Gilu Abraham

Gilu Abraham
Monash University (Australia) · Department of Biochemistry and Molecular Biology

About

12
Publications
888
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
188
Citations

Publications

Publications (12)
Article
To control infections phagocytes can directly kill invading microbes. Mpeg1, a pore‐forming protein sometimes known as perforin‐2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we...
Preprint
Full-text available
Macrophages can prevent infections from intracellular pathogens by restricting access to essential nutrients, termed nutritional immunity. With the exception of tryptophan depletion, it is unclear if other amino acids are similarly regulated in infected macrophages. Here, we show that the expression of nutrient transporters in Legionella-infected m...
Article
The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm‐dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localize to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following i...
Article
Full-text available
The human pathogen Legionella pneumophila must evade host cell death signaling to enable replication in lung macrophages and to cause disease. After bacterial growth, however, L. pneumophila is thought to induce apoptosis during egress from macrophages. The bacterial effector protein, SidF, has been shown to control host cell survival and death by...
Data
Genetic deletion of BCL-RAMBO. (A) Gene targeting strategy. The targeting construct replaces exon 2 (black bar on the WT locus) with a neomycin resistance cassette (neo) resulting also in a frame-shift. Restriction sites are indicated (H, Hind III; X, XbaI; S, SacI; B, BamHI). A 3′ probe was designed to recognize a 5.9 kb and 8.7 kb fragment from S...
Data
Detection of caspase-3/7 activity in cycloheximide treated macrophages. The mitochondria of BMDMs were labeled with TMRM (red), treated with cycloheximide and incubated with Draq7 (blue DNA stain) and caspase-3/7 fluorescent substrate (green). Fluorescent and bright field images were acquired every 60 min.
Data
Detection of caspase-3/7 activity in ΔflaA L. pneumophila infected macrophages. The mitochondria of BMDMs were labeled with TMRM (red), infected with ΔflaA L. pneumophila and incubated with Draq7 (blue DNA stain) and caspase-3/7 fluorescent substrate (green). Fluorescent and bright field images were acquired every 60 min.
Data
Detection of caspase-3/7 activity in WT L. pneumophila infected macrophages. The mitochondria of BMDMs were labeled with TMRM (red), infected with WT L. pneumophila and incubated with Draq7 (blue DNA stain) and caspase-3/7 fluorescent substrate (green). Fluorescent and bright field images were acquired every 60 min.
Data
L. pneumophila replicates in BCL-RAMBO deficient macrophages. WT and BCL-RAMBO deficient immortalized macrophages were infected with ΔflaA and ΔflaA/ΔsidF (MOI 10) for 2 h and the colony forming units (CFUs) determined at 6 and 48 h post infection. Mean and SD (from three independent colonies) are shown.
Data
Cell death of caspase-11 deficient BMDMs at high MOl. Draq7 positive (dead) WT, caspase-1/11 DKO and caspase-11 KO BMDMs infected at a MOl of 20 with ΔflaA L. pneumophila. Data are representative of two independent experiments. Mean and S.D. of three independent biological replicates shown.
Article
Full-text available
Human pathogenic Legionella replicate in alveolar macrophages and cause a potentially lethal form of pneumonia known as Legionnaires' disease1. Here, we have identified a host-directed therapeutic approach to eliminate intracellular Legionella infections. We demonstrate that the genetic deletion, or pharmacological inhibition, of the host cell pro-...
Article
Full-text available
Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot...