variable is taken as 0.05 (Mickey and Greenland, 1989).

Our first scenario is similar to the one in Crainiceanu
et al. (2008) and considers the true model, Yi = βXi +
δY

1 U1i + δY
2 U2i + εY

i , where i = 1, . . . , 1000, and εY
i are in-

dependent N (0, 1). (Xi , U1i , U2i ) are independent normal
vectors with mean zero and a covariance matrix, Σ =
(σk l )3×3, where σkk = 1, k = 1, 2, 3, σ12 = σ21 = ρ, and σ13 =
σ23 = σ31 = σ32 = 0. The set of potential confounders, U , in-
cludes U1, U2 as well as 49 additional independent N (0, 1)
random variables. In our simulation, ρ is set to 0.7 and
β = δY

1 = δY
2 = 0.1. We generated 500 data sets. For each, we

calculated the maximum likelihood estimate (MLE) of β from
the true model and compared it with the estimates from six
estimation methods: BAC, TBAC, CDP, FBMA, NBMA, and
stepwise selection. The results are summarized in Table 3.

Unless noted, BAC and TBAC will refer to the special case
of ω = ∞ in the rest of this section. BAC, TBAC, and CDP
produce very similar estimates, both close to the estimates
obtained from the true model. All these methods have point
estimates around 0.1, the true value of β. Their MSEs are
also similar to each other. In contrast, the mean of point es-
timates based on FBMA are much larger than 0.1, indicating
that FBMA systematically overestimates the exposure effect
in this example. The MSE of FBMA is also higher. The mean
of point estimates based on NBMA is 0.091, which is close
to the means from BAC and TBAC. Despite this good aver-
age behavior, NBMA produces the worst results. The MSE of

NBMA is 0.006, which is much higher than 0.002 for BAC and
TBAC. The distribution of the point estimates from NBMA
reveals why NBMA has small bias and large MSE: whereas it
is centered roughly around the true value, this value falls in
a region of low mass. Thus, NBMA rarely provides an esti-
mate close to the true value, even though the average of the
point estimates across data sets is close. The point estimates
based on the stepwise method are systematically larger than
0.1. The MSE is higher than that of the true model.

The difference between BAC, TBAC, and CDP on one side,
and BMA and stepwise approaches on the other is even more
pronounced when comparing CIs or credible intervals (both
referred to as CI for brevity). The coverage probabilities of
95% CIs based on BAC, TBAC, and CDP are close to 0.95,
the desired value. In contrast, the coverage probabilities of
FBMA and NMBA are only 0.78 and 0.72, respectively.

It is interesting to investigate the impact of the depen-
dence parameter, ω, on confounding adjustment in BAC and
TBAC. As ω decreases from ∞ to 2, the connection between
exposure model and outcome model becomes weaker. The es-
timates, therefore, become closer to those from BMA. The
biases increase from 0.000 to 0.034, the MSEs increase from
0.002 to 0.004, and the coverage probabilities drop from 0.94
to 0.84 in BAC and from 0.95 to 0.84 in TBAC. The results
show that ω controls the degree of confounding adjustment,
with ω = ∞ providing the fullest adjustment in this scenario.

Our second simulation scenario considers a larger number
of potential confounders that are correlated with the expo-
sure and also with the outcome. We consider both variables
that are strongly and weakly correlated with exposure, and
assume the following true outcome model: Yi = βXi + δY

1 U1i

+ · · · + δY
14U14i + εY

i , where i = 1, . . . , 1000, εY
i are indepen-

dent N (0, 1), and (Xi , U1i , . . . , U7i ) are independent nor-
mal vectors with mean zero and a covariance matrix, Σ =
(σk l )8×8, where σk l = 1 if k = l or σk l = ρk+l−2 if k 
= l,
1 ≤ k, l ≤ 8. We also assume that the U8i , . . . , U14i indepen-
dently follow N (0, 1) distribution and are independent of
(X i , U 1i , . . . , U 7i ). The set of potential confounders U in-
cludes U1, . . . , U14 as well as 43 additional independent N (0, 1)
random variables that are independent with both X and
Y . In our simulation, β is set to 0.1, δ1 = · · · = δ14 = 0.1
and ρ = 0.7. Similarly to the first scenario, we generated
500 data sets. For each simulated data set, we calculated
the MLE of β from the known true model and compared it
to the estimates from the six methods: BAC, TBAC, CDP,
FBMA, NBMA, and stepwise. The results are summarized in
Table 4.

The differences we noted between BAC, TBAC, and CDP
on one side, and BMA and stepwise on the other, are even
more pronounced in this more complex example. The point
estimate obtained using FBMA is biased and larger than the
point estimate based on the true model. The coverage prob-
abilities of 95% CIs are only 0.55 and 0.63 for FBMA and
NBMA, respectively. The point estimate using the stepwise
method is also biased. The coverage probability is only 0.66.
In contrast, the point estimates based on BAC, TBAC, and
CDP are close to those based on the true model, and the
coverage probabilities are very close to the desired value. The
choice of ω in the priors of BAC and TBAC has a pronounced
effect on the estimates. When ω decreases from ∞ to 2, the
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Table 4
Comparison of estimates of β from six methods, along with

the gold standard (true model) in the second simulation
scenario. For BAC and TBAC, φ is set to 2.85. For FBMA,

several different φs are considered

Method BIAS SEE SSE MSE CP

True model 0.000 0.051 0.049 0.002 0.96
BAC ω = ∞ 0.009 0.051 0.050 0.003 0.96

ω = 10 0.045 0.055 0.058 0.005 0.84
ω = 4 0.064 0.055 0.061 0.008 0.75
ω = 2 0.080 0.055 0.062 0.010 0.64

TBAC ω = ∞ 0.006 0.051 0.050 0.003 0.97
ω = 10 0.043 0.055 0.058 0.005 0.85
ω = 4 0.062 0.055 0.060 0.007 0.76
ω = 2 0.078 0.055 0.061 0.010 0.66

CDP 0.000 0.051 0.048 0.002 0.97
FBMA φ = 2.85 0.097 0.054 0.061 0.013 0.55

φ = 1.05 0.070 0.055 0.060 0.009 0.70
φ = 0.30 0.039 0.053 0.055 0.005 0.87
φ = 0.10 0.019 0.046 0.039 0.002 0.96

NBMA 0.056 0.064 0.096 0.012 0.63
Stepwise 0.044 0.043 0.067 0.006 0.66

coverage probability drops from 0.96 to 0.64 in BAC and 0.97
to 0.66 in TBAC.

The performance of BMA depends strongly on the spread
of prior. For the Normal-Gamma prior we considered, the
spread can be controlled by hyperparameter, φ. Following the
recommendation by Raftery et al. (1997), we chose φ = 2.85
for BAC, TBAC, and BMA in all the examples in this arti-
cle. This prior is quite spread with 95% of the mass between
−5.27 and 5.27. The FBMA estimate under this prior is signif-
icantly biased. But the performance of FBMA improves when

a more concentrated prior with smaller φ is used. Table 4 lists
the estimates of FBMA based on different values of φ. When
φ = 0.1, with 95% of the mass between −0.19 and 0.19, the
FBMA estimates are as good as those based on BAC and
TBAC. This suggests that strong prior information, concen-
trating in the region of the true value, is required for FBMA
to have good performance. In contrast, BAC and TBAC pro-
vide reasonable estimates even under the most spread prior
φ = 2.85. This shows that strong prior information is not a
requisite for Bayesian approaches for effect estimation as long
as appropriate methods are applied.

We also computed the posterior inclusion probability
(Barbieri and Berger, 2004) defined, for the mth confounder,
as pm =

∑
αY :α Y

m =1 P (αY |D), which is estimated by the pro-
portion of appearances of confounder m in the chain of out-
come models. Figure 2 shows the estimated posterior inclusion
probabilities for all the confounders, in a simulated data set
from our second scenario, using TBAC. The first seven con-
founders have high posterior inclusion probability, indicating
that they are important for estimating the exposure effect β.
This is consistent with their high correlation with X .

4.1 Additional Simulations
In Web Appendix B, we describe simulations designed to eval-
uate and compare the performance of BAC priors with differ-
ent ω’s in the presence of predictors correlated with X but not
with Y. These predictors are not confounders because they
are not associated with Y given X. Including them in the
outcome model will not help for confounding adjustment and
may decrease the efficiency of effect estimation. We found that
using ω = 10 yields smaller MSE compared to ω = ∞. This
is because ω = 10 gives a nonzero probability for a predic-
tor included in the exposure model not to be included in the
outcome model. In other words, this prior is able to exclude
a predictor of X from the outcome model if that predictor is
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Figure 2. Posterior inclusion probability of potential confounders, separated into three groups by two vertical dashed lines.
The first seven (group A) are in the true model and are correlated with X , the next seven (group B) are in the true model
but are independent of X , the rest (group C) are not in the true model and are independent of X .
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not correlated with Y. Therefore, in the presence of predictors
only correlated with X but not with Y, a prior using a finite
ω tends to have higher efficiency than ω = ∞.

