The arbitrary order mixed mimetic finite difference method for the diffusion equation

V. Gyrya, K. Lipnikov, G. Manzini

Abstract

We propose an arbitrary-order accurate Mimetic Finite Difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux and scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.

Key words: Mimetic finite difference method, polygonal mesh, high-order discretization, Poisson problem, mixed formulation

1. Introduction

In the last decade, there has been a huge amount of work aimed at designing new discretization methods for PDEs that work on unstructured polygonal and polyhedral meshes. General unstructured meshes appear in various engineering applications, either as a flexible way to capture complex geometries (modeling of fluid flows in porous medium) or as a product of mesh optimization algorithms (mesh reconnection in arbitrarily Lagrangian-Eulerian methods). Major challenges for numerical solution of PDEs on general meshes are simplicity of extension of two dimensional schemes to three dimensions and to arbitrarily order of accuracy.

Successful discretization methods on general meshes were developed using both finite volume (FV) [32] and finite element (FE) frameworks [15, 16]. FV methods are natural for general meshes but historically, they were low-order methods. Examples of FV methods for elliptic PDEs include the multi-point flux approximation (MPFA) method [1, 2], the hybrid FV method [33] (the resulting scheme is also know as SUSHI), the discrete duality finite volume (DDFV) method [24, 28, 35], the gradient method [31]; see also the recent review [29]. Extension of FV methods to higher order is done either by extending the discretization stencil or by enriching the local approximation space, in a spirit of the FE method. For the elliptic PDEs, symmetry and positive definiteness of the resulting matrices are the properties that are difficult to achieve for higher-order schemes.

On the other hand, the conventional arbitrarily order FE method on simplicial meshes preserves all fundamental properties of elliptic PDEs. However, its extension to general meshes is a work in progress that
is based on the new idea of the virtual finite element space [5]. Other FE methods that work on general meshes include the polygonal/polyhedral finite element method (PFEM) [46, 49, 50, 51], hybrid high-order method [25, 26], the discontinuous Galerkin (DG) method [27], hybridized discontinuous Galerkin (HDG) method [23], and the weak Galerkin (wG) method [38, 52, 53].

In between these two general frameworks, we find the mimetic finite difference (MFD) method [11, 14, 41, 48] which combines best properties of both frameworks. Similar to FV methods, the MFD method imposes no critical constraints on the computational mesh which may contain all types of polygonal and polyhedral elements, including non-convex elements. Similar to FE methods, a duality argument is the essential part of the MFD construction which implies symmetry and positivity of matrices for schemes of any order of accuracy. Construction of stiffness and mass matrices is unique for the mimetic framework and is based on the stability and local consistency conditions. A by-product of these conditions is that there exists a rich family of schemes with similar approximation properties. This remains true for mimetic schemes of simplicial meshes. In many cases this family contains schemes with additional properties such as the discrete maximum principle [42].

In recent years, the MFD method has been extensively developed for the solution of a wide range of scientific and engineering problems in continuum mechanics [47], discretization of differential forms [14, 18, 48], electromagnetics [36, 40], diffusion [37], convection-diffusion [6], steady Stokes [7, 10], elasticity [4], elliptic obstacles [3], Reissner-Mindlin plates [13], eigenvalues [21], and two-phase flows in porous media [43]. An extensive list of references can be found in book [11] and review paper [41]. Connection of low-order MFD schemes for elliptic problems with two FV schemes has been established in [6, 30].

The MFD method considered in the aforementioned applications typically provides a low-order approximation of the unknowns with, at the best, the second-order convergence for scalar unknowns. An open issue in the development of the mimetic technology is the construction of high-order schemes, which is still a challenging task even for two-dimensional and three-dimensional second-order elliptic problems. For pure diffusion problems in primal form, the mimetic method in [9] is the extension to arbitrary order of accuracy of the low-order method proposed in [17]. However, for pure diffusion problems in mixed form, a high-order accurate formulation is still missing in the literature, although a first attempt to this direction was done in [8, 12, 34]. In these papers, the authors present an improvement from first- to second-order accurate discretization of the flux unknown of the MFD method in [19]. A second major issue, which impacts also the other methods mentioned above, is the treatment of non-constant coefficients like a varying diffusion tensor while preserving the high-order of accuracy of the approximation. To this end, we apply the technique that was proved successful in [8, 39] for both the mixed low-order method and the high-order primal formulation in two- and three-dimensional elliptic problems.

The goals of this work are (a) to develop a new family of arbitrary-order mimetic schemes for mixed formulation of the elliptic PDE; (b) to present a solid theoretical framework where the convergence of the method is proved and error estimates are derived; (c) to investigate the performance of the method numerically by solving diffusion problems with a smoothly variable full tensor diffusion coefficient on different types of unstructured polygonal meshes.

Flexibility on the MFD framework for selecting non-standard degrees of freedom and non-standard approximations of primary operators allows us to develop and analyze mimetic schemes tailored for particular applications such as the Lagrangian gasdynamics [20, 41] and nonlinear elliptic PDEs with degenerate coefficients [45].

The approximation of the scalar unknown and the flux is sought in finite dimensional linear spaces of grid functions whose definition relies on polynomial moments of degree $k \geq 0$ inside each cell and of degree $k + 1$ on each cell interface. We equip these finite dimensional linear spaces with suitable mimetic inner products, whose construction is detailed in the paper. Error estimates are derived by using the mesh dependent norms induced by these inner products and assuming that the scalar unknown is in $H^{k+3}(\Omega)$. These result is in agreement with the analysis of the method considered in [8], which coincide with the method presented in this paper for $k = 0$, where the scalar unknown was assumed in $H^{3}(\Omega)$.

In this work we also present a novel ultraconvergence phenomenon that we think is related to the special selection of the degrees of freedom. It was discovered in our numerical experiments and still needs a theoretical explanation.
The paper outline is as follows. The formulation of the MFD method is presented in Section 2. Preliminary results on the approximation properties of interpolation and projection operators are reviewed in Section 3. The convergence analysis is carried out in Section 4 for the flux variable and in Section 5 for the scalar variable. The expected convergence rates are confirmed with the numerical experiments in Section 6. Final remarks and conclusions are given in Section 7.

2. Mimetic finite difference formulation

Let $\Omega \subset \mathbb{R}^d$ be a polygonal domain for $d = 2$ or a polyhedral domain for $d = 3$ with Lipschitz boundary Γ. We consider the mimetic approximation of the steady diffusion problem in mixed form for the scalar variable p and its vector flux \mathbf{u}:

\begin{align}
\mathbf{u} &= -\mathbf{K}\nabla p \quad \text{in } \Omega, \\
\text{div } \mathbf{u} &= f \quad \text{in } \Omega, \\
p &= g \quad \text{on } \Gamma.
\end{align}

The functions f and g are, respectively, the source term and the boundary data and \mathbf{K} is a full symmetric tensor describing the material properties.

We set the mixed variational formulation using the functional space $L^2(\Omega)$ for the scalar variable and $H(div, \Omega)$ for the flux variable. Here, $L^2(\Omega)$ is the standard space of square integrable functions defined on Ω, and $H(div, \Omega)$ is the Sobolev space of vector-valued functions in $(L^2(\Omega))^d$ with square integrable divergence.

