Giorgio Dall'Olmo

Giorgio Dall'Olmo
National Institute of Oceanography and Applied Geophysics · Section of Physical, Chemical and Biological Oceanography

Ph.D.

About

120
Publications
49,773
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,095
Citations

Publications

Publications (120)
Article
Full-text available
In situ measurements of particulate inherent optical properties (IOPs) – absorption (ap(λ)), scattering (bp(λ)), and beam attenuation (cp(λ)) – are crucial for the development of optical algorithms that retrieve biogeochemical quantities such as chlorophyll a, particulate organic carbon (POC), and total suspended matter (TSM). Here we present a com...
Article
Full-text available
Satellite-derived observations of ocean colour provide continuous data on chlorophyll-a concentration (Chl-a) at global scales but are limited to the ocean’s surface. So far, biogeochemical models have been the only means of generating continuous vertically resolved Chl-a profiles on a regular grid. MULTIOBS is a multi-observations oceanographic da...
Article
Full-text available
In the first part of this paper series (Sun et al., 2023), we developed an ecological model that partitions the total chlorophyll-a concentration (Chl-a) into three phytoplankton size classes (PSCs), pico-, nano-, and microplankton. The parameters of this model are controlled by sea surface temperature (SST), intended to capture shifts in phytoplan...
Article
Full-text available
Recent decadal trends of deoxygenation in the global ocean interior have resulted in the expansion and shoaling of oxygen minimum zones (OMZs). When the OMZs upper bound nears the euphotic zone a unique community of phytoplankton, residing in extremely low light (<0.1% surface irradiance) and dissolved oxygen concentrations (<1-2 μmol kg⁻¹), can ap...
Article
Full-text available
Rising surface temperatures are projected to cause more frequent and intense droughts in the world's drylands. This can lead to land degradation, mobilization of soil particles, and an increase in dust aerosol emissions from arid and semi-arid regions. Dust aerosols are a key source of bio-essential nutrients, can be transported in the atmosphere o...
Preprint
Full-text available
The contribution of the ocean biological carbon pump to the export of organic carbon at depth has predominantly been assessed by considering sinking particulate matter and vertically migrating organisms. Despite growing recognition of the importance of dynamical pathways that export carbon through upper ocean mixing and advection, observation-based...
Preprint
Full-text available
In situ measurements of particulate inherent optical properties (IOPs) – absorption (ap(λ)), scattering (bp(λ)), and beam attenuation (cp(λ)) – are crucial for development of optical algorithms that retrieve biogeochemical quantities such as Chlorophyll a, particulate organic carbon (POC) and total suspended matter (TSM). Here we present a compilat...
Article
Full-text available
Biogeochemical (BGC) Argo floats were used in this study to investigate phytoplankton blooms. We assessed the seasonal and annual rates of net primary and community production, along with respiration in the Norwegian Sea. The years 2020 and 2021 were contrasted to illuminate similarities and differences. In both years the onset of the bloom occurre...
Article
Full-text available
Phytoplankton turn seawater green when their concentration increases. This allows us to monitor them using ocean colour. However, as the spectral properties of phytoplankton and their relationship with other coloured substances in seawater vary, subtle differences (anomalies) in ocean colour occur that can cause large errors in estimates of phytopl...
Article
Full-text available
Owing to the high cost of commercial optical sensors, there is a need to develop low‐cost optical sensing packages to expand monitoring of aquatic environments, particularly in under‐resourced regions. Visual methods to monitor the optical properties of water, like the Secchi disk and Forel‐Ule color scale, remain in use in the modern era owing to...
Article
Full-text available
Oceanic submesoscale processes are ubiquitous in the North Pacific Subtropical Gyre (NPSG), where the biological carbon pump is generally ineffective. Due to difficulties in collecting continuous observations, however, it remains uncertain whether episodic submesoscale processes can drive significant changes in particulate organic carbon (POC) expo...
Article
Full-text available
The ocean is the main heat reservoir in Earth’s climate system, absorbing most of the top-of-the-atmosphere excess radiation. As the climate warms, anomalously warm and fresh ocean waters in the densest layers formed near Antarctica spread northward through the abyssal ocean, while successions of warming and cooling events are seen in the deep-ocea...
Article
Full-text available
Biogeochemical- (BGC-) Argo aims to deploy and maintain a global array of autonomous profiling floats to monitor ocean biogeochemistry. With over 250,000 profiles collected so far, the BGC-Argo network is rapidly expanding toward the target of a sustained fleet of 1,000 floats. These floats prioritize the measurement of six key properties: oxygen,...
Article
Full-text available
We use data collected by Biogeochemical Argo (BGC-Argo) float, over a 5-year period (2016-2021), to study the dynamics of a unique low-oxygen-adapted phytoplanktonic community in the eastern tropical North Pacific. We isolate this community using a model that partitions vertical profiles of chlorophyll a (Chl a) and particulate backscattering into...
Article
Full-text available
Background: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time...
Article
Full-text available