In Web Appendix C, we describe simulations designed to
evaluate the performance of BAC and TBAC when the ex-
posure model is misspecified. A disadvantage with BAC and
TBAC is that they require two models, whereas BMA only
requires one. However, in our context, this does not come nec-
essarily with an increased risk of model misspecification. Our
simulation results show that both BAC and TBAC are robust
to misspecification of the exposure model. The key feature in
confounding adjustment is to include a sufficient number of
confounders. A roughly correct exposure model may often be
enough to ensure that this happens.

In Web Appendix D, we describe simulations designed to
compare BAC to TBAC when ω = ∞. We found that the two
methods behave similarly in the majority of the cases exam-
ined here. However, they show some differences when deal-
ing with predictors weakly associated with both X and Y .
Compared to TBAC, BAC assigns lower weights to models
that include those predictors. As a result, the two methods
give somewhat different posterior distributions of αX and αY.
But because these predictors have limited impact on the esti-
mation of the exposure effect, they still provide very similar
exposure effect estimates.

In Web Appendix E, we provided simulation results to com-
pare BAC and TBAC with BMA under the two simulation
scenarios described in this section but with a smaller sample
size of 100. We found that the MSE from BMA is smaller than
that from BAC and TBAC in the first scenario, but is larger in
the second scenario. The results indicate that, although BAC
and TBAC in general perform better, BMA may sometimes
yield smaller MSE when the sample size is small. Combined
with results from Web Appendix B, we conclude that there
is not a single value of ω that is uniformly optimal in terms
of MSE. The choice of ω should depend on sample size, com-
plexity of confounding structure, as well as the bias/variance
trade off. And the prior with ω = ∞ is usually conservative,
which provides unbiased estimates.

5. Air Pollution Example
In air pollution epidemiology, adjusting for confounding bias
is probably the biggest challenge when estimating a small
health effect associated with exposure to an environmental
contaminant. In addition, because of the heavy policy impli-
cations associated with the public health impact of air pollu-
tion, most of the epidemiological evidence has been severely
challenged by the threat of confounding bias.

In this section, we apply the newly proposed methods
(BAC, TBAC) to daily time series data for Nassau County,
NY for the period 1999–2005. Although this data analysis
is mainly used as an illustration of our newly proposed ap-
proach, the results clearly illustrate the potential application
and impact of BAC and TBAC in epidemiology studies of
observational data. The data include 1532 daily records of
emergency hospital admissions, weather variables, and PM2.5

levels. A more extensive description of this data set can be
found in Dominici et al. (2006). The goal is to estimate the
increase in the rate of hospitalizations for cardiovascular dis-
ease (CVD) associated with a 10 μg/m3 increase in PM2.5,

while accounting for age-specific longer-term trends, weather
and day of the week. The hospitalization rate is calculated
separately for each age group (≥75 or not) on each day. In
our model, to control for longer-term trends due, for exam-
ple, to changes in medical practice patterns, seasonality, and
influenza epidemics, we include smooth functions of calendar
time. We also include a smooth function to allow seasonal
variations to be different in the two age groups. To control
for the weather effect, we include smooth functions of tem-
perature and dew point. To start, we consider a full model
that is large enough to include all the necessary confounders
(Dominici et al., 2000, 2004; Peng et al., 2006),

Yat = β PM2.5t + DOW + intercept for age group a

+ ns(Tempt , dfTemp) + ns(Tempt1−3, dfTemp)

+ ns(Dew, dfDew) + ns(Dewt1−3, dfDew) + ns(t, dft )

