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Abstract—This paper investigates the possibility to use
Channel State Information (CSI) extracted from Long Term
Evolution (LTE) signals for signal fingerprinting localization.
Being the first work in this direction, several types of signal
fingerprinting-based approaches have been compared (e.g.,
CSI-based vs RSSI-based, statistic vs deterministic matching
rule). In particular, the paper proposes a novel CSI-based
signal fingerprinting that uses as fingerprint not directly
the vector of channel gains per subcarrier, but rather some
features extracted from these vectors. This method would
greatly reduce the memory requirement of the database as
well as the computational complexity of the matching phase.
Experimental results, shown for both indoor and outdoor
environments, confirm the effectiveness of the proposed method
and also provide interesting insights on the use of LTE signal
fingerprinting based on CSI.
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I. INTRODUCTION

Nowadays, positioning is becoming more and more an es-
sential service. The range of Location-Based Services (LBS)
is rapidly expanding and, at the same time, users expect the
same level of performance whether they are indoor at home
or at work, outdoor in a rural or urban environment, or trav-
eling [1]. The Global Navigation Satellite System (GNSS)
represents the most common positioning technology, but
it is well known that its accuracy and availability drop
in several important application scenarios, such as indoor
environments and urban canyons. To enhance positioning
accuracy for all types of environment, on one hand there is
the effort of the 3rd Generation Partnership Project (3GPP)
to support more cellular-based localization techniques, such
as Enhanced Cell ID (E-CID), Assisted-Global Navigation
Satellite System (AGNSS), Observed Time Difference Of
Arrival (OTDOA) and Uplink Time Difference Of Arrival
(UTDOA), respectively defined in Releases 9 and 11 of Long
Term Evolution (LTE). On the other hand, extensive work
has been done in studying alternative localization solutions
mainly for indoor environments and based on other radio
signals (transmitted by dedicated sensors or by WiFi access
points). In both cases, fingerprinting, also known as Radio-
Frequency (RF) pattern matching, can play an important role
[2]. The basic idea of this technique is to find the location
of a mobile device by comparing its signal pattern received

from multiple transmitters, such as WiFi Access Points (AP)
or cellular Base Stations (BS), to a predefined database of
signal patterns. RF pattern matching method is proposed in
3GPP RAN4. Many works have considered a fingerprinting
approach for indoor localization using WiFi signals, either
based on measurements of the Received Signal Strength
Indicator (RSSI) [3] or of the Channel State Information
(CSI) [4]. For outdoor environments, most of the proposed
signal fingerprint-based localization techniques rely on mea-
surements on the radio signal transmitted by the BSs of a
cellular system (GSM [5], WCDMA [6]) or by WiFi APs
[7] and the fingerprint is usually a tuple comprising RSSI
measurements and BS or AP identifiers (cell-ID or MAC
address of the AP). Very recently, also radio measurements
from LTE signals have been considered, as in [8] where the
performance of a radio fingerprinting localization method
that combines LTE and WLAN measurements have been
evaluated. The considered radio measurements are the Ref-
erence Signal Received Power (RSRP) for LTE and the RSSI
for WLAN.

This paper focuses on localization based on CSI measure-
ments of LTE signals. Being, at the best of Authors’ knowl-
edge, the first work in this direction (i.e., use of LTE and
CSI), the paper aims to answer, through experimental results,
to some basic questions such as: ideally, and hence, without
considering practical implementation issues related to the
costs in terms of time and complexity to build the database of
fingerprints, may the use of CSI measurements improve the
localization accuracy with respect to signal strength-related
metrics (e.g., RSSI)? How to combine the measurements
from signals transmitted by different eNodeBs and what is
the impact? Moreover, the paper proposes a novel approach
in the use of CSI-measurements for fingerprinting, novel
with respect to other CSI-based solutions. In most of the
previous approaches (mainly proposed for indoor localiza-
tion and WiFi signals), fingerprints are vectors containing the
values of measured CSI. We propose to use as fingerprints
not directly the vectors of CSI, but some ”descriptors” of
the ”shape” of the CSI calculated on these vectors. This
would greatly reduce the requirements in terms of memory
for the database and also the computational complexity of
the matching phase. As it will be shown in the paper, the



fingerprint could be made up of 2 values per reference point
rather than 24. Experimental results, conducted both for
indoor and outdoor environments, show the effectiveness of
the proposed method, which could be also extended to other
types of RF signals (such as WiFi).

The paper is organized as follows: Section II provides
the theoretical background on LTE and signal fingerprint-
ing; Section III presents the proposed localization method;
Sections IV and V show the experimental setup and results,
while the conclusions are drawn in Section VI.

II. THEORETICAL BACKGROUND

A. LTE Signatures: CSI and RSRP

In case of WiFi, the term CSI indicates the vector of chan-
nel gains per subcarrier (usually, 30 subcarriers) which can
be also extracted by commodity hardware. In case of LTE,
for CSI we still mean a vector of channel gains per subcar-
riers which represents an estimate of the channel frequency
response. Therefore, we first need to explain how to extract
these channel gains from the receiver. In the following, we
consider only the LTE Frequency Division Duplexing (FDD)
mode, in which uplink and downlink channels are separated
in frequency. In LTE the information data is spread over a set
of orthogonal narrowband subcarriers spaced in frequency
by ∆f = 15 kHz. The LTE signal is organized in frames,
which have a duration of 10 ms. A frame can be represented
as a two-dimensional time-frequency grid and consists of
10 subframes. Each subframe is made up of 2 slots of
0.5 ms within which every elementary block, defined as a
Resource Element (RE), is mapped to an LTE symbol and
subcarrier respectively by its time and frequency indexes.
A group of REs on 12 consecutive subcarriers and a slot
timeframe is called Resource Block (RB). Let us denote with
y = {yc,1, yc,2, ....yc,N} the complex vector, received from
one of the 4 possible transmitting antennas of the eNodeB
serving the cell c, that, after the N-points FFT at the receiver,
corresponds to:

y = Xchc + w (1)

where Xc is the transmitted diagonal complex matrix and
hc is the vector containing the channel complex gains per
subcarrier. In Equation 1, noise and inter-cell interference
have been modeled as a complex white Gaussian random
process w. The channel gains are estimated by the receiver
using the Cell Specific Reference Signal (CRS) inserted in
some specific Orthogonal Frequency Division Multiplexing
(OFDM) symbols within every frame as represented in
Figure 1, which shows the CRSs in 1 RB. In Figure 1,
CRSs are represented by different colors corresponding to
different antennas. Therefore, in 1 slot, there is a total of
4 CRSs per antenna, located over different subcarriers. In
this work, we extract the channel gains per subcarrier, using
signaling messages within 6 RBs. As we use the signaling

messages, it is possible to apply the proposed localization
method without having a subscription to a specific operator.
Therefore, assuming that the channel stays rather stationary
over a slot (0.5 ms), in 1 slot we can extract from the receiver
N = 6∗4 = 24 channel gains for 24 different subcarriers. It
is worth noting that at one LTE receiver, it will be possible
to extract different vectors hc, for different transmitting
antennas and also for different eNodeBs available in its
position.

Figure 1. Cell Specific Reference Symbols for each transmitting antenna
in 2 consecutive slots and 1 RB

In the fingerprinting approach proposed and investigated
in this paper, the used fingerprints will be related to these
vectors of channel gains per subcarrier, which represent
the CSI. We will also consider the possibility to use as
fingerprint the RSRP, which can be calculated on the vectors
hc as follows:

RSRP =
1

N

N−1∑
i=0

|hc(i)|2 (2)

B. Signal Fingerprint-based Localization

Signal fingerprint-based localization techniques find the
location of a device by comparing its signal pattern received
from multiple transmitters (e.g. WiFi APs or cellular BSs)
to a predefined database of signal patterns. There is a variety
of signal fingerprint-based localization systems in literature
both for outdoor and indoor localization. The ”signatures”
are usually extracted from the signal received from an AP
or a BS of a cellular system. Moreover, in most of the
previous works, the fingerprint is a tuple comprising the
AP or BS identifiers and the corresponding measured RSSI
values. In this work, we propose a signal fingerprinting
localization method, which uses as fingerprints specific



features calculated on the CSI estimated by an LTE receiver.
In general, a fingerprint-based localization consists of the
following phases:

• Fingerprint Database Building Phase - The purpose
of this phase is to build up the offline fingerprint
database, which stores for each Reference Point (RP)
a fingerprint. The fingerprint is obtained by properly
processing some measurements of the signal received
by an AP or a BS. Let us denote with RFr the reference
fingerprint in the RP r.

