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ABSTRACT. The mevalonate kinase deficiency (MKD), including hyperimmunoglobulinemia D periodic fever
syndrome (HIDS) and the more severe mevalonic aciduria are rare, autosomal recessive, autoinflammatory dis-
eases belonging to the hereditary periodic fever (HPF) family. Other members include: familial mediterranean
fever (FMF), the cryopyrin-associated periodic syndromes (CAPS) and TNFR-associated periodic syndromes
(TRAPS). MKD is caused by mutations in the gene encoding mevalonate kinase (MK), an enzyme of the choles-
terol pathway, leading to its inactivation. The molecular mechanisms linking MKD and abnormalities of iso-
prenoid biosynthesis to cytokine production and inflammation have yet to be fully elucidated. Statins, which
are extensively prescribed for lowering cholesterol, are potent inhibitors of 3-hydroxy-3-methylglutaryl-CoA
reductase, the enzyme directly upstream of MK. In this review, we discuss recent reports demonstrating that in
vitro inhibition of the mevalonate pathway by statins specifically increases the production, by activated mono-
cytes, of cytokines of the IL-1 family, by enhancing caspase-1 activity, the enzyme responsible for IL-1β and
IL-18 maturation. The molecular mechanisms involve geranylgeranylation and the enhancement of the activity
of G proteins such as Rac-1. Interestingly, activated fibroblasts from MKD patients secrete more IL-1β than
fibroblasts from healthy donors. Taken together, these data highlight the specific enhancement of the IL-1
family of cytokines, the maturation of which is caspase-1-dependent in MKD. Finally, the spectacular decrease
in febrile attacks in patients with severe HIDS under IL-1 receptor antagonist (anakinra) treatment, reinforces
this hypothesis. Deregulated caspase-1 activation could be responsible for the inflammatory component of
MKD, thereby mechanistically linking MKD to FMF and CAPS through cytokines of the IL-1 family.
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Hyperimmunoglobulinemia D, periodic fever syndrome
(HIDS; OMIM #260920) and the more severe mevalonic
aciduria (MA; OMIM #310377) are rare diseases caused
by recessive mutations in the MVK gene [1, 2] encoding
mevalonate kinase (MK), an enzyme of the mevalonate
pathway, which is upstream of cholesterol biosynthesis
(figure 1). Mutations in MVK lead to minimal (< 10%)
or undetectable MK activity [1-4]. Phenotypic overlap
between HIDS and MA provides evidence of a pheno-
typic continuum between both diseases [5], which have
therefore become collectively known as mevalonate
kinase deficiency (MKD). MKDs are autoinflammatory