+ ns(t, dfa t ) × age group + εt ,

where the outcome
Yat =

√
CVD hospital admissions/size of population at risk

for each age group a (≥75 or not) on day t(= 1, . . . , 1532).
PM2.5t denotes the level of particulate matter having diame-
ter less than 2.5 μm on day t. DOW are indicator variables
for the day of the week. Tempt and Tempt1−3 are the temper-
ature on day t and the three-day running mean, respectively.
Dewt and Dewt1−3 are the dew point on day t and the 3-day
running mean. The quantity ns(., df ) is a natural cubic
spline with df degrees of freedom. We include ns(t, dft ),
ns(Tempt , dfTemp), ns(Tempt1−3, dfTemp), ns(Dew, dfDew), and
ns(Dewt1−3, dfDew) to adjust for the potential nonlinear
confounding effects of seasonal variations, temperature and
dew point. The quantity ns(t, dfa t ) × age group is a natural
cubic spline of t for the ≥ 75 age group to allow its seasonal
variation to be different from the other age group. Similar
to Crainiceanu et al. (2008), dfTemp is set to 12, dfDew is set
to 12, dft is set to 16 per year, and dfat is set to 4. These
degrees of freedom are considered sufficiently large for the full
model to include all the potential confounders (Crainiceanu
et al., 2008). The residuals εt are assumed to be independent
and identically distributed with a normal N (0, σ2) distri-
bution. After dropping some potential confounders due to
collinearity, we work with a set of 164 potential confounders.

We consider six approaches: BAC, TBAC, CDP, FBMA,
NBMA, and stepwise. For BAC and TBAC, we consider priors
with ω = 2, 4, 10, or ∞. The estimated PM2.5 effect (×10, 000)
denoted by β̂ is listed in Table 5: BAC, TBAC (with ω = ∞)
and CDP provide estimates of the short-term effect of PM2.5

on CVD hospital admissions with 95% CIs that do not include
0. With ω = ∞, both BAC and TBAC provide similar esti-
mates of the exposure effect as CDP. Moreover, all three meth-
ods provide smaller standard errors than the one obtained
under the full model. In comparison, FBMA and NBMA pro-
vide a very different and not statistically significant estimate
of the exposure effect. Some confounders known to be impor-
tant, such as temperature and dew point, are downweighted
in BMA. Both temperature and dew point are positively cor-
related with PM2.5 and negatively correlated with hospital-
ization rate. Failure to include them in the model diminishes
the PM2.5 effect. This illustrates that in practical applications
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Table 5
Comparison of estimates of PM2.5 effect on CVD

hospitalization rate based on BAC, TBAC, CDP, FBMA,
NBMA, stepwise, and the full model

Method β̂ SE(β̂) 95% CI

Full model 0.291 0.092 (0.110, 0.471)
BAC ω = ∞ 0.226 0.081 (0.067, 0.385)

ω = 10 0.217 0.079 (0.060, 0.371)
ω = 4 0.186 0.085 (0.019, 0.351)
ω = 2 0.155 0.079 (0.007, 0.317)

TBAC ω = ∞ 0.229 0.083 (0.071, 0.403)
ω = 10 0.216 0.075 (0.071, 0.367)
ω = 4 0.190 0.080 (0.035, 0.347)
ω = 2 0.155 0.077 (0.010, 0.313)

CDP 0.221 0.089 (0.045, 0.396)
FBMA 0.140 0.077 (−0.008, 0.298)
NBMA 0.007 0.033 (0.000, 0.131)
Stepwise 0.106 0.066 (−0.023, 0.234)

BMA and BAC can lead to different conclusions. The key
difference lies in the linking strength between the exposure
model and the outcome model. As the strength decreases,
which corresponds to smaller value of ω, the estimates from
BAC and TBAC become closer to that from BMA.

6. Discussion
Estimating an exposure effect, while accounting for the un-
certainty in the adjustment for confounding, is of essential
importance in observational studies. Building upon work by
Dominici et al. (2004) and Crainiceanu et al. (2008), in this
article, we develop Bayesian solutions to the estimation of
the association between X and Y accounting for the uncer-
tainty in the confounding adjustment. Given a set of poten-
tial confounders, we simultaneously address model selection
for both the outcome and the exposure. Although we dis-
cuss our methods in the setting of linear models, BAC and
TBAC are general concepts and are not constrained to the
linear case. For example, they can be extended to generalized
linear models using relatively well understood computational
strategies.

Like BMA, BAC, and TBAC take a weighted average over
models rather than making inference based on a single model.
However, they attempt to provide an estimate of the exposure
effect by combining information across regression models that
include all the requisite confounders, to ensure that the regres-
sion coefficient of interest maintains the same interpretation
across models. A nice feature of BMA that is retained by
BAC and TBAC is that the importance of confounders can
be evaluated based on posterior inclusion probability. This
information may reveal underlying connections between ex-
posure and confounders, which may become of interest for
future research. BAC and TBAC are more computationally
intensive than BMA.