• Fingerprint Acquisition Phase - For each Test Point
(TP), whose position is unknown, the fingerprint is cal-
culated using the same measurements on the received
signal. Let us denote with TF the fingerprint in a TP.

• Fingerprint Matching Phase - This phase consists of
associating to the fingerprint measured in the TP the
fingerprint stored in the built database which is closest
to the measured one according to a predefined matching
rule. The user location is then calculated as the location
of the RP corresponding to the found fingerprint.

There are two main approaches for the matching phase:
Deterministic Matching and Statistic Matching.

Deterministic Matching: For Deterministic Matching,
the RP r, that is associated to the TP whose fingerprint is
TF, in case of Nearest Neighbor (NN) matching, is the RP
that minimizes a deterministic function called Fingerprint
Distance (FD):

r : FD(RFr,TF) ≤ FD(RFr,TF), ∀r 6= r (3)

then the location (x, y) of the TP is calculated through the
following association:

(x, y) =⇒ (xr, yr) (4)

Other possible deterministic matching methods are the K-
Nearest Neighbor (KNN), in which the coordinates of the
K best RPs are arithmetically averaged:

(x, y) =
1

K

K∑
r=1

(xr, yr) (5)

and the K-Weighted Nearest Neighbor (KWNN) that com-
putes the weighted average of the coordinates of RPs with
the shortest distance to the TP and where the weights
correspond to the inverse of the fingerprint distances Dr:

(x, y) =

K∑
r=1

1

Dr
(xr, yr)

K∑
r=1

1

Dr

, Dr = FD(RFr,TF) (6)

Statistic Matching: In case of Statistic Matching, it
is employed a Naive-Bayes classifier working under the
hypothesis of statistical independent features and of equally
probable locations. The RP r associated to the TP is thus
the one maximizing the likelihood function:

r = arg max
r

[P (r|TF)] (7)

P (r|TF) ∝
F−1∏
i=0

Pfi(fi|r) (8)

Other classifier could be taken under analysis, e.g. Support
Vector Machine (SVM), but the Naive-Bayes is preferred
because of its simplicity.

III. CSI FINGERPRINTING

In this Section, we explain more in detail the proposed
CSI-based approach. As already mentioned, the basic LTE
signal measurements extracted from the LTE receiver are the
vectors hc of N = 24 elements as described in Section II.
From these vectors, calculated by the same receiver on the
LTE signals transmitted by different antennas of multiple
eNodeBs, a database like the one shown in Table I is built.

RP Coordinates Cell 1 . . . Cell c . . . Cell C

1 (x1, y1) R1,1 . . . R1,c . . . R1,C

...
...

...
...

...
r (xr, yr) Rr,1 . . . Rr,c . . . Rr,C

...
...

...
...

...
R (xR, yR) RR,1 . . . RR,c . . . RR,C

Table I
REFERENCE FINGERPRINT DATABASE

In Table I, for each RP r, and for each eNodeB c (denoted
as Cell), whose signal is received in the RP, a reference
fingerprint Rr,c is calculated. We distinguish two main
approaches for calculating Rr,c:

Direct CSI: Rr,c is directly a vector containing all
vectors hc,t, which are the CSIs estimated on the signal
received from the cell c and the Tx antenna t. Therefore,
considering the c-th eNodeB with Tc = 4 antennas, Rr,c is
given by:

Rr,c = [Rr,c,1,Rr,c,2,Rr,c,3,Rr,c,4] (9)

where:
Rr,c,t = hc,t (10)

and then the whole reference fingerprint is:

RFr = [Rr,1, . . . ,Rr,c, . . . ,Rr,C ] (11)

Obviously, the same procedure is followed for every test
fingerprint TF. This is how traditionally CSI fingerprinting



approaches work. In case of deterministic matching, accord-
ing to Equation 3, it is also necessary to define a fingerprint
distance metric FD, which in case of direct CSI comparison
has been chosen equal to:

FD(RFr,TF) =
1

C

C∑
c=1

[
1

Tc

Tc∑
t=1

d(RFr,c,t,TFc,t)

]
(12)

where d is the Euclidean Distance between two vectors.
Descriptors: Rr,c is a vector containing M features

calculated on the vector hc,t or on the RSRP. Each feature
is a number which is somehow related to the statistics of
the Reference Signal Received Power (Table II) or to the
”shape” of the Channel Frequency Response (Table III). A
similar approach has already been successfully employed in
[9] to perform device-free crowd counting and occupancy
estimation by WiFi.