The mixed variational formulation of problem (1a)-(1c) reads as [15]:

\begin{equation}
\text{find } (\mathbf{u}, p) \in H(div, \Omega) \times L^2(\Omega) \text{ such that }
\end{equation}

\begin{align}
(K^{-1}\mathbf{u}, \mathbf{v}) - (p, \text{div } \mathbf{v}) &= - \langle g, \mathbf{n} \cdot \mathbf{v} \rangle \quad \forall \mathbf{v} \in H(div, \Omega) \\
(\text{div } \mathbf{u}, q) &= (f, q) \quad \forall q \in L^2(\Omega).
\end{align}

Dirichlet boundary conditions are expressed in the right-hand side of (2a) throughout the boundary functional

\begin{equation}
\langle g, \mathbf{n} \cdot \mathbf{v} \rangle = \sum_{e \subset \Gamma} \int_e g \mathbf{n}_e \cdot \mathbf{v} \, dS,
\end{equation}

where \mathbf{n}_e represents the unit normal to the boundary face $e \subset \Gamma$ pointing out of the polygonal domain Ω.

Both problems (1a)-(1c) and (2a)-(2b) with (3) are well-posed and admits a unique solution under the usual assumptions: $f \in L^2(\Omega)$, $g \in H^{\frac{1}{2}}(\Gamma)$, \mathbf{K} strongly elliptic with the components in $L^\infty(\Omega)$. We recall that the tensor field \mathbf{K} is strongly elliptic if there are two positive constants κ_* and κ^* such that:

\begin{equation}
\kappa_* \|\mathbf{v}\|^2 \leq \mathbf{v}^T \mathbf{K} \mathbf{v} \leq \kappa^* \|\mathbf{v}\|^2 \quad \forall \mathbf{v} \in \mathbb{R}^d.
\end{equation}

For the convergence analysis of Sections 4 and 5, we need the stronger regularity assumption that for every mesh cell the components of \mathbf{K} is locally in $W^{k+2, \infty}$.

To formulate the mixed mimetic approximation of problem (2a)-(2b), we need to introduce a few mathematical objects, whose precise definition will be presented in the rest of this section. On a sequence of mesh partitions of Ω satisfying some regularity assumptions and characterized by the mesh size parameter h, we consider the discrete analogs p_h, q_h and f_h of the scalar functions p, q and f, and \mathbf{u}_h, \mathbf{v}_h of the vector functions \mathbf{u}, \mathbf{v}. We assume that p_h and q_h belong to the linear space Q_h, which is referred to as the space of the scalar grid functions, and that \mathbf{u}_h and \mathbf{v}_h belong to the linear space X_h, which is referred to as the space of the flux grid functions. The grid functions in Q_h and X_h are vectors of numbers, the degrees of freedom, and will be used to approximate pressure and flux, respectively. We equip X_h and Q_h with the mimetic inner products $[\cdot, \cdot]_{X_h}$ and $[\cdot, \cdot]_{Q_h}$. The discrete mimetic gradient operator $\mathcal{GRAD} : Q_h \rightarrow X_h$ can
be introduced to approximate the gradient operator ∇ and defined as $GRAD = -DIV^*$, i.e., as the adjoint DIV^* of the discrete divergence operator $DIV : X_h \rightarrow Q_h$ that approximates the divergence operator div. As it was show in [19], the discrete gradient operator leads to an equivalent weak formulation that has a saddle-point structure. For this reason, we do not introduce the discrete gradient operator here, but we consider the formulation with the discrete divergence operator.

Now, the mixed MFD method reads as:

\[
\text{find } (u_h, p_h) \in X_h \times Q_h \text{ such that }
\begin{align*}
[u_h, v_h]_{X_h} - [p_h, DIV v_h]_{Q_h} &= - \langle g, v_h \rangle_h \quad \forall v_h \in X_h, \quad (5a) \\
[DIV u_h, q_h]_{Q_h} &= \langle f_h, q_h \rangle_{Q_h} \quad \forall q_h \in Q_h. \quad (5b)
\end{align*}
\]

The Dirichlet boundary condition (1c) is expressed in the right-hand side of (5a) by

\[
\langle g, v_h \rangle_h = \sum_{e \in \Gamma} \int_{e} \bar{v}_h^e dS,
\]

where the boundary function \bar{v}_h^e is the polynomial interpolation in $P_{k+1}(e)$ built using the degrees of freedom of v_h on e.

2.1. Notation and basic assumptions

Let Ω_h be a partition of the domain Ω consisting of polygons for $d = 2$ and polyhedra for $d = 3$. We denote by \mathcal{E}^h the set of all the edges/faces in Ω_h, and let $\mathcal{E}_0^h = \mathcal{E}^h \setminus \partial \Omega$ the set of all interior edges/faces. For every polygon/polyhedron $E \in \Omega_h$, we denote by $|E|$ its Lebesgue measure (area/volume), by ∂E its boundary, and by h_E its diameter. Similarly, for every edge/face $e \in \mathcal{E}^h$, we denote by $|e|$ the measure (length/area) of e, by h_e its characteristic length, and by n_e its unit normal vector, whose orientation is assumed once and for all. When e is considered on the boundary of cell E, its normal vector is denoted by $n_{E,e}$ and is always pointing out of E. When $d = 2$, we take $h_e = |e|$, while, for $d = 3$, we take h_e equal to the diameter of the polygonal face e. We use ξ and (ξ, η) to denote local Cartesian coordinates defined on e for $d = 2$ and 3, respectively. We also set as usual the mesh size of Ω_h by

\[
h = \max_{E \in \Omega_h} h_E.
\]

We assume that all the elements of Ω_h are closed and simply connected subset of \mathbb{R}^d, all polyhedral faces are flat and all mesh edges are straight segments.

The analysis of the mimetic finite difference method requires some regularity assumptions for the sequence of partitions $\{\Omega_h\}_h$ when $h \to 0$, which we list below only for $d = 3$ (for $d = 2$ they are readily obtained by reduction).

- (HG) Star-shape regularity: there exist a positive integer number N_s and a positive real number $\rho_s > 0$ such that every mesh Ω_h admits a sub-partition \mathcal{S}^h into shape-regular tetrahedra such that:
 - (HG1) every polyhedron $E \in \Omega_h$ has Lipschitz boundary ∂E and admits a decomposition \mathcal{S}^h_E made of less than N_s tetrahedra;
 - (HG2) the shape regularity of the tetrahedra $E \in \mathcal{S}^h_E$ is defined as follows: the ratio between the radius r_T of the inscribed ball and the diameter h_T of the tetrahedron T is bounded from below by ρ_s;
 - (HG3) There exists a positive number τ^* such that each element is star-shaped with respect to all points of a ball of radius $\tau^* h_E$ centered at an internal point of E.

From the above assumptions several properties of the mesh, which are useful in the analysis of the MFD scheme, can be derived. We list them below for the sake of the reader’s convenience and for future reference in the paper; proofs can be found in [11].
- (M1) There exist two integer numbers N_F and N_E such that every element E has at most N_F faces and every face has at most N_E edges.
- (M2) There exists a constant a^* independent of h_E and the mesh Ω_h such that
 \[a^* h_E^{l-1} \leq |e|, \quad a^* h_E \leq h_e, \quad a^* h_E \leq |l|, \]
 where $l \in \partial E$ is an edge of the polygonal boundary of face e. Roughly speaking, we state that for every element the area of each element’s face and the length of each element’s edge scale properly with respect to the element’s diameter.
- (M3) Agmon inequality: there exists a constant C^{Agm} independent of h_E and the mesh Ω_h such that
 \[\sum_{e \in \partial E} ||\phi||_{0,e}^2 \leq C^{\text{Agm}} \left(h_E^{-1} \|\phi\|_{0,E}^2 + h_E |\phi|_{1,E}^2 \right) \]
 for any function $\phi \in H^1(E)$.
- (M4) Local interpolation: let $m \geq 0$ be an integer number. For any function $q \in H^{m+3}(E)$ there exists a local polynomial approximation of degree $m+2$ defined on E, which we denote by \bar{q}. The following estimate of the interpolation error also holds
 \[\|q - \bar{q}\|_{0,E} + \sum_{l=1}^{m+2} h_E^{l} |q - \bar{q}|_{l,E} \leq C^{\text{Intp}} h_E^{k+3} |q|_{m+3,E}, \]
 where $C^{\text{Intp}} > 0$ is a constant independent of h_E.