diseases belonging to the family of hereditary periodic
fever (HPF), including familial Mediterranean fever
(FMF; OMIM #249100), chronic neurologic cutaneous
and articular (CINCA) syndrome (also called neonatal-
onset multi-system inflammatory disease (NOMID)
(OMIM #607115), Muckle-Wells syndrome (MWS,
OMIM #191900), familial cold autoinflammatory syn-
drome (FCAS; OMIM #120100), and tumor necrosis fac-
tor receptor (TNFR)-associated periodic syndrome
(TRAPS; OMIM #142680) (table 1).
Most of the HPFs are linked to disorders in the secretion
and/or signalling of pro-inflammatory cytokines. In
TRAPS, the mutation in TNFRSF1A (12p13.2) is associ-
ated with a defect in the TNFR1 shedding process, lead-
ing to a reduction in circulating TNFR1, and increased
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cell surface expression, both thought to result in
increased signalling through TNFR1 [6]. However,
many mutations in TRAPS do not involve this process
[7]. In addition, recent clinical studies have shown that
anti-TNF (infliximab) treatment of patients with TRAPS
is able to trigger inflammation [8], whereas a beneficial
response to IL-1ra (anakinra) treatment is reported in
TRAPS [9-11]. This suggests that the pathophysiology
of TRAPS is not entirely clear and that IL-1 might also
play a key role in this autoinflammatory disease.
FMF is caused by mutations in the MEFV gene (16p13)
encoding pyrin/marenostrin [12, 13], while CIAS1
(1q44), the gene encoding cryopyrin/NLRP3, is mutated
in MWS, CINCA, NOMID and FCAS, which are there-
fore grouped as the cryopyrin-associated periodic syn-
dromes (CAPS) [14, 15]. The resulting mutated pyrin
and cryopyrin lead to dysregulated maturation of IL-1β
[16, 17]. Cryopyrin is implicated in a multiprotein com-
plex, the NLRP3 inflammasome, which promotes the
activation of caspase-1, the maturation enzyme of pro-
inflammatory members of IL-1 family cytokines, in par-
ticular IL-1β and IL-18 (figure 1). Indeed, IL-1β and
IL-18 have the common feature of being synthesized as
inactive pro-cytokines that require proteolytic processing
by caspase-1 for maturation into the active form [18, 19].
The implication of pyrin in inflammasome oligomerisa-
tion is less clear. The inhibition of inflammasome assem-
bly through an interaction of pyrin with the protein ASC
(apoptosis-associated speck-like protein containing a
caspase-recruitment domain) has been suggested. This
interaction, through their respective pyrin domain
(PYD), could prevent the binding of cryopyrin to ASC,
leading to the inhibition of the inflammasome heteromer-
isation [20, 21]. On the other hand, it has been suggested
that pyrin, like cryopyrin, is also able to form an inflam-
masome complex involving ASC and procaspase-1, lead-
ing to caspase-1 activation and IL-1β processing [22]. In
any case, the exact mechanism of action of pyrin remains
incompletely understood.
In contrast to TRAPS, FMF, and CAPS, in which at least
some genetic mutations seem to be directly linked to
inflammation via TNFR hyperactivation or caspase-1 acti-
vation [23], the molecular mechanisms linking MKD and

abnormalities of isoprenoid biosynthesis to cytokine pro-
duction and inflammation remain to be fully elucidated.

MEVALONATE KINASE DEFICIENCY

Beyond the severe developmental and neurological fea-
tures of MA, MKD patients suffer from recurrent epi-
sodes of fever with no clearly identified origin. Febrile
attacks that occur every two to eight weeks and last two
to seven days are commonly associated with abdominal
pain, diarrhea, vomiting, hepatosplenomegaly, lymphade-
nopathy, arthralgia, skin rashes and headache [24], and a
phenotypic continuum has been demonstrated between
HIDS and MA [5]. HIDS is also characterized by ele-
vated levels of IgD (above 150 mg/L) [25], although a
number of patients do have normal values, notably at the
beginning of the disease, that persist independently of the
attacks. Drenth et al. have shown that IgD is a potent
inducer of TNF-α, IL-1β and IL-1ra by cultured
PBMCs, and therefore hypothesized that IgD could be
responsible for the inflammatory symptoms of HIDS, in
spite of the lack of correlation with clinical events [26].
In any event, the mechanism of action of IgD remains
obscure. Receptors for IgD have been reported on T
cells, but their genes remain to be cloned, and their full
molecular characterization is still imprecise [27].
Independently, we have reported that elevated serum IgD
levels are also detected in the severe forms of FMF [28]
or TRAPS [29]. A wide and non-Gaussian distribution of
IgD concentration is observed in the serum of patients, as
previously described for healthy subjects [30]. Note that
3.2% of healthy subjects had IgD serum levels above
150mg/l. In any case, serum levels of IgD were strongly
enhanced in unrelated patients with TRAPS, when com-
pared to controls (p < 0.0001), and the percentage of
patients with serum levels greater than 150 mg/L were
increased from 3.2 to 31.2% in TRAPS. Regarding
FMF, we found increased IgD concentrations in the
serum of patients with undetected or only one mutation
in the MEFV gene, and this enhancement was more pro-
nounced (p < 0.0001) in patients carrying homozygous or
double heterozygous MEFV mutations, especially
M694V homozygotes [28].
Although not exclusive to HIDS and HPF in general, the
presence of high levels of IgD is a common factor of
these diseases, and is generally considered as a nonspe-
cific marker of the disease [31]. A very recent study
showed that patients with HIDS, TRAPS and MWS had
increased numbers of circulating and mucosal IgD+ IgM-
plasmablasts than healthy donors [32]. These patients
also had fewer circulating, but more mucosal “IgD-
armed” basophils and after IgD crosslinking, IL-
3-treated basophils from healthy donors released both
IL-1β and TNF. The authors suggested a role for hyper
IgD in the pathogenesis of HPF [32]. Nevertheless, the
upstream factors for hyper IgD in HPF remain unidenti-
fied. We would surmise that an elucidation of this mech-
anism might give us indications of how very different
mutations are able to converge to produce a relatively