Descriptor Formula

Mean µ = 1
W

W−1∑
s=0

RSRP[s]

Standard Devia-
tion

σ =

√
1

W−1

W−1∑
s=0

(RSRP[s]− µ)2

Fano Factor FF = σ2

µ

Table II
RSRP DESCRIPTORS

Since descriptors are heterogeneous quantities, which
can vary in very different intervals, before performing the
deterministic classification it is fundamental to normalize
the fingerprints in order to balance all the terms for distance
calculation. A min-max normalization approach is applied
to both reference and test fingerprints:

R̂r,c,t =
Rr,c,t −min

r
[Rr,c,t]

max
r

[Rr,c,t]−min
r

[Rr,c,t]
, ∀c, t (13)

T̂c,t =
Tc,t −min

r
[Rr,c,t]

max
r

[Rr,c,t]−min
r

[Rr,c,t]
, ∀c, t (14)

and, in this case, the fingerprint distance is calculated as the
vector distance between the normalized fingerprints:

FD(R̂Fr, T̂F) = d(R̂Fr, T̂F) (15)

The statistical matching, instead, is applied only to the
approach based on the descriptors since the estimation of the
probability distribution functions for all the CSI subcarriers
for each antenna relative to all LTE cells is extremely
computationally demanding. Moreover, since no distances
are calculated by the classifier, the fingerprint normalization
is no more needed in such an approach.

Descriptor Formula

Mean µ = 1
N

N−1∑
n=0

hn

Standard Devia-
tion

σ =

√
1

N−1

N−1∑
n=0

(hn − µ)2

Fano Factor FF = σ2

µ

Spectral Centroid

fn = n15 kHz, n = [−6RB : 3 : 6RB − 1]

SC =

N−1∑
n=0

hnfn

N−1∑
i=0

hi

Spectral Alpha α =
N−1∑
n=0

hnfn

Spectral Lambda λ = − 1
N−1

N−1∑
n=1

hn−hn−1

fn−fn−1

2
hn+hn−1

Spectral Entropy SE = −
N−1∑
n=0

hn
N−1∑
j=0

hj

log2
hn

N−1∑
i=0

hi

Spectral Flatness SF =

N

√√√√N−1∏
n=0

hn

1
N

N−1∑
n=0

hn

Spectral Slope SSL =

N−1∑
n=0

(fn−fn)(hn−µ)

N−1∑
n=0

(fn−f)2

Spectral Spread SSP =

√√√√√√
N−1∑
n=0

hn(fn−SC)2

N−1∑
i=0

hi

j-th order Spec-
tral Moment

ηj =

N−1∑
n=0

hnf
j
n

N−1∑
i=0

hi

j-th order Spec-
tral Central Mo-
ment

ξj =

N−1∑
n=0

hn(fn−SC)j

N−1∑
i=0

hi

Spectral Kurtosis

Tn = fn−SC√
ξ2

SKU =

N−1∑
n=0

hnT
4
n

N−1∑
i=0

hi

Spectral
Skewness

SSK =

N−1∑
n=0

hnT
3
n

N−1∑
i=0

hi

Table III
CSI DESCRIPTORS

The descriptor approach, which is novel, has two funda-
mental advantages:

• it reduces the amount of data that must be stored in the
database. As it will be shown later, with M = 2 already
very good performance can be achieved. Therefore, for
each RP and cell, just 2 elements instead of 24 must
be stored;

• it reduces the computational complexity associated to



Figure 2. Experimental Outdoor Area of 6 m × 6 m with a mesh of
0.75 m × 0.75 m. Blue points represent the Reference Points (RP),
while red ones are the Test Points (TP)

Figure 3. Experimental Indoor Area of 3 m × 3.75 m with a mesh
of 0.75 m × 0.75 m. Blue points represent the Reference Points (RP),
while red ones are the Test Points (TP)

the matching phase, both in case of deterministic and
statistic matching.

IV. EXPERIMENTAL SET-UP

Localization experiments have been conducted over two
different areas:

• an outdoor area of 6 m × 6 m (36 m2) in an urban
canyon-like environment

• an indoor area of 3 m × 3.75 m (11.25 m2) in a small
apartment

Both areas have been gridded by a mesh of 0.75 m × 0.75
m resulting in 64 small squares for the outdoor environ-
ment and 20 small squares for the indoor one, as shown
respectively in Figure 2 and Figure 3. Reference Points (in
blue) have been placed in the center of each square and
have been used to build up the offline fingerprint database,
while Test Points (in red) have been randomly chosen all
over the areas of interest. The number of TPs has been
chosen to have a TP for each small square and thus 64
TPs outdoor and 20 TPs indoor. The employed receiver
is the Realtek Software Defined Radio RTL2832U (RTL-
SDR). The sampling rate and frequency tuning capabilities
of the radio platform has allowed to exploit the LTE signal
in the 800 MHz Band over a bandwidth of 1 MHz. The
choice of the grid size is motivated by the fact that the
multipath characteristics, which are caught by the measured
CSI, can be considered uncorrelated approximately after
one wavelength λ, which is about 37.5 cm. In detail, in

both environments the RTL-SDR omni-directional receiving
antenna has been placed on the ground in each RP and TP
and signal samples relative to the LTE cells 49 (796 MHz),
497 (806 MHz) and 116 (816 MHz) have been captured.
While performing the experiments in the outdoor area, it
was not possible to completely avoid human presence, in fact
there were people moving on the balconies and climbing the
stairs of the surrounding building. The indoor experiments,
instead, were performed in an apartment without people
and where doors and furniture were in fixed positions. The
raw samples have then been processed by an LTE software
receiver, that, at such sampling rate, has allowed to observe
6 RBs and to get N = 24 complex channel gains. Since the
just mentioned LTE cells are all configured to work with
2 transmitting antennas, each fingerprint include data from
both of them.

V. EXPERIMENTAL RESULTS

For the deterministic methods, a time interval of 1 second,
corresponding to W = 2000 slots, has been considered
to incoherently average the captured CSIs and to calculate
RSRP descriptors. In the statistic approach, the same training
interval of 1 second has been employed, but in this case
it has been selected a smaller sliding windows of just
W = 32 slots to average the CSI and to calculate the RSRP
descriptors. From the LTE data captured on each one among
the TPs one has extracted 100 temporally spaced fingerprints
resulting in a total of NTF = 6400 outdoor and NTF = 2000
indoor test fingerprints.



In order to verify the effectiveness of the proposed
method, the localization performances have also been eval-
uated in relation to the standard RF fingerprinting localiza-
tion algorithms, which are essentially based on the RSSI
measured values. The RSSI deterministic method consists
of generating the reference and the test fingerprints by
averaging the RSSI at the considered frequencies, while the
probabilistic one is based again on the employment of a
Naive-Bayes classifier. Both these methods have been ap-
plied in the same experimental conditions and with the same
training interval of 1 second. The localization performance
index taken under analysis is the Mean Distance Error
(MDE). It has been calculated by averaging the Euclidean
distance between all the TPs true position (xn,true, yn,true),
which has been set equal to the nearest RP, and the position
(xn,est, yn,est) to which they have been matched:

MDE =
1

NTF

NTF∑
n=1

√
(xn,true − xn,est)2 + (yn,true − yn,est)2

(16)
The MDEs for all the Nearest Neighbor deterministic and
probabilistic approaches and for all the combinations of
eNodeBs are shown in Table IV for both outdoor and indoor
environments. Obviously, the absolute accuracy is strictly
related to the choice of the grid size. However, as already
stated, the purpose of these results is not to evaluate the
absolute accuracy of the method, which will be related also
to implementation issues, but rather to compare different
types of signal fingerprinting approaches based on LTE
signals measurements in order to get better insights into this
approach.

A. Outdoor Environment

Results summarized in Table IV show that in an out-
door environment all CSI-based approaches have better
performance in terms of localization accuracy with respect
to both the standard deterministic and statistic methods
based on RSSI. Moreover, deterministic methods show more
accurate localization performance than the statistic ones. For
all methods, the localization accuracy is strictly dependent
on the analyzed LTE cell, but increasing the number of
fingerprinted cells can be very helpful. In fact, passing
from one LTE signal (received by only 1 eNodeB) to three
signals, in case of RSSI deterministic approach, provides
an improvement of 16%, while more relevant is the 24%-
improvement in case of CSI deterministic approach. In both
cases the improvements are calculated with respect to their
worst case represented by LTE cell 497. It is interesting
to note that the deterministic approach using descriptors has
better performance than direct CSI vectors. It is worth noting
that such a good performance is achieved by selecting only
two descriptors. By employing just the descriptors repre-
sented by the CSI Mean and the RSRP Standard Deviation
combined by the NN approach, an accuracy of 1.90 m has