Remark 2.1 The constants N_F, N_E, a^*, C^{Agm} and C^{Intp}, which appear in (M1)-(M4) above, may only depend on the constants N_s and p_s of (HG) and the shape of the domain Ω. Assumption (HG3) is used in the analysis section, e.g. in Lemma 3.1.

Throughout the paper, we will make use of the standard notation for Sobolev spaces; hence, if $l > 0$ is an integer number and D is Ω or a cell E, then $H^l(D)$ denotes the space of square integrable functions with square integrable derivatives up to order l defined on D. The usual definition also holds for $L^2(D)$, $\| \cdot \|_{0,D}$, $| \cdot |_{0,D}$, and $H(\text{div},D)$. We will also use the functional space of vector fields:

\[V_{\Omega_h} = \left\{ v \in H(\text{div},\Omega) \text{ such that } v|_E \in H(\text{div},E) \cap \left(L^s(E) \right)^d \text{ with } s > 2 \text{ for every } E \in \Omega_h \right\}, \]

where $v|_E$ is the restriction of v to E. The regularity that is required to the vector fields in V_{Ω_h} is stronger than just being in $H(\text{div},\Omega)$ and is needed to define the interpolation of $n_e \cdot v$ on a single edge/facet $e \in \mathcal{E}_h$.

An explanation can be found in [15].

2.2. Polynomial spaces and orthogonal basis functions

We will find it convenient to consider two different kinds of polynomial spaces, respectively defined on the mesh cells and the mesh edges/faces.

For the mesh cell E and the non-negative integer number l, $\mathbb{P}_l(E)$ is the space of the polynomial functions defined on E with degree at most l. The dimension of $\mathbb{P}_l(E)$ is equal to $n^F_l = (l+1)(l+2)/2$ for $d = 2$ and $n^F_l = (l+1)(l+2)(l+3)/6$ for $d = 3$. The set of n^F_l basis functions $\{ \varphi_{E,i} \}_{i=0,\ldots,n^F_l}$ that satisfies the orthogonality condition

\[\int_E \varphi_{E,i} \varphi_{E,j} \, dV = |E| \delta_{ij} \]

generates $\mathbb{P}_l(E)$. We assume that $\varphi_{E,0} = 1$. The polynomial functions $\varphi_{E,i}$ are practically built by the Gram-Schmidt orthogonalization process applied to the monomials $1, x, y, x^2, \text{etc}$, after translation to the barycenter x_E and rescaling by h_E.

We define the projection $\Pi^F_l(\phi) \in \mathbb{P}_l(E)$ of a scalar function $\phi \in L^2(E)$ by the orthogonality relation

\[\int_E (\Pi^F_l(\phi) - \phi) \varphi \, dV = 0 \quad \text{for every } \varphi \in \mathbb{P}_l(E), \]
Fig. 1. Degrees of freedom for $0 \leq k \leq 3$ on a polygonal cell; for each polynomial degree k we show the flux degrees of freedom on the left and the scalar degrees of freedom on the right. The edge/face moments of the normal component of the flux are denoted by a vertical line; the cell moments are denoted by a bullet.

and the projection $\Pi_E^k(\phi) \in (P_l(E))^d$ of the vector function $\phi \in (L^2(E))^d$ by the orthogonality relation

$$\int_E (\Pi_E^k(\phi) - \phi) \cdot \varphi \, dV = 0 \quad \text{for every } \varphi \in (P_l(E))^d$$

(for simplicity of notation, we use the same symbol “Π_E^k”).

Likewise, for the mesh edge/face e and the non-negative integer number l, $P_l(e)$ is the space of the polynomial functions defined on e with degree at most l. The dimension of $P_l(e)$ is equal to $n_e^l = l + 1$ for $d = 2$ and $n_e^l = (l + 1)(l + 2)/2$ for $d = 3$. The set of n_e^l functions $\{\varphi_{e,i}\}_{i=0}^{n_e^l-1}$ that satisfies the orthogonality condition

$$\int_e \varphi_{e,i} \varphi_{e,j} \, dS = |e| \delta_{ij}$$

generates $P_l(e)$. For $d = 2$, the polynomial functions $\varphi_{e,i}$ are practically built by translating and rescaling the Legendre polynomials, which are normally defined on the interval $[-1, 1]$, over the edge e. For $d = 3$, on each two-dimensional face we apply the Gram-Schmidt orthogonalization process to the monomials $1, \xi, \eta, \xi^2$, etc, where (ξ, η) are the local coordinates of the face.

We define the projection $\Pi_l^e(\phi) \in P_l(e)$ of the scalar function $\phi \in L^2(e)$ by the orthogonality relation

$$\int_e (\Pi_l^e(\phi) - \phi) \varphi \, dS = 0 \quad \text{for every } \varphi \in P_l(e).$$

Remark 2.2 Using orthogonal basis functions to generate $P_l(E)$, $(P_l(E))^d$, and $P_l(e)$ significantly simplifies the implementation and calculation of the projection operators Π_E^k and Π_l^e.

2.3. Scheme Formulation

2.3.1. Degrees of freedom

Hereafter, we denote the degree of the polynomials that are used in each cell to construct Q_h and X_h by k and on each mesh edge/face by $k + 1$, where k is a non-negative integer number. Scalar variables and fluxes are represented in the discrete setting by the elements of Q_h and X_h, respectively, which are linear spaces with the usual rules of addition and multiplication by a scalar number. The degrees of freedom are
associated with the edges/faces and the interior of the cells as follows. The meaning of these degrees of freedom will become clear in the next subsection, when we define the interpolation operators.

- **Scalar variables.** We associate the degrees of freedom of the scalar variable to the mesh cells so that

\[q_h \in Q_h \quad \text{means that} \quad q_h = \{(q_{E,0}, \ldots, q_{E,n_k^E-1})_{E \in \Omega_h}\} \tag{9} \]

with \(q_{E,i} \in \mathbb{R} \). The dimension of \(Q_h \) is equal to \(n_k^E \times \text{number of cells} \). The restriction of the grid function \(q_h \) to cell \(E \) is given by the set of \(n_k^E \) real numbers \(\{q_{E,0}, \ldots, q_{E,n_k^E-1}\} \) and denoted by \(q_E \). The restriction operator that gives the \(“E,i” \)-th degree of freedom of \(q_h \) is denoted by \((\cdot)_E,i \), i.e., \(q_{E,i} = (q_h)_E,i \).

- **Fluxes.** We associate the degrees of freedom of the flux function to the mesh edges/faces and the mesh cells so that

\[v_h \in X_h \quad \text{means that} \quad v_h = \left\{ \{v_{e,0}, \ldots, v_{e,n_{k+1}^E-1}\}_{e \in \mathcal{E}_h}, \{v_{E,1}, \ldots, v_{E,n_k^E-1}\}_{E \in \Omega_h} \right\} \tag{10} \]

with \(v_{e,i}, v_{E,i} \in \mathbb{R} \). The dimension of \(X_h \) is given by \(n_{k+1}^E \times \text{number of edges (2D) or faces (3D)} + (n_k^E - 1) \times \text{number of cells} \). The edge/face degrees of freedom of the flux grid function \(v_h \) related to \(e \) form the set of real numbers \(\{v_{e,0}, \ldots, v_{e,n_{k+1}^E-1}\} \), which we denote by \(v_e \). Similarly, cell degrees of freedom of \(v_h \) related to the cell \(E \) form the set of real numbers \(\{v_{E,1}, \ldots, v_{E,n_k^E-1}\} \), which we denote by \(v_E \). The restriction of \(v_h \) to the mesh cell \(E \), denoted by \(v_E \), consists of both cell and edge/face degrees of freedom, i.e., \(v_E = v_{h|E} = \{v_e\}_{e \in \partial E}, v_E \). The restriction operators that give the \(“E,i” \)-th and \(“e,i” \)-th degrees of freedom of the vector grid function \(v_h \) are respectively denoted by \((\cdot)_E,i \) and \((\cdot)_{e,i} \), i.e., \(v_{E,i} = (v_h)_E,i \) and \(v_{e,i} = (v_h)_{e,i} \).

2.3.2. Interpolation operators

The local interpolant of the scalar function \(q \in L^2(E) \) is the grid function \(q^I_E \in Q_E \) whose components are the moments of \(q \) with respect to the orthogonal polynomials \(\varphi_{E,i} \) of degree up to \(k \):

\[q^I_{E,i} := (q^I)_E,i = \frac{1}{|E|} \int_E q \varphi_{E,i} dV \quad \text{for} \quad i = 0, \ldots, n_k^E - 1, \forall E \in \Omega_h. \tag{11} \]

The global interpolant of \(q \) is the grid function \(q^I \) of \(Q_h \) whose restriction to each cell \(E \) coincides with the local interpolant \(q^I_E \).

The local interpolant of the vector field \(\mathbf{v} \in H(\text{div}, E) \cap (L^2(E))^d \) with \(s > 2 \) is the grid function \(\mathbf{v}^I_E \in X_E \) whose components are

- the moments of \(\mathbf{v} \) with respect to \(\nabla \varphi_{E,i} \), the gradients of the orthogonal polynomials forming a basis of \(\mathbb{P}_k(E) \):

\[v^I_{E,i} := (v^I)_E,i = \frac{1}{|E|} \int_E \mathbf{v} \cdot \nabla \varphi_{E,i} dV, \quad \text{for} \quad i = 1, \ldots, n_k^E - 1, \forall E \in \Omega_h; \tag{12} \]

- the moments of \(\mathbf{n}_e \cdot \mathbf{v} \) for each edge/face \(e \in \partial E \) with respect to the orthogonal polynomials \(\{\varphi_{e,i}\} \) forming a basis of \(\mathbb{P}_{k+1}(e) \):

\[v^I_{e,i} := (v^I)_{e,i} = \frac{1}{|e|} \int_e \mathbf{n}_e \cdot \mathbf{v} \varphi_{e,i} dS, \quad \text{for} \quad i = 0, \ldots, n_{k+1}^e - 1, \forall e \in \mathcal{E}_h. \tag{13} \]

The moments considered in (12) and (13) provide as many independent conditions on \(\mathbf{v} \) as the dimension of \(X_h|E \), the restriction of \(X_h \) to cell \(E \). The global interpolant of \(\mathbf{v} \in V_{h|E} \) is the grid function \(\mathbf{v}^I \) of \(X_h \) whose restriction to each cell \(E \) coincides with the local interpolant \(\mathbf{v}^I_E \) (we recall that \(V_{h|E} \) is defined in (8)).

Remark 2.3 The degrees of freedom associated with edge/face \(e \) are the discrete representation of the normal flux associated with that edge/face. For each internal edge/face \(e \subseteq \partial E' \cap \partial E'' \), i.e., shared by the polygons \(E' \) and \(E'' \), the degrees of freedom are the same for both adjacent polygons and the continuity of the normal flux across \(e \) is automatically satisfied. This construction is consistent with the continuity of the normal component \(\mathbf{n}_e \cdot \mathbf{v} \) of a vector function \(\mathbf{v} \in H(\text{div}, \Omega) \).
Remark 2.4 The definition of the interpolation operator for the scalar variable suggests the following piecewise polynomial representation using the degrees of freedom of the grid function \(q_h \) and the orthogonal polynomials \(\varphi_{E,i} \) inside each cell \(E \in \Omega_h \):

\[
\tilde{q}_h(x) = \sum_{i=0}^{n_E^E-1} q_{E,i} \varphi_{E,i}(x) \quad \text{for } x \in E.
\]

Obviously, it holds that \(q_h = (\tilde{q}_h)^T \). When \(q_h = q^T \), the restriction of \(\tilde{q}_h \) to \(E \) is the \(L^2 \) orthogonal projection of \(q \) onto \(P_k(E) \), i.e., \((\tilde{q}_h)_E = \Pi_k^E(q) \). Hereafter, the symbol “tilde”, e.g., \(\tilde{v} \) indicates a polynomial that is built by linear combination of the orthogonal basis functions using the degrees of freedom as coefficients.

Remark 2.5 The definition of the interpolation operator for the flux variable suggests the following piecewise polynomial representation on each edge/face \(e \) using the corresponding degrees of freedom of \(v_h \) and the orthogonal polynomials \(\varphi_{e,i} \):

\[
\tilde{v}_h^e(\xi) = \sum_{i=0}^{n_{E^e}^e-1} v_{e,i} \varphi_{e,i}(\xi) \quad \text{for } \xi \in e.
\]

When \(v_h = v^T \), the polynomial \(\tilde{v}_h^e \) is the \(L^2 \) orthogonal projection of \(n_e \cdot v \) onto \(P_{k+1}(e) \), i.e., \((n_E^e \cdot v)^T = \Pi_{k+1}^e(n_e \cdot v) \).

2.3.3. Discrete divergence operator

The discrete divergence operator \(\nabla q : X_h \rightarrow Q_h \) is defined cell-wise from the commutation property:

\[
\nabla^q = (\nabla v)^T \quad \text{for every } v \in V_h.
\]

The right-hand side of (15) is computable on each cell \(E \) by using only the degrees of freedom of \(v_E^T \). Indeed, an integration by parts yields:

\[
(\nabla v)^T_{E,i} = \frac{1}{|E|} \int_E (\nabla v) \varphi_{E,i} \, dV = \frac{1}{|E|} \left(- \int_E \nabla \varphi_{E,i} \cdot dV + \sum_{e \in \partial E} \int_{e} n_{E,e} \cdot v \varphi_{E,i} \, dS \right),
\]

for \(i = 0, \ldots, n_{E^e}^e - 1 \). Moreover, taking \(i = 0 \) in the development above shows that our definition is consistent with the Gauss divergence theorem. Since \((\nabla^q v_h)_E \), the restriction of \(\nabla^q v_h \) to \(E \), belongs to \(Q_E \), we can consider the polynomial representation in \(P_k(E) \) given by:

\[
\nabla^q v_h(x) = \sum_{i=0}^{n_{E^e}^e-1} (\nabla^q v_h)_{E,i} \varphi_{E,i}(x) \quad \text{for } x \in E,
\]

and, clearly, when \(v_h = v^T \) it holds that \(\nabla^q v^T_E = \Pi_k^E(\nabla v) \).

Finally, suppose that \(u_h \) is the mimetic flux solving (5a)-(5b) and \(u^T \) is the interpolant of the flux \(u \) solving problem (1a)-(1c). For every \(q_h \in Q_h \) it holds that:

\[
[\nabla^q u_h, q_h]_{Q_h} = [f^T, q_h]_{Q_h} = [(\nabla u)^T, q_h]_{Q_h} = [\nabla^q u^T, q_h]_{Q_h},
\]

from which we obtain the orthogonality property:

\[
[\nabla^q (u_h - u^T), q_h]_{Q_h} = 0 \quad \text{for every } q_h \in Q_h.
\]

This property is used in the error analysis of Section 4.

2.3.4. Mimetic inner product for scalar grid functions

We define the mimetic inner product in \(Q_h \) by assembling the mimetic inner products that are locally defined on every cell \(E \):
\[[p_h, q_h]_{Q_h} = \sum_{E \in \Omega_h} [p_h, q_h]_E = \sum_{E \in \Omega_h} |E| \sum_{i=0}^{n_E-1} p_{E,i} q_{E,i} \text{ for every } p_h, q_h \in Q_h. \] (17)

We also denote the mesh-dependent norm induced by the local mimetic inner product in \(Q_E \) by \(\| \cdot \|_E \) and the mesh-dependent norms induced by the global inner product in \(Q_h \) by \(\| \cdot \|_{Q_h} \).

Relation (17) corresponds to the \(L^2 \)-scalar product for piecewise polynomial functions of degree \(k \) associated with \(p_h \) and \(q_h \). Indeed,

\[
\int_E \tilde{q}_h \tilde{p}_h \, dV = \sum_{i,j=0}^{n_E-1} q_{E,i} \varphi_{E,i} \varphi_{E,j} \, dV = \sum_{i,j=0}^{n_E-1} q_{E,i} p_{E,i} |E| \delta_{ij} = |E| \sum_{i=0}^{n_E-1} p_{E,i} q_{E,i}. \] (18)

Consequently, for any pair of square integrable functions \(q \) and \(p \), the mimetic inner product of their local interpolants \(q_E \) and \(p_E \) is equal to the \(L^2 \) inner products of their orthogonal projection on the polynomial space \(\mathbb{P}_k(E) \). Using the global interpolations, we have the formal relation

\[
[p^T, q^T]_{Q_h} = \sum_{E \in \Omega_h} \int_E \Pi^E_k(p) \Pi^E_k(q) \, dV \quad \text{ for every } p, q \in L^2(\Omega). \] (19)

2.3.5. Mimetic inner product for flux grid functions

We define the mimetic inner product in \(X_h \) by assembling the element-wise contribution from each mesh element \(E \)

\[
[u_h, v_h]_{X_h} = \sum_{E \in \Omega_h} [u_h, v_h]_E \quad \text{ for every } u_h, v_h \in X_h. \] (20)

We also denote the mesh-dependent norm induced by the local mimetic inner product in \(X_E \) by \(\| \cdot \|_E \) and the mesh-dependent norm induced by the global inner product in \(X_h \) by \(\| \cdot \|_{X_h} \).

Remark 2.6 We abuse the notation by using the same symbols \([\cdot, \cdot]_E\) and \(\| \cdot \|_E\) to denote the local inner products and norms for scalar and vector grid functions. Note that these operators are contextually determined by the nature of their arguments without any ambiguity.

Moreover, both \([\cdot, \cdot]_E\) and \(\| \cdot \|_E\) only depends on the degrees of freedom of cell \(E \). We will keep this dependence implicit through the more elegant notation \([p_h, q_h]_E\) and \(\|q_h\|_E\) for scalars and \([u_h, v_h]_E\) and \(\|v_h\|_E\) for vectors instead of \([p_h)E, (q_h)_E\], \([u_h)E, (v_h)_E\] or \([p, q)_E\), \([u, v)_E\], and \(\|q_h)_E\), \(\|q_h\|_E\) or \(\|q_h\|_E\), \(\|v_h\|_E\), \(\|v_h\|_E\), which are more precise but also more cumbersome.

Now, we present the construction of the local mimetic inner product for fluxes. Consider the cell \(E \) and the functional space of vector fields \(S_{\Omega_h} \), which is a sub-space of \(V_{\Omega_h} \), and it is defined as

\[
S_{\Omega_h} = \{ v \in V_{\Omega_h} \text{ such that } (\text{div } v)_E \in \mathbb{P}_k(E), \ u_{E,e}, v \in \mathbb{P}_{k+1}(e) \text{ for every } E \in \Omega_h \}. \]

The local inner product \([\cdot, \cdot]_E\) is required to satisfy the two following conditions:

- **(S1) stability:** there exist two constants \(\sigma_*, \sigma^* > 0 \) independent of \(h \) such that
 \[
 \sigma_* |E| |v_h|^2_E \leq [u_h, v_h]_E \leq \sigma^* |E| |v_h|^2_E
 \] (21)
 for all \(v_h \in X_E \), where
 \[
 |v_h|^2_E = \sum_{i=0}^{n_E-1} |v_{E,i}|^2 + \sum_{e \in \partial E} \sum_{i=0}^{n_{e+1}-1} |v_{e,i}|^2. \] (22)

- **(S2) local consistency:** for every polynomial \(q \in \mathbb{P}_{k+2}(E) \) and every function \(v \in S_{\Omega_h} \) it holds:
 \[
 \left[(\Pi^E_{k+1}(\nabla q)) \cdot v \right]_E = \int_E \nabla q \cdot v \, dV. \] (23)
Since \(v \in S_{0h} \), we integrate by parts (23) on cell \(E \) and note that in the right integrals we can substitute \(\text{div} \, v \) and \(v \cdot n_{E,e} \) with the projections \(\Pi_{k+1}^E (\text{div} \, v) \) and \(\Pi_{k+1}^E (v \cdot n_{E,e}) \) and then with \(\mathcal{D} \mathcal{I} \mathcal{V} \mathcal{v}^1 \) and \((\mathcal{v}^1)^c \):

\[
\left[\left(\Pi_{k+1}^E (K \nabla q) \right)^T, v^1 \right]_E = - \int_E q \text{div} \, v \, dV + \sum_{e \in \partial E} \int_{e} v \cdot n_{E,e} \, q \, dS
\]

\[
= - \int_E q \Pi_{k}^E (\text{div} \, v) \, dV + \sum_{e \in \partial E} \int_{e} \Pi_{k+1}^E (v \cdot n_{E,e}) \, q \, dS
\]

\[
= - \int_E q \mathcal{D} \mathcal{I} \mathcal{V} \mathcal{v}^1 \, dV + \sum_{e \in \partial E} \int_{e} \left(\mathcal{v}^1 \right)^c \, q \, dS.
\]

Thus, for any grid function \(v_h \in X_E \), we consider the formula:

\[
\left[\left(\Pi_{k+1}^E (K \nabla q) \right)^T, v_h \right]_E = - \int_E q \mathcal{D} \mathcal{I} \mathcal{V} v_h \, dV + \sum_{e \in \partial E} \int_{e} \tilde{v}_e^k \, q \, dS. \tag{24}
\]

Remark 2.7 Local consistency can also be defined by directly assuming that

\[
\left[\left(\Pi_{k+1}^E (K \nabla q) \right)^T, v^1 \right]_E = - \int_E q \mathcal{D} \mathcal{I} \mathcal{V} v^1 \, dV + \sum_{e \in \partial E} \int_{e} (v^1)^c \, q \, dS. \tag{25}
\]

for every polynomial \(q \in P_{k+2}(E) \) and every function \(v \in V_{1h} \). This definition is equivalent to (S2) as it leads to the same family of mimetic schemes and is the straightforward generalization of the consistency condition that was considered in [8, 19]. Condition (S2) emphasizes the fact that the local consistency is an exactness property while (25) emphasizes the connection with a discrete integration by parts formula. Moreover, it is worth noting that the definition of the weak gradient in the weak Galerkin method is very similar to the right-hand side of (25), cf. [52].

The mimetic inner product in \(X_E \) is given by the \(n_{k+1}^E \times n_{k+1}^E \) symmetric and positive definite matrix \(M_E \):

\[
[u_h, v_h]_E = (u_h)^T M_E v_h, \tag{26}
\]

where \(u_E \) and \(v_E \) are the vectors of degrees of freedom of \(u_h \) and \(v_h \) pertinent to \(E \). The convergence properties of the MFD method only depend on the fact that the local scalar product satisfies Assumptions (S1)-(S2), and not on the specific form of matrix \(M_E \). The construction of matrix \(M_E \) is carried out through the auxiliary matrices \(N \) and \(R \). The \(i \)-th columns of \(N \) (for \(i = 1, \ldots, n_{k+2}^E - 1 \)), denoted by \(N_i \), is given by

\[
N_i = \left(\Pi_{k+1}^E (K \nabla \varphi_{E,i}) \right)^T. \tag{27}
\]

The \(i \)-th columns of \(R \) (for \(i = 1, \ldots, n_{k+2}^E - 1 \)), denoted by \(R_i \), is such that

\[
\mathcal{v}^k_E R_i = - \int_E \mathcal{D} \mathcal{I} \mathcal{V} v^k_{E,i} \, dV + \sum_{e \in \partial E} \int_{e} \tilde{v}_e^k \, \varphi_{E,i} \, dS \quad \text{for every } v_E \in X_E. \tag{28}
\]

Matrix \(M_E \) is given by the usual formula for the mimetic inner product matrix:

\[
M = M_0 + M_1 = R (N^T R)^{-1} R^T + \mu_E (I - N (N^T N)^{-1} N^T), \tag{29}
\]

where \(\mu_E \) is a scalar factor, usually the trace of matrix \(M_0 \). Matrices \(M_0 \) and \(M_1 \) ensure the consistency and stability properties of the method stated in (S2) and (S1), respectively. Formula (29) provides a convenient choice of the mimetic inner product for the practical implementation in a computer code. Nonetheless, a wider family of mimetic inner products exists that satisfies the stability and consistency conditions above [11].
Remark 2.8 For constant tensors K, we can further simplify (23) by removing the projection Π_{h+1}^E from the left-hand side:

$$\left[(K \nabla q)^T, v^T\right]_E = \int_E \nabla q \cdot v \, dV. \tag{30}$$

Take $q = \varphi_{E,i}$ and $v = \nabla \varphi_{E,j}$ in (23) or (30); as $N^T N = N^T R$ we immediately have the identities

$$\int_E \nabla \varphi_{E,i} \cdot \nabla \varphi_{E,j} \, dV = (N^T R)_{ij} = N_i^T R_j.$$

Since i and j start from 1, matrix $N^T R$ is symmetric and positive definite and, thus, non-singular. Hence, $(N^T R)^{-1}$ is well defined in formula (29).

Remark 2.9 The factor h_i^2 that multiplies each $|v_{E,i}|^2$ in (22) is needed to make the two summation terms in the right-hand side to scale consistently with respect to h_E. This requirement is a consequence of the normalization of the orthogonal polynomials that we use to define the cell and the edge/face degrees of freedom. We could remove this factor by renormalizing $\nabla \varphi_{e,i}$ in the definition of v^*_E in (13). However, the normalization of the same polynomial basis of $P_k(E)$ would be different in the definition of Q_E and X_E, which might be source of errors and confusion.

Remark 2.10 The mimetic inner product between the two flux grid functions u^T and v^T that interpolate the vector fields u and v is an approximation of the K^{-1}-weighted L^2-scalar product between these two vectors for any cell $E \in \Omega_h$:

$$[u^T, v^T]_E \approx \int_E K^{-1} u \cdot v \, dV,$$

and, consequently, for the whole domain Ω:

$$[u^T, v^T]_{X_h} \approx \int_\Omega K^{-1} u \cdot v \, dV.$$

From the previous discussion, it should be clear that for a constant K this approximation is exact whenever both vectors are the gradient of a polynomial of degree $k+1$. The information about K^{-1} is embedded inside $[\cdot, \cdot]_{X_h}$. In the matrix formula (29), K^{-1} affects matrix M_0 through $(N^T R)^{-1}$, since N contains K in its definition, and matrix M_1 through the choice of the scaling factor μ_E.

2.4. Well-posedness

Since the bilinear form $[\cdot, \cdot]_{X_h}$ in (20) is an inner product, it is coercive on the whole space X_h, and therefore on the kernel of the discrete divergence operator $\mathcal{D} \nabla$. The well-posedness of the mimetic method follows from this fact and the discrete inf-sup condition that will be proved in subsection 5.2; see [15].

3. Estimates for interpolation and projection operators

To ease the notation, we use the symbol “\lesssim” to denote “$\leq C$”, i.e., “less than or equal to up to the constant C”, where C is strictly positive and independent of the mesh size h, variables or other parameters of the inequality. By accurately tracing back the different constants as they appear in the proofs, it is immediate to see that all such constants may depend only on the mesh size h, and C.

Lemma 3.1 Let E be a mesh element of Ω_h, e a mesh edge/face in \mathcal{E}_h, l a non-negative integer and q a function in $H^{l+1}(E)$. Under assumption (HG), we have

$$\|q - \Pi_l^E(q)\|_{0,E} + h_E \|\nabla (q - \Pi_l^E(q))\|_{0,E} \lesssim h_{l+1}^E |q|_{l+1,E},$$

$$\|q - \Pi_l^e(q)\|_{0,e} \lesssim h_{l+1}^e |q|_{l+1,e}.$$
Proof. These estimates are the consequence of the mesh regularity assumptions that make it possible to use standard results from polynomial approximation in Sobolev spaces in star-shaped domains [16]. □

Lemma 3.2 Let E be a mesh element, e be a mesh edge/face that belongs to ∂E, and q be a function in $H^{k+3}(E)$ for k non-negative integer. From assumption (HG) and $K_{ij} \in W^{k+2,\infty}(E)$, it follows that

\[
\|q - \tilde{q}\|_{0,E}^2 + h_E \sum_{e \in \partial E} \|q - \tilde{q}\|_{0,e}^2 \lesssim h_E^{2(k+3)} \|q\|_{k+3,E}^2 \quad (31a)
\]

\[
\|K\nabla q - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,E}^2 + h_E \sum_{e \in \partial E} \|K\nabla q - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,e}^2 \lesssim h_E^{2(k+2)} \|q\|_{k+3,E}^2 \quad (31b)
\]

where \tilde{q} is the polynomial interpolant of degree $k + 2$ of q on E defined in (M4).

Proof. Inequality (31b) follows directly from combining (M3) and (M4).

To prove inequality (31b) we add and subtract $K\nabla \tilde{q}$ to the two terms of the left-hand side and use the triangle inequality to obtain:

\[
\|K\nabla q - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,E}^2 \lesssim \|K\nabla (q - \tilde{q})\|_{0,E}^2 + \|K\nabla \tilde{q} - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,E}^2 \quad (32)
\]

and, similarly,

\[
\|K\nabla q - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,e}^2 \lesssim \|K\nabla (q - \tilde{q})\|_{0,e}^2 + \|K\nabla \tilde{q} - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,e}^2. \quad (33)
\]

The right-hand side of (32) is bounded by applying standard estimates from polynomial interpolation theory and noting that $\|q\|_{k+2,E} \lesssim \|q\|_{k+3,E}$ (recall that \tilde{q} is the polynomial interpolant of q of degree $k + 2$):

\[
\|K\nabla (q - \tilde{q})\|_{0,E}^2 + \|K\nabla \tilde{q} - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,E}^2 \lesssim h_E^{2k+2} (\kappa^*)^2 \|q\|_{k+3,E}^2 + h_E^{2k+2} \|K\nabla \tilde{q}\|_{k+3,E}^2 \lesssim h_E^{2(k+2)} \max(\kappa^*, \|K\|_{k+2,\infty,E})^2 \|q\|_{k+3,E}^2.
\]

The first term in the right-hand side of (33) is bounded by applying the Agmon inequality with $\phi = K\nabla (q - \tilde{q})$ and then using the estimate for the interpolation error:

\[
\sum_{e \in E} \|K\nabla (q - \tilde{q})\|_{0,e}^2 \lesssim h_E^{-1} \|K\nabla (q - \tilde{q})\|_{1,E}^2 + h_E \|K\nabla (q - \tilde{q})\|_{1,E}^2 \lesssim h_E^{-1} (h_E^{k+2} \|q\|_{k+3,E}^2 + h_E (h_E^{k+1} \|q\|_{k+3,E}^2)^2 \lesssim h_E^{2k+3} \|q\|_{k+3,E}^2.
\]

The second term in the right-hand side of (33) is bounded by applying the Agmon inequality with $\phi = K\nabla \tilde{q} - \Pi_{k+1}^E (K\nabla \tilde{q})$, applying the error estimate for Π_{k+1}^E of the previous lemma, and noting that $K_{ij} \in W^{k+2,\infty}(E)$:

\[
\sum_{e \in \partial E} \|K\nabla \tilde{q} - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,e}^2 \lesssim h^{-1}_E \|K\nabla \tilde{q} - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{0,E}^2 + h_E \|K\nabla \tilde{q} - \Pi_{k+1}^E (K\nabla \tilde{q})\|_{1,E}^2 \lesssim h^{-1}_E (h^{k+2}_E \|K\nabla \tilde{q}\|_{k+2,E})^2 + h_E (h^{k+1}_E \|K\nabla \tilde{q}\|_{k+2,E})^2 \lesssim h^{2k+3}_E \|K\|_{k+2,\infty,E}^2 \|q\|_{k+2,E}^2.
\]

To estimate the norms and seminorms of $K\nabla \tilde{q}$ we needed the stronger regularity of K, which we indicates explicitly through the factor $\|K\|_{k+2,\infty,E}$. The quantity $\max(\kappa^*, \|K\|_{k+2,\infty,E})$ that would appear in the final inequality is absorbed by the \lesssim notation in the assertion of the lemma. □

Lemma 3.3 Let E be a mesh element, v a function in $(H^1(E))^d$ and v^* its interpolation in X_E. Then, it holds that

\[
\|v^*\|_{E}^2 \lesssim \|v\|_{0,E}^2 + h_E \sum_{e \in \partial E} \|v\|_{0,e}^2 \lesssim \|v\|_{0,E}^2 + h_E^2 \|v\|_{1,E}^2. \quad (34)
\]
Proof. In view of (S1), we only need to prove that
\[|E| | v^1 |^2_E \lesssim \| v \|_{0,E}^2 + h_E \sum_{e \in \partial E} \| v \|_{0,e}^2 \lesssim \| v \|_{0,E}^2 + h_E^2 | v^1 |_{1,E}^2, \]
where \(|v^1|_E \) is defined in (22) (take \(v_h = v^1 \)). First, note that
\[|E| h^2_E | v^1 |^2_E = |E| h^2_E \left(\frac{1}{|E|} \int_E v \cdot \nabla \varphi_{E,i} dV \right)^2 \leq \| v \|_{0,E}^2 \frac{h^2_E}{|E|} \| \nabla \varphi_{E,i} \|_{0,E}^2 \lesssim \| v \|_{0,E}^2, \]
since \(h_E^2 \| \nabla \varphi_{E,i} \|_{0,E}^2 \lesssim \| E \|. \) From the orthogonality of the basis functions \(\varphi_{e,i} \) it follows that:
\[|E| \sum_{i=0}^{n_{k+1}^E-1} | v^1_{e,i} |^2 \lesssim h_E \| (v^1)^e \|_{0,e} \lesssim h_E \| \Pi^E_{k+1}(n_{e,e} \cdot v) \|_{0,e}^2 \lesssim h_E \| n_{e,e} \cdot v \|_{0,e}^2 \lesssim h_E \| v \|_{0,e}^2. \]
The second inequality in (34) is a consequence of Agmon inequality. \(\square \)

Lemma 3.4 Let \(E \) be a mesh element, \(e \) be a mesh edge/face that belongs to \(\partial E \), and \(q \) be a function in \(H^{k+3}(E) \) for \(k \) non-negative integer. From assumption (HG) and \(K_{ij} \in W^{k+2,\infty}(E) \), it follows that
\[\| \Pi^E_{k+1}(q) - K \|_{k+3,E} \lesssim h^{k+2}_E \| q \|_{k+3,E}. \] (35)
where \(\hat{q} \) is the polynomial interpolant of degree \(k+2 \) of \(q \) on \(E \) defined in (M4).
Proof. Combine the first inequality of Lemma 3.3 with \(v = K \nabla q - \Pi^E_{k+1}(K \nabla \hat{q}) \) and estimate (31b):
\[\| \Pi^E_{k+1}(q) - K \|_{k+3,E}^2 \lesssim \| K \nabla q - \Pi^E_{k+1}(K \nabla \hat{q}) \|_{0,E}^2 + h_E \sum_{e \in \partial E} \| K \nabla q - \Pi^E_{k+1}(K \nabla \hat{q}) \|_{0,e}^2 \]
\[\lesssim h^{2(k+2)}_E \| q \|_{k+3,E}^2. \]
This ends the proof of the lemma. \(\square \)

4. Convergence of the flux variable

The result of this section is the following convergence theorem for the approximation of the flux variable.

Theorem 4.1 Let \((u, p) \) be the exact solution of Problem (1a)-(1c) with \(p \in H^{k+3}(\Omega) \), where \(k \) is a non-negative integer number. Let \((u_h, p_h) \in X_h \times Q_h \) be the solution of (5a)-(5b) under assumption (HG). Then,
\[\| u^T - u_h \|_{X_h} \lesssim h^{k+2} \| p \|_{k+3,\Omega}. \] (36)

Proof. Denote \(\varepsilon_h = u^T - u_h \). Using the orthogonality property (16) in (5a) (with \(v_h = u^T - u_h \)) yields:
\[[u_h, \varepsilon_h]_{X_h} = - \langle g, \varepsilon_h \rangle_h \] (37)
Let \(\hat{p} \) be the piecewise polynomial interpolant of degree \(k + 2 \) of \(p \) defined on \(\Omega_h \) in accordance with (M4), i.e., \(\hat{p}_E = \hat{p}|_E \) interpolates the restriction of \(p \) to \(E \) in \(\mathbb{P}_{k+2}(E) \). Starting from the definition of the norm \(\| \cdot \|_{\Omega,h} \) we have the development:

\[
\|\varepsilon_h\|^2_{\Omega,h} = [u^I, \varepsilon_h]_{\Omega,h} - [u_h, \varepsilon_h]_{\Omega,h} \quad \text{[use (37)]}
\]

\[
= [u^I, \varepsilon_h]_{\Omega,h} + (g, \varepsilon_h)_h \quad \text{[use \(u^I = (-K\nabla p)^I \)]}
\]

\[
= [(-K\nabla p)^I, \varepsilon_h]_{\Omega,h} + (g, \varepsilon_h)_h \quad \text{[use (20)]}
\]

\[
= \sum_{E \in \Omega_h} [(-K\nabla p)^I, \varepsilon_h]_E + (g, \varepsilon_h)_h \quad \text{[add and subtract \((\Pi_{k+1}^E (\nabla \hat{p}))^I \)]}
\]

\[
= A_1 + A_2
\]

where

\[
A_1 = \sum_{E \in \Omega_h} [(-K\nabla p)^I + (\Pi_{k+1}^E (K\nabla \hat{p}))^I, \varepsilon_h]_E.
\]

\[
A_2 = -\sum_{E \in \Omega_h} [(\Pi_{k+1}^E (K\nabla \hat{p}))^I, \varepsilon_h]_E + (g, \varepsilon_h)_h.
\]

The proof continues by estimating the error terms \(A_1 \) and \(A_2 \) separately.

We first derive an upper bound for \(A_1 \). From the Cauchy-Schwartz inequality and Lemma 3.4 it follows that

\[
[(-K\nabla p)^I + (\Pi_{k+1}^E (K\nabla \hat{p}))^I, \varepsilon_h]_E \leq \|(-K\nabla p)^I + (\Pi_{k+1}^E (K\nabla \hat{p}))^I\|_E \|\varepsilon_h\|_E \leq h_E^{k+2} \|p\|_{k+3,E} \|\varepsilon_h\|_E.
\]

Then, we sum over all the mesh cells and use again the Cauchy-Schwartz inequality to estimate \(A_1 \):

\[
|A_1| \lesssim \sum_{E \in \Omega_h} h_E^{k+2} \|p\|_{k+3,E} \|\varepsilon_h\|_E \lesssim h^{k+2} \left(\sum_{E \in \Omega_h} \|p\|^2_{k+3,E} \right)^{1/2} \left(\sum_{E \in \Omega_h} \|\varepsilon_h\|^2_E \right)^{1/2}
\]

\[
\lesssim h^{k+2} \|p\|_{k+3,\Omega} \|\varepsilon_h\|_{\Omega,h}.
\]

(38)

(39)

To derive an upper bound for term \(A_2 \), first observe that the consistency condition (S2) and the orthogonality property (16) imply that

\[
[\Pi_{k+1}^E (\nabla \hat{p})^I, \varepsilon_h]_E = \sum_{e \in \partial E} \int_{\partial E} \hat{p} \tilde{e}_h^e \, dS.
\]

Furthermore, the trace of \(p \in H^{k+3}(\Omega) \) is continuous at every internal face and \(\tilde{e}_h^e \) takes opposite values at the sides of every internal face so that

\[
\sum_{E \in \Omega_h} \sum_{e \in \partial E} \int_{\partial E} p \tilde{e}_h^e \, dS = (p, \varepsilon_h)_h.
\]

(40)

Now, we use (20) and identities (41) and (40) and the Cauchy-Schwartz inequality twice to obtain

\[
[\Pi_{k+1}^E (\nabla \hat{p})^I, \varepsilon_h]_{\Omega,h} = (p, \varepsilon_h)_h = \sum_{E \in \Omega_h} [\Pi_{k+1}^E (\nabla \hat{p})^I, \varepsilon_h]_E - \sum_{E \in \Omega_h} \sum_{e \in \partial E} \int_{\partial E} p \tilde{e}_h^e \, dS
\]

\[
= \sum_{E \in \Omega_h} \sum_{e \in \partial E} \int_{\partial E} (\hat{p} - p) \tilde{e}_h^e \, dS \leq \sum_{E \in \Omega_h} \sum_{e \in \partial E} \|\hat{p} - p\|_{0,e} \|\varepsilon_h\|_{0,e}
\]

\[
\leq \sum_{E \in \Omega_h} \left(\sum_{e \in \partial E} \|\hat{p} - p\|^2_{0,e} \right)^{1/2} \left(\sum_{e \in \partial E} \|\tilde{e}_h^e\|^2_{0,e} \right)^{1/2}.
\]

(41)
From Remark 2.4 and the orthogonality of $\phi_{e,i}(\xi)$ it follows that
\[\|\tilde{\epsilon}_h\|_{0,e}^2 = \int_{\partial E} |\tilde{\epsilon}_h|^2 d\xi = \sum_{i,j=0}^{n_{k+1}^d-1} (\epsilon_h)_{c,i} (\epsilon_h)_{c,j} \int_{\partial E} \phi_{e,i}(\xi) \phi_{e,j}(\xi) d\xi = \sum_{i,j=0}^{n_{k+1}^d-1} (\epsilon_h)_{c,i} (\epsilon_h)_{c,j} |e| \delta_{ij} \]
\[= \sum_{i} |(\epsilon_h)_{c,i}|^2 |e|. \]
This relation, Assumption (S1) and $h_E \lesssim |e|/|E|$ from (M2) imply that
\[\sum_{e \in \partial E} \|\tilde{\epsilon}_h\|_{0,e}^2 = \sum_{e \in \partial E} |e| \sum_{i=0}^{n_{k+1}^d-1} |(\epsilon_h)_{c,i}|^2 \lesssim h_E^{-1} \|\epsilon_h\|_E^2. \] (42)
Since $g = p$ on boundary Γ, inequality (42) combined with inequality (31a) and the Cauchy-Schwarz inequality yields the estimate:
\[|A_2| = \sum_{E \in \Omega_h} \left[\left(I_h^{k+1} (K \nabla \tilde{p}) \right)_E, (\epsilon_h)_E \right] - \left(g, \epsilon_h \right)_h \lesssim \sum_{E \in \Omega_h} h_E^{k+5/2} \|p\|_{k+3,E} h_E^{-1/2} \|\epsilon_h\|_E \]
\[\lesssim h^{k+2} \left(\sum_{E \in \Omega_h} \|p\|_{k+3,E}^2 \right)^{1/2} \left(\sum_{E \in \Omega_h} \|\epsilon_h\|_E^2 \right)^{1/2} \lesssim h^{k+2} \|p\|_{k+3,\Omega} \|\epsilon_h\|_{X_h}. \] (43)
The assertion of the theorem follows from combining the estimates for A_1 and A_2 in (39) and (43).

5. Convergence of the scalar variable

The main result of this section is the following convergence theorem for the approximation of the scalar