Plain Language Summary Ocean mesoscale eddies can form when part of a main current becomes separated or through internal ocean instabilities which form circular rotating currents that propagate across the oceans. These eddies last from weeks to years and can modify the ocean properties of the water captured within them, which in turn affects the ne...
Article
Full-text available
Traditional measurements of the Secchi depth (zSD ) and Forel-Ule colour were collected alongside modern radiometric measurements of ocean clarity and colour, and in-situ measurements of chlorophyll-a concentration (Chl-a), on four Atlantic Meridional Transect (AMT) cruises. These data were used to evaluate historic and modern optical techniques fo...
Article
Full-text available
The ocean plays a central role in modulating the Earth’s carbon cycle. Monitoring how the ocean carbon cycle is changing is fundamental to managing climate change. Satellite remote sensing is currently our best tool for viewing the ocean surface globally and systematically, at high spatial and temporal resolutions, and the past few decades have see...
Article
Full-text available
Marine plankton have different biogeographical distribution patterns. However, it is not clear how the entire plankton assemblage is composed of these species with distinct biogeographical patterns. Tintinnina (tintinnids) is single-celled planktonic protozoa commonly used as model organisms in planktonic studies. In this research, we investigated...
Article
Full-text available
Phytoplankton play a central role in the planetary cycling of important elements and compounds. Understanding how phytoplankton are responding to climate change is consequently a major question in Earth Sciences. Monitoring phytoplankton is key to answering this question. Satellite remote sensing of ocean colour is our only means of monitoring phyt...
Preprint
Mesoscale eddies are abundant in the global oceans and known to affect marine biogeochemistry. Understanding their cumulative impact on the air-sea carbon dioxide (CO2) flux is likely important for quantifying the ocean carbon sink. Here, observations and Lagrangian tracking are used to estimate the air-sea CO2 flux of 67 long lived (i.e. > 1 year)...
Article
Full-text available
Fiducial reference measurements are in-situ data traceable to metrology standards, with associated uncertainties. This paper presents the methodology used to derive the uncertainty budget for underway, above-water measurements from the Seabird Hyperspectral Surface Acquisition System deployed on an Atlantic Meridional Transect in 2018. The average...
Article
Background: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time...
Article
Full-text available
Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the...
Article
Measurements of particulate organic carbon (POC) in the open ocean provide grounds for estimating oceanic carbon budgets and for modelling carbon cycling. The majority of the published POC measurements have been collected at the sea surface. Thus, POC stocks in the upper layer of the water column are relatively well constrained. However, our unders...
Article
Full-text available
We describe an approach to partition a vertical profile of chlorophyll‐a concentration into contributions from two communities of phytoplankton: one (community 1) that resides principally in the turbulent mixed‐layer of the upper ocean and is observable through satellite visible radiometry; the other (community 2) residing below the mixed‐layer, in...
Preprint
Full-text available
Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the...
Article
Full-text available
Lagrangian analysis is becoming increasingly important to better understand the ocean's biological and biogeochemical cycles. Yet, biologists and chemists often lack the technical skills required to set up such analyses. Here, we present a new product of pre-computed ocean Lagrangian trajectories (OLTraj) targeting non-expert users, and demonstrate...
Preprint
Full-text available
Lagrangian analysis is becoming increasingly important to better understand the ocean's biological and biogeochemical cycles. Yet, biologists and chemists often lack the technical skills required to set up such analyses. Here, we present a new product of pre-computed ocean Lagrangian trajectories (OLTraj) targeting non-expert users, and demonstrate...
Article
Full-text available
Measurements of particulate organic carbon (POC) in the open ocean provide grounds for estimating oceanic carbon budgets and for modelling carbon cycling. The majority of the published POC measurements have been collected at the sea surface. Thus, POC stocks in the upper layer of the water column are relatively well constrained. However, our unders...
Technical Report
Full-text available
This document is the product of a multi-year effort that started with a two-and-a-half-day workshop organized by the NASA Ocean Ecology Lab Field Support Group and hosted at NASA Goddard Space Flight Center from November 30–December 2, 2016. The original objective was to produce community consensus protocols for sample collection, filtration, stora...
Article
Full-text available
The proxy for phytoplankton biomass, Chlorophyll a (Chl a), is an important variable to assess the health and state of the oceans which are under increasing anthropogenic pressures. Prior to the operational use of satellite ocean-colour Chl a to monitor the oceans, rigorous assessments of algorithm performance are necessary to select the most suita...
Preprint
Full-text available
Measurements of particulate organic carbon (POC) in the open ocean provide grounds for estimating oceanic carbon budgets and for modelling carbon cycling. The majority of the published POC measurements have been collected at the sea surface. Thus, POC stocks in the upper layer of the water column are relatively well constrained. However, our unders...
Article
Full-text available
The element carbon plays a central role in climate and life on Earth. It is capable of moving among the geosphere, cryosphere, atmosphere, biosphere and hydrosphere. This flow of carbon is referred to as the Earth's carbon cycle. It is also intimately linked to the cycling of other elements and compounds. The ocean plays a fundamental role in Earth...
Article
Full-text available
The accuracy and precision of satellite sea surface temperature (SST) products in nearshore coastal waters are not well known, owing to a lack of in-situ data available for validation. It has been suggested that recreational watersports enthusiasts, who immerse themselves in nearshore coastal waters, be used as a platform to improve sampling and fi...
Article
Full-text available
Optical models have been proposed to relate spectral variations in the beam attenuation (cp) and optical backscattering (bbp) coefficients to marine particle size distributions (PSDs). However, due to limited PSD data, particularly in the open ocean, optically derived PSDs suffer from large uncertainties and we have a poor empirical understanding o...
Article
Full-text available
The export and fate of organic carbon in the mesopelagic zone are still poorly understood and quantified due to lack of observations. We exploited data from a biogeochemical‐Argo float that was deployed in the Red Sea to study how a warm and hypoxic environment can affect the fate of the organic carbon in the ocean's interior. We observed that only...
Article
Full-text available
Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Oce...
Article
Full-text available
Different techniques exist for determining chlorophyll-a concentration as a proxy of phytoplankton abundance. In this study, a novel method based on the spectral particulate beam-attenuation coefficient (c p ) was developed to estimate chlorophyll-a concentrations in oceanic waters. A multi-layer perceptron deep neural network was trained to exploi...
Article
It is still a mystery how catadromous eels find their way through the seemingly featureless open ocean to their spawning areas. Three catadromous Pacific eels (2 Anguilla marmorata , 1 A. megastoma ) from the Archipelago of Vanuatu were tagged with pop-up satellite archival transmitters, and their migration tracks towards their presumed spawning ar...
Article
Full-text available
The Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) project has carried out a range of activities to evaluate and improve the state-of-the-art in ocean color radiometry. This paper described the results from a ship-based intercomparison conducted on the Atlantic Meridional Transect 27 from 23rd September to 5th November 2017. Tw...
Article
Full-text available
A field intercomparison was conducted at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea, from 9 to 19 July 2018 to assess differences in the accuracy of in- and above-water radiometer measurements used for the validation of ocean colour products. Ten measurement systems were compared. Prior to the intercomparison, the absolu...
Article
A critical driver of the ocean carbon cycle is the downward flux of sinking organic particles, which acts to lower the atmospheric carbon dioxide concentration. This downward flux is reduced by more than 70% in the mesopelagic zone (100 to 1000 meters of depth), but this loss cannot be fully accounted for by current measurements. For decades, it ha...
Article
Full-text available
Nearshore coastal waters are among the most dynamic regions on the planet and difficult to sample from conventional oceanographic platforms. It has been suggested that environmental sampling of the nearshore could be improved by mobilising vast numbers of citizens who partake in marine recreational sports, like surfing. In this paper, we compared t...
Article
Full-text available
In oxygen minimum zones (OMZs), the attenuation rates of particulate organic carbon (POC) fluxes of large particles are known to be reduced, thus increasing the efficiency with which the biological carbon pump (BCP) transfers carbon to the abyss. The BCP efficiency is expected to further increase if OMZs expand. However, little is known about how t...
Technical Report
Full-text available
This protocol discuss the state-of-the-art knowledge on how to conduct optical measurements using flow through system.
Article
Full-text available
The Biogeochemical-Argo program (BGC-Argo) is a new profiling-float-based, ocean wide, and distributed ocean monitoring program which is tightly linked to, and has benefited significantly from, the Argo program. The community has recommended for BGC-Argo to measure six additional properties in addition to pressure, temperature and salinity measured...
Article
Full-text available
The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opport...
Article
Full-text available
The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opport...
Article
Full-text available
An intercomparison of radiance and irradiance ocean color radiometers (the second laboratory comparison exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: (1) S...
Article
Full-text available
An intercomparison of radiance and irradiance ocean color radiometers (The Second Laboratory Comparison Exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: 1) SI...
Article
Full-text available
The detrainment of organic matter from the mixed layer, a process known as the mixed layer pump (ML pump), has long been overlooked in carbon export budgets. Recently, the ML pump has been investigated at seasonal scale and appeared to contribute significantly to particulate organic carbon export to the mesopelagic zone, especially at high latitude...
Article
Full-text available
Marine microscopic particles profoundly impact global biogeochemical cycles, but our understanding of their dynamics is hindered by lack of observations. To fill this gap, optical backscattering measured by satellite sensors and in-situ autonomous platforms can be exploited. Unfortunately, these observations remain critically limited by an incomple...