been achieved. Therefore, it is possible to work with vectors
of only 2 elements rather than 24, allowing a substantial
database compression. A further accuracy improvement can
also be given by employing the KNN approach, which
provides the same positioning accuracy of WKNN, but it is
computationally simpler during the matching phase. Figure
4 describes the MDE behavior for all the deterministic
methods by varying the number of neighbors. A K increase
determines an initial drop and then a floor in MDE, but
at the end it causes a degradation in localization accuracy
since farther points start to join the weighted average. The
descriptor method is always better than both RSSI and CSI
methods. By considering K = 3 neighbors and employing
the same descriptors of NN approach, it is possible to
achieve an MDE of 1.68 m, that is 4% more accurate than
CSI and 11% more accurate than the best RSSI result.

B. Indoor Environment

Also in case of an indoor environment (see Table IV),
CSI-based approaches are better than the RSSI-based ones.
Moreover, in this case, using three eNodeB rather than one
only provide an improvement of 11% in case of RSSI-based
fingerprinting against an improvement of almost 50% in case
of CSI-based fingerprinting (compared to their respective
worst cases of cells 116 and 49). The NN approach based on
the descriptors provides an accuracy of 1.03 m, which is not
better with respect to the use of direct CSI vectors. However,
still a descriptors-based approach allows to greatly reduce
the size of the offline database. Figure 5 describes the MDE
behavior for all the KNN deterministic methods by varying
K. An increase in the number of neighbors determines a
strong improvement in the RSSI deterministic approach, but,
at the same time, greatly reduces the localization perfor-
mance of the CSI method. On the other hand, the descriptor
method is much more stable to a K increase and it is able
to achieve an MDE of 0.99 m with K = 5 and employing
again the CSI Mean and the RSRP Standard Deviation
descriptors.

VI. CONCLUSIONS

This paper investigates the possibility to use the CSI
extracted from LTE signals for signal fingerprinting local-
ization. Experimental results have been conducted in both
an indoor and an outdoor environment for different types of
approaches. From the comparison results, we can conclude
that:

1) CSI-based signal fingerprinting provides better accu-
racy both indoor and outdoor with respect to RSSI-
based approach (more traditionally used for finger-
printing localization).

2) The possibility to combine signals received from dif-
ferent eNodeBs greatly helps to improve the perfor-
mance. Moreover, it is worth noting that: in case of
CSI-based fingerprinting, the improvement in indoor is



Cells Fingerprint Type Classification Mode MDE Descriptors
O

U
T

D
O

O
R

497 RSSI Deterministic - Euclidean 2.94 m
497 RSSI Statistic - Naive Bayes 3.24 m
497 CSI Deterministic - Euclidean 2.77 m
497 DESCRIPTORS Deterministic - Euclidean 2.44 m CSI Spectral Kurtosis - RSRP Standard Deviation
497 DESCRIPTORS Statistic - Naive Bayes 2.47 m RSRP Standard Deviation - RSRP Fano Factor
116 RSSI Deterministic - Euclidean 2.63 m
116 RSSI Statistic - Naive Bayes 3.13 m
116 CSI Deterministic - Euclidean 2.34 m
116 DESCRIPTORS Deterministic - Euclidean 2.11 m CSI Spectral Lambda - CSI Mean
116 DESCRIPTORS Statistic - Naive Bayes 2.40 m CSI Spectral Kurtosis - RSRP Mean
49 RSSI Deterministic - Euclidean 2.64 m
49 RSSI Statistic - Naive Bayes 2.53 m
49 CSI Deterministic - Euclidean 2.64 m
49 DESCRIPTORS Deterministic - Euclidean 2.47 m CSI Spectral Alpha - RSRP Standard Deviation
49 DESCRIPTORS Statistic - Naive Bayes 2.47 m CSI Mean - RSRP Fano Factor