Abbreviations

CAPS cryopyrin-associated periodic syndrome
CINCA chronic neurologic cutaneous and articular syndrome
FCAS familial cold autoinflammatory syndrome
FMF familial mediterranean fever
FPP farnesyl-pyrophosphate
FTI farnesyltranferase inhibitor
GGPP geranylgeranyl-pyrophosphate
GGTI geranylgeranyltransferase inhibitor
HIDS hyper IgD and periodic fever syndrome
HMGR 3-hydroxy-3-methylglutaryl-CoA reductase
HPF hereditary periodic fever
Ig immunoglobulin
IL interleukin
LPS lipopolysaccharide
MA mevalonic aciduria
MK mevalonate kinase
MKD mevalonate kinase deficiency
PBMC peripheral blood mononuclear cell
TNF tumor necrosis factor
TNFR TNF receptor
TRAPS TNFR-associated periodic syndrome
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close group of diseases characterized by recurrent attacks
of fever and localized organ inflammation.
During attacks, the marked inflammatory syndrome is
associated with increased serum levels of IL-1, IL-6 and
interferon (IFN)-γ, as well TNF receptors [33], with a
strong in vitro production of IL-1β [34], IL-6 and
TNF-α by peripheral blood mononuclear cells (PBMCs)
[33, 35], spontaneously and even more after cell stimula-
tion. As expected, these culture supernatants induced
acute phase protein production [35].

ANIMAL MODELS OF MKD

In mice, the deletion of the genes encoding either HMG-
CoA reductase (Hmgcr-/-), squalene synthase (SS-/-) or
MK (Mvk-/-), three enzymes belonging to the cholesterol
biosynthesis pathway, result in embryonic lethality [36-
38]. However, a single report has shown that the deletion
of one Mvk allele in C57Bl6 mice increased significantly
the serum levels of IgD, IgA and TNF-α compared to con-

trol mice [36]. On another hand, it has been suggested that
the administration to BALB/c mice of aminobisphospho-
nate alendronate, a drug inhibiting FPP synthase, provides
a model for typical MKD inflammatory episodes [39].
This inflammation was reduced after treatment with
exogenous isoprenoid intermediates, suggesting the impor-
tant role of isoprenoids in MKD inflammation.

STATINS AS INHIBITORS
OF THE MEVALONATE PATHWAY:
PHARMACOLOGICAL TOOLS TO MIMIC MKD?