Successful application of BAC and TBAC rely on avail-
ability of all confounders. Scientific knowledge is required to
ensure that these assumptions are valid. Statistical meth-
ods may also help to check whether there is evidence for
the existence of unmeasured confounders. For example, one

can decompose the association between exposure and out-
come into distinct spatio-temporal scales and check for the
consistency in the estimation of exposure effect across these
spatio-temporal scales (Janes, Dominici, and Zeger, 2007).

If there are no unmeasured confounders, the full model,
that is the model including all variables correlated with X
and Y, those correlated with Y only, as well as potentially
others that are not associated with either, will provide unbi-
ased estimates of the exposure effect. However, using the full
model will generally yield wider CIs compared to BAC and
TBAC. By combining estimations from different smaller mod-
els, especially from models that only include requisite con-
founders but do not include many unnecessary variables, BAC
and TBAC can provide more precise inference than the full
model.

TBAC parallels CDP in its two-stage structure, and in the
inclusion of variables selected from the exposure model into
the outcome model. However, there are also important dif-
ferences. TBAC provides a model-based solution rather than
a partially algorithmic one, and also arguably considers un-
certainty more fully in a Bayesian framework. BAC further
takes into account the feedback effect and considers a full
Bayesian approach. Also, in CDP, models are evaluated based
on the change in deviance between sets of increasing dimen-
sionality, a criterion that could lead to different conclusions
compared to BAC and TBAC. Large spaces of confounders
may potentially be required for CDP users to reliably observe
the stabilization of the estimated effect that is required for
the method to succeed. However, no restrictions on dimen-
sionality apply to BAC and TBAC. Computationally, CDP is
clearly faster, and also offers helpful visualizations. The two
methods produce results with similar frequentist properties in
our simulation studies.

In the propensity score literature, it is recommended to in-
clude variables that are strongly correlated with Y but only
weakly correlated with X into the model for calculating the
propensity score, as the bias resulting from their exclusion
would dominate any loss of efficiency in modest or large stud-
ies (Rubin, 1997; Brookhart et al., 2006). One of the strengths
of our method, shared by others such as doubly robust esti-
mation (Scharfstein, Rotnitzky, and Robins, 1999), is that we
can identify these in a data-based way, rather than having
to rely on prior knowledge as required in propensity score
adjustment.

An alternative Bayesian variable selection approach is the
Bayesian lasso (Park and Casella, 2008), assuming a mixture
prior of a point mass at zero and a double exponential distri-
bution for regression coefficients (Hans, 2010). An alternative
version of both BAC and TBAC could be constructed using
this prior instead. We expect that the use of the Bayesian
lasso on the outcome model alone would present similar lim-
itations to traditional BMA, but have not explored this in
detail.

In summary, in this article, we have motivated, defined, and
evaluated a tool for accounting for uncertainty in the selec-
tion of confounders in effect estimation. Our approach adopts
the fully probabilistic structure of BMA, without suffering
from the pitfalls we highlighted in traditional BMA imple-
mentations, and is likely to contribute to a more reasoned
and quantitative approach to the specification of models used
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to determine health effects of common exposures, and the re-
porting of the associated uncertainty.

7. Supplementary Materials
Web Appendices referenced in Sections 2 and 4 are avail-
able under the article Information link at the Biomet-
rics website http://www.biometrics.tibs.org. An R pack-
age implementing BAC and TBAC is available at http://

sweb.uky.edu/∼cwa236/BEAU/.

Acknowledgements

We thank Ciprian Crainiceanu for his significant input into
earlier versions of this manuscript, Eric Tchetgen for a help-
ful discussion, and David Diez, Roger D. Peng, and David
Haws for helpful comments on computer programming. We
also thank the Co-Editor, the Associate Editor, and two refer-
ees for insightful comments that have substantially improved
the article. The work of Francesca Dominici was supported by
grants EPA R83622, EPA RD83241701, EPA RD83479801,
NIH/NIEHS R01ES012054, NIH/NIEHS R01ES012044, and
NIH/NCI P01CA134294.

Conflict of Interest: None declared.

References

Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing
data and causal inference models. Biometrics 61, 962–973.

Barbieri, M. M. and Berger, J. O. (2004). Optimal predictive model
selection. The Annals of Statistics 32, 870–897.

Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J.,
Avorn, J., and Sturmer, T. (2006) .Variable selection for propen-
sity score models. American Journal of Epidemiology 163, 1149–
1156.

Chipman, H. A., George, E. I., and McCulloch, R. E. (2002). Bayesian
treed models. Machine Learning 48, 299–320.

Clyde, M. (2000). Model uncertainty and health effects studies for par-
ticulate matter. Environmetrics 11, 745–763.

Consonni, G. and Veronese, P. (2008). Compatibility of prior specifica-
tions across linear models. Statistical Science 23, 332–353.

Crainiceanu, C. M., Dominici, F., and Parmigiani, G. (2008). Adjust-
ment uncertainty in effect estimation. Biometrika 95, 635–651.

Dominici, F., Samet, J. M., and Zeger, S. L. (2000). Combining evidence
on air pollution and daily mortality from the twenty largest U.S.
cities: A hierarchical modeling strategy (with discussion). Journal
of the Royal Statistical Society, Series A: Statistics in Society
163, 263–302.

Dominici, F., McDermott, A., and Hastie, T. J. (2004). Improved semi-
parametric time series models of air pollution and mortality. Jour-
nal of the American Statistical Association 99, 938–948.

Dominici, F., Peng, R. D., Bell, M., Pham, L., McDermott, A., Zeger,
S. L., and Samet, J. M. (2006). Fine particulate air pollution and
hospital admission for cardiovascular and respiratory diseases.
The Journal of the American Medical Association 295, 1127–
1134.

Greenland, S. (2008). Variable selection versus shrinkage in the control
of multiple confounders. American Journal of Epidemiology 167,
523–529.

Hans, C. (2010). Model uncertainty and variable selection in
bayesian lasso regression. Statistics and Computing 20, 221–
229.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999).
Bayesian model averaging: A tutorial (with discussion). Statistical
Science 14, 382–417.

Janes, H., Dominici, F., and Zeger, S. L. (2007). Trends in air pollution
and mortality: An approach to the assessment of unmeasured
confounding. Epidemiology 18, 416–423.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association 90, 773–795.

Koop, G. and Tole, L. (2004). Measuring the health effects of air pol-
lution: To what extent can we really say that people are dying of
bad air. Journal of Environmental Economics and Management
47, 30–54.

Madigan, D. and York, J. (1995). Bayesian graphical models for discrete
data. International Statistical Review 63, 215–232.

McCandless, L. C., Gustafson, P., and Austin, P. C. (2009). Bayesian
propensity score analysis for observational data. Statistics in
Medicine 28, 94–112.

Mickey, R. M. and Greenland, S. (1989). The impact of confounder
selection criteria on effect estimation. American Journal of Epi-
demiology 129, 125–137.

Park, T. and Casella, G. (2008). The Bayesian lasso. Journal of the
American Statistical Association 103, 681–686.

Peng, R. D., Dominici, F., and Louis, T. A. (2006). Model choice in
time series studies of air pollution and mortality. Journal of the
Royal Statistical Society, Series A: Statistics in Society 169, 179–
203.

Raftery, A. E. (1995). Bayesian model selection in social research. So-
ciological Methodology 25, 111–163.

Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian model
averaging for linear regression models. Journal of the American
Statistical Association 92, 179–191.

Robins, J. M., Mark, S. D., and Newey, W. K. (1992). Estimating expo-
sure effects by modelling the expectation of exposure conditional
on confounders. Biometrics 48, 479–495.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of
the propensity score in observational studies for causal effects.
Biometrika 70, 41–55.

Rubin, D. B. (1997). Estimating causal effects from large data sets
using propensity scores. Annals of Internal Medicine 127, 757–
763.

Scharfstein, D. O., Rotnitzky, A., and Robins, J. M. (1999). Rejoin-
der to “Adjusting for nonignorable drop-out using semiparametric
nonresponse models”. Journal of the American Statistical Asso-
ciation 94, 1135–1146.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals
of Statistics 6, 461–464.

Viallefont, V., Raftery, A. E., and Richardson, S. (2001). Variable selec-
tion and Bayesian model averaging in case-control studies. Statis-
tics in Medicine 20, 3215–3230.

Yeung, K. Y., Bumgarner, R. E., and Raftery, A. E. (2005). Bayesian
model averaging: Development of an improved multi-class, gene
selection and classification tool for microarray data. Bioinformat-
ics 21, 2394–2402.

Received April 2010. Revised March 2011.
Accepted March 2011.