497 - 116 RSSI Deterministic - Euclidean 2.58 m
497 - 116 RSSI Statistic - Naive Bayes 2.89 m
497 - 116 CSI Deterministic - Euclidean 2.42 m
497 - 116 DESCRIPTORS Deterministic - Euclidean 2.04 m CSI Spectral Lambda - RSRP Mean
497 - 116 DESCRIPTORS Statistic - Naive Bayes 2.35 m CSI Spectral Kurtosis - RSRP Standard Deviation
497 - 49 RSSI Deterministic - Euclidean 2.57 m
497 - 49 RSSI Statistic - Naive Bayes 2.64 m
497 - 49 CSI Deterministic - Euclidean 2.54 m
497 - 49 DESCRIPTORS Deterministic - Euclidean 2.11 m RSRP Mean - RSRP Standard Deviation
497 - 49 DESCRIPTORS Statistic - Naive Bayes 2.18 m RSRP Standard Deviation - RSRP Fano Factor
116 - 49 RSSI Deterministic - Euclidean 2.52 m
116 - 49 RSSI Statistic - Naive Bayes 2.47 m
116 - 49 CSI Deterministic - Euclidean 2.08 m
116 - 49 DESCRIPTORS Deterministic - Euclidean 2.00 m CSI Mean - RSRP Fano Factor
116 - 49 DESCRIPTORS Statistic - Naive Bayes 2.11 m RSRP Mean - RSRP Fano Factor

497 - 116 - 49 RSSI Deterministic - Euclidean 2.47 m
497 - 116 - 49 RSSI Statistic - Naive Bayes 2.53 m
497 - 116 - 49 CSI Deterministic - Euclidean 2.11 m
497 - 116 - 49 DESCRIPTORS Deterministic - Euclidean 1.90 m CSI Mean - RSRP Standard Deviation
497 - 116 - 49 DESCRIPTORS Statistic - Naive Bayes 2.24 m RSRP Standard Deviation - RSRP Fano Factor

IN
D

O
O

R

497 RSSI Deterministic - Euclidean 1.51 m
497 RSSI Statistic - Naive Bayes 1.45 m
497 CSI Deterministic - Euclidean 1.58 m
497 DESCRIPTORS Deterministic - Euclidean 1.08 m 4th-order CSI Spectral Moment - RSRP Standard Deviation
497 DESCRIPTORS Statistic - Naive Bayes 1.22 m RSRP Standard Deviation - RSRP Fano Factor
116 RSSI Deterministic - Euclidean 1.34 m
116 RSSI Statistic - Naive Bayes 1.39 m
116 CSI Deterministic - Euclidean 1.95 m
116 DESCRIPTORS Deterministic - Euclidean 1.26 m CSI Spectral Entropy - 2nd CSI Spectral Moment
116 DESCRIPTORS Statistic - Naive Bayes 1.26 m 4th CSI Spectral Central Moment - CSI Fano Factor
49 RSSI Deterministic - Euclidean 1.64 m
49 RSSI Statistic - Naive Bayes 1.69 m
49 CSI Deterministic - Euclidean 1.35 m
49 DESCRIPTORS Deterministic - Euclidean 1.21 m 4th CSI Spectral Central Moment - RSRP Standard Deviation
49 DESCRIPTORS Statistic - Naive Bayes 1.43 m RSRP Mean - RSRP Standard Deviation

497 - 116 RSSI Deterministic - Euclidean 1.29 m
497 - 116 RSSI Statistic - Naive Bayes 1.29 m
497 - 116 CSI Deterministic - Euclidean 1.27 m
497 - 116 DESCRIPTORS Deterministic - Euclidean 1.01 m RSRP Mean - RSRP Fano Factor
497 - 116 DESCRIPTORS Statistic - Naive Bayes 1.29 m RSRP Standard Deviation - RSRP Fano Factor
497 - 49 RSSI Deterministic - Euclidean 1.56 m
497 - 49 RSSI Statistic - Naive Bayes 1.33 m
497 - 49 CSI Deterministic - Euclidean 1.22 m
497 - 49 DESCRIPTORS Deterministic - Euclidean 1.00 m RSRP Standard Deviation - RSRP Fano Factor
497 - 49 DESCRIPTORS Statistic - Naive Bayes 1.18 m 4th CSI Spectral Moment - 4th CSI Spectral Central Moment
116 - 49 RSSI Deterministic - Euclidean 1.45 m
116 - 49 RSSI Statistic - Naive Bayes 1.51 m
116 - 49 CSI Deterministic - Euclidean 1.54 m
116 - 49 DESCRIPTORS Deterministic - Euclidean 1.20 m CSI Spectral Flatness - RSRP Standard Deviation
116 - 49 DESCRIPTORS Statistic - Naive Bayes 1.46 m 4th CSI Spectral Central Moment - RSRP Standard Deviation

497 - 116 - 49 RSSI Deterministic - Euclidean 1.46 m
497 - 116 - 49 RSSI Statistic - Naive Bayes 1.34 m
497 - 116 - 49 CSI Deterministic - Euclidean 0.97 m
497 - 116 - 49 DESCRIPTORS Deterministic - Euclidean 1.03 m CSI Spectral Kurtosis - RSRP Standard Deviation
497 - 116 - 49 DESCRIPTORS Statistic - Naive Bayes 1.30 m 3th CSI Spectral Central Moment - 4th CSI Spectral Central Moment

Table IV
MDE OF ALL NN DETERMINISTIC AND PROBABILISTIC APPROACHES FOR ALL ENODEB COMBINATIONS
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Figure 4. Outdoor environment - MDE of KNN deterministic
approaches for different K values
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Figure 5. Indoor environment - MDE of KNN deterministic ap-
proaches for different K values

higher than outdoor (50% w.r.t. 24%, respectively); in
case of RSSI-based fingerprinting, diversity provided
by different eNodeB does not provide much improve-
ment in an indoor environment.

3) The use of deterministic approaches, which are also
less computationally complex than statistical ones,
provide better localization performance.

4) Furthermore, the results achieved by the proposed
method based on the use of CSI descriptors rather than
CSI vectors are very promising. By employing only
two descriptors, i.e. CSI Mean and RSRP Standard
Deviation, and by properly choosing the value of K in
the KNN approach, it is possible to achieve at least the
same accuracy as the more traditional method based
on CSI vectors. However, the offline database can be
compressed by a factor of 12 in both outdoor and
indoor environments.

5) It is also worth noting that the CSI Mean is linked
to the shape of the CSI and takes into account the
specific multipath environment around the reference
point. The RSRP Standard Deviation, instead, is still
calculated from the CSI but, as a matter of fact, it is
strictly linked to the signal strength and thus to the
distance from the eNodeB.

Finally, we can conclude that using CSI from LTE signals
could be worth both for indoor and outdoor localization.
Nevertheless, the feasibility of the approach is also strictly
related to implementation issues (which might be critical
in an outdoor scenario) that will be investigated in future
works.

ACKNOWLEDGMENT

The publication was partially financially supported by the
Ministry of Education and Science of the Russian Federation
(the Agreement number 02.a03.21.0008).

REFERENCES

[1] Ericsson, ”Positioning with LTE”, September 2011, 284 23-
3155 Uen

[2] Vo, Quoc Duy, and Pradipta De. ”A survey of fingerprint-
based outdoor localization”, IEEE Communications Surveys &
Tutorials 18.1 (2016): 491-506.

[3] P. Bahl and V. Padmanabhan, RADAR: an in-building rf-
based user location and tracking system in INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 2, 2000,
pp. 775784 vol.2

[4] Wu, Kaishun, Jiang Xiao, Youwen Yi, Dihu Chen, Xiaonan
Luo and Lionel M. Ni. CSI-Based Indoor Localization. IEEE
Transactions on Parallel and Distributed Systems 24 (2013):
1300-1309.

[5] M. Ibrahim and M. Youssef, Cellsense: An accurate energy-
efficient gsm positioning system, Vehicular Technology, IEEE
Transactions on,vol. 61, no. 1, pp. 286296, Jan 2012.

[6] B. Jakub, and L. Jukka, ”Pilot correlation positioning method
for urban UMTS networks,” in Proc. European Wireless Con-
ference, vol. 2, pp. 464-469,APR.2005.

[7] J. Rekimoto, T. Miyaki, and T. Ishizawa, Lifetag: Wifi-
based continuous location logging for life pattern analysis
in Location- and Context-Awareness, ser. Lecture Notes in
Computer Science, J. Hightower, B. Schiele, and T. Strang,
Eds., vol. 4718. Springer Berlin Heidelberg, 2007, pp. 3549.

[8] J. Turkka, T. Hiltunen, R. U. Mondal and T. Ristaniemi,
”Performance evaluation of LTE radio fingerprinting using field
measurements”, Wireless Communication Systems (ISWCS),
2015 International Symposium on. IEEE, 2015

[9] S. Di Domenico, G. Pecoraro, E. Cianca, M. De Sanctis,
”Trained-once device-free crowd counting and occupancy esti-
mation using WiFi: A Doppler spectrum based approach”, 2016
IEEE 12th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), vol.
00, no. , pp. 1-8, 2016