Taking advantage of the fact that statins are potent
inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGR) (the enzyme directly upstream of MK), recent
studies have used this pharmacological tool to help unravel
the molecular mechanisms linking MKD to inflammation.
Statins impair cholesterol synthesis by inhibiting the rate-
limiting step in the mevalonate pathway by preventing the
reduction of HMG-CoA to mevalonate, resulting in a
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Figure 1
Hypothetic molecular events from the inhibition of the mevalonate pathway to caspase-1 activation and IL-1β release.
HMG-CoA: 3-hydroxy-3-methylglutaryl Co-enzyme A; MKD: mevalonate kinase defiency; HIDS: hyperimmunoglobulinemia D, periodic
fever syndrome; MA: mevalonic aciduria; PP: pyrophosphate; PAK1: protein-associated kinase1; PKB: protein kinase B; PI3K: phosphoi-
nositide 3-Kinase; MyD88: myeloid differentiation primary response gene 88; TLR4: Toll-like receptor 4; IRAK: interleukin-1 receptor-
associated kinase; TRAF6: TNF receptor-associated factor 6; TAK1: TGF-β-activated kinase 1; NFκB: nuclear factor κB.
NLRP3 inflammasome is a multiprotein complex containing the proteins NLRP3/cryopyrin ASC (apoptosis-associated speck-like protein
containing a CARD) and pro-caspase-1. The oligomerisation of the inflammasome leads to IL-1β processing and release through caspase-1
activation. NALP: NACHT-LRR-PYD-containing protein; LRR: leucine-rich repeats; PYD: pyrin domain; NAD: NALP-associated domain;
CARD: caspase recruitment domain.
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decrease in non-sterol isoprenoids downstream of mevalo-
nate. Statins are extensively prescribed for the prophylactic
treatment of cardiovascular events [40-43]. Besides reduc-
ing cholesterol serum levels, statins have numerous immu-
nomodulatory effects. In vitro, it is recognized that statins
specifically enhance the production of IL-1β and IL-18 by
LPS-activated human PBMCs, as well as purified and
THP-1 monocytes, and the WEHI265.1 murine cell line
[34, 44-46]. This is mediated by lipophilic statins (atorvas-
tatin, lovastatin and simvastatin), whereas the hydrophilic
pravastatin had no effect [44]. IL-1α release is also
enhanced by LPS-activated human PBMCs and THP-1
cells [46]. Results are more controversial for other proin-
flammatory cytokines derived from monocytes. Kiener
et al. have reported that simvastatin also enhances
TNF-α and IL-8 [44] secretion, whereas others have
shown that statins are ineffective or indeed inhibit
TNF-α, IL-6 or IL-8 expression and secretion by LPS-
stimulated monocytes [45-47]. Production of the immuno-
suppressive cytokine IL-10 by activated monocytes
is also inhibited by simvastatin in vitro [46]. Regarding
T lymphocyte-derived cytokines, statins inhibit the release
of IFN-γ, IL-2, IL-10 and IL-4 by antiCD3/PMA
stimulated-PBMCs cells, but have no effect on the produc-
tion of cytokines of the IL-1 family [46]. In contrast, the
atypical anti-CD2/anti-CD28 stimulation of PBMCs
increases IL-1β production in the presence of statins [48].
In vivo, statins have complex immunosuppressive proper-
ties that operate independently of lipid lowering [49].
IL-1β production by LPS-activated whole peripheral
blood [50] or monocytes [51] from statin-treated patients
with hypercholesterolemia is unchanged or decreased,

and is associated with a decrease in TNF-α and IL-6 pro-
duction. These results suggest that in vivo, the inhibitory
effect of statins on cytokine synthesis is very effective in
suppressing the IL-1 synthesis observed in vitro.
Interestingly, if simvastatin specifically enhances IL-1β
release by monocytes, it is worth noting that pro-IL-1β
expression is not modified [45, 46]. Simvastatin has been
shown to enhance caspase-1 activity, this being the
enzyme responsible for IL-1β and IL-18 maturation, and
also indirectly involved in IL-1α processing.
The non-sterol isoprenoids geranylgeranyl-pyro-
phosphate (GGPP) [34] and farnesyl-pyrophosphate
(FPP) [1, 23, 52], metabolites synthesized downstream
of MK are suspected of playing a crucial role in MKD.
Frenkel et al. have further demonstrated that shortage of
isoprenoid end products contributes to increased IL-1β
secretion by MK-deficient PBMCs [48]. FPP and GGPP
are precursors for the isoprenylation of small G proteins
[53], an enzymatic process necessary for their localiza-
tion at the plasma membrane, and allowing their signal
transduction activity. FPP allows farnesylation of Ras-
family proteins, while most Rho-family proteins are ger-
anylgeranylated. The inhibition of the mevalonate path-
way with a geranylgeranyl-transferase inhibitor, as well
as simvastatin, leads to a caspase-1-dependent release of
IL-1β and IL-18 by THP1-activated cells [45, 46] and
LPS-activated PBMCs, whereas farnesyl transferase inhi-
bitors have no effect [46]. Geranylgeranylation is associ-
ated with the activity of Rac-1, a small G-protein of the
Rho family reported to play a critical role in caspase-1
activation [34, 52]. Two independent studies have
reported that Rac-1 could be implicated in this process

Table 1
Hereditary periodic fever syndrome

FMF MKD (HIDS and MA) CAPS (FCAS, MWS,
NOMID and CINCA)

TRAPS

Mode of inheritance Recessive Recessive Dominant Dominant

Age at onset (years) < 20 Child (median 6 month old) Infancy-1st 6 months Childhood, adolescence

Duration attack (day) 1-4 3-7 Variable 1 to 3 weeks
Abdominal pain Very frequent (serosa) Frequent Rare Frequent (serositis, abcess)

Thoracic pain Unilateral pleurisy Unusual Rare Unilateral pleurisy

Skin Erysipeloid eythema
(rare < 5%)

Maculo-papular/nodular rash Urticuria/erythema Erysipeloid erythema
including upper limbs/
various rashes

Musculoskeletal Monoarthritis Polyarthralgia From arthalgias to
destructive arthropathy

Arthralgia/arthritis

Eye Rare: conjunctivitis Conjunctivitis, uveitis*,
cataract*

Conjunctivitis, papil
oedema

Conjunctivitis, orbital edema

Amyloidosis 60-75% Rare 25% 25%

IgD sera levels ++ +++ ++ +
Chromosome site 16p13.3 12q24 1q44 12p13

Mutated gene MEFV MKV CIAS1 TNFRSF1A

Gene product Pyrin/marenostrin Mevalonate kinase Cryopyrin/NALP3 TNF receptor type 1A
NALP3 inflammasome Regulator (?) ? Belong to the complex ?

Caspase-1 activation Yes Yes Yes ?

Treatment Colchicine; IL-1 inhibitor? Steroids, TNF inhibitor?, IL-1
inhibitor?

IL-1 inhibitor Steroids, TNF inhibitor, IL-1
inhibitor

* Features exclusively seen in MA.
FMF: familial mediterranean fever; MKD: mevalonate kinase deficiency; HIDS: hyper-IgD and periodic fever syndrome; MA: mevalonic aciduria; CAPS: cryopyrin-
associated periodic syndromes; MWS: Muckle-Wells syndrome; NOMID: neonatal-onset multisystem inflammatory disease; CINCA: chronic infantile neurologic cutane-
ous articular syndrome; TRAPS: TNF (tumor necrosis factor) receptor associated periodic syndrome; TNFRSF1A: TNF receptor superfamily 1A.
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[46, 54]. Under simvastatin treatment, Rac-1 was par-
tially dissociated from the plasma membrane to the cyto-
plasm, and the level of GTP-bound, active form of Rac-1
was found to be increased. The p21-activated kinase1
(PAK1) could be a link, since its activation by Rac-1
leads to caspase-1 phosphorylation, required for its activ-
ity [55]. PI3K and protein kinase B (PKB)/c-akt have
also been suggested to be a link between Rac-1 and
caspase-1 activation [54]. In any event, inhibition of
Rac-1 in PBMCs from MKD patients results in a
decrease of IL-1β release [54]. The molecular relation-
ship between the increased GTP-bound form of Rac-1
and caspase-1 activation remains to be fully explained.
Caspase-1 requires inflammasome oligomerisation to
become active. We discussed earlier the key role of
NLRP3 inflammasome activation in FMF and CAPS; it
remains an open question as to whether NLRP3 is a
molecular link between Rac-1 and caspase-1.
In order to compare the previous pharmacological model
to the genetic inhibition of the mevalonate pathway, we
further studied IL-1β and IL-6 secretion by activated der-
mal fibroblasts from healthy donors and MKD patients,
in the presence or absence of simvastatin.
While IL-6 production was unchanged, IL-1β secretion
by activated fibroblasts from MKD patients was
increased when compared to the secretion from those of
control donors. In the absence of activation, IL-1β is not
detected in fibroblast supernatants. The secretion of IL-1β
by simvastatin-treated fibroblasts from healthy donors is
increased, as is the IL-1β secretion by untreated fibro-
blasts from MKD patients. On the other hand, simvastatin
had no effect on IL-1β secretion by fibroblasts from
MKD patients (figure 2). We conclude that both pharma-
cological (simvastatin) and genetic (MKD) inhibition of
the mevalonate pathway lead to an increase in IL-1β pro-
duction by fibroblasts, suggesting the involvement of
similar molecular mechanisms and reinforcing the idea
that using statins on activated monocytes is a model rele-
vant for mimicking MKD in vitro.

CONCLUSION

In contrast to the majority of HPFs, for which a direct
link between genetic mutations and inflammation has
been demonstrated and mainly involving disorders in
the secretion and/or signalling of pro-inflammatory cyto-
kines, the molecular mechanisms linking MKD to inflam-
mation remained to be fully elucidated. Many years ago it
was suggested that cytokines play a crucial role in the
recurrent inflammation of HIDS [33]. This is now
known to be the case for any inflammatory disease, irre-
spective of their precise role in the physiopathology.
Likewise, a role for cholesterol pathway intermediates
and protein isoprenylation in the pathogenic inflamma-
tory response of HIDS has also been suspected [1].
Taking advantage of statins and there ability to mimic
MKD in vitro, independent studies have demonstrated
that the inhibition of the mevalonate pathway specifically
activates caspase-1 by a mechanism involving Rac-1,
resulting in a dramatic and specific increase in IL-1α,
IL-1β and IL-18 release [45, 46, 54]. This approach has
revealed a cytokine “signature” focused on specific IL-1
production by monocytes, whereas the production of
inflammatory cytokines, including IL-1, by T cells
appears unchanged. A posteriori, the activation of
caspase-1 in the context of HPF is not a surprise since an
over-activation of inflammasome/caspase-1 is well
known in FMF and CAPS [16, 17]. However, if direct
links between mutated pyrin and cryopyrin, and the
inflammasome have been demonstrated in FMF and
CAPS, the molecular mechanisms linking Rac-1 to the
inflammasome remain to be further investigated and clar-
ified. It is also interesting to note that a priori heteroge-
neous mutations all converge to the dysregulation of the
inflammasome assembly, leading to a group of fairly
homogeneous, recurrent diseases. The spectacular reduc-
tion of febrile attacks in severe HIDS patients under
IL-1ra (anakinra) treatment [56, 57], as previously
reported for the treatment of CAPS [58, 59], is in accor-
dance with the key role of IL-1 in the pathophysiology of
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Figure 2
IL-6 and IL-1β secretion by dermal fibroblast from healthy donors and patients with MKD. Dermal fibroblasts were obtained by explant
culture of human skin from patients with MKD or from control donors as previously described [63]. They were seeded at 10 000 cells per
cm2 in 6-well plates in DMEM supplemented with Glutamax-I, 10% heat-inactivated fetal calf serum and antibiotics. At 80% confluence,
fibroblasts from healthy donors (open bars) or MKD patients (filled bars) were activated with 10 ng/mL IL-1α and 10 ng/mL TNF-α for
24 hours and cultured with or without 10 μM simvastatin, and 100 μM mevalonate for an additional 24 hours. Supernatants were collected,
and IL-6 (A) and IL-1β (B) were assayed by high sensitivity ELISA (0.5 pg/mL) as previously described [46]. Each bar represents mean ±
SEM (n = 4 for control and n = 5 for MKD). * p < 0.05 based on one-way ANOVA followed by the Newman-Keuls test.

Specific increase in caspase-1 activity and secretion of IL-1 family cytokines 105

C
op

yr
ig

ht
 ©

 2
01

6 
Jo

hn
 L

ib
be

y 
E

ur
ot

ex
t. 

T
él

éc
ha

rg
é 

pa
r 

un
 u

til
is

at
eu

r 
an

on
ym

e 
le

 0
4/

10
/2

01
6.



MKD [34, 45, 46]. Finally, the very recent reports of a
new, severe, autoinflammatory disease associated with a
deficiency in IL-1ra (DIRA), and the complete resolution
of all symptoms with anakinra treatment, further demon-
strates the primary role of the balance IL-1/IL-1ra in
autoinflammatory diseases [60-62]. Nonetheless, some
patients with HPF do not respond to anakinra therapy,
and it is an open question as to the reason why [57].
Even if we are dealing with a single cytokine disorder
at the origin, a complex cytokine network is induced in
vivo as a function of the pharmacokinetic properties of
IL-1ra, including amplification loops, synergy, and
implementation of a vicious circle, differing between
individuals. Further knowledge of the physiological con-
trol of HPF inflammation might help us to understand the
variability of response to treatment, and thus to the
design of new, more effective therapies.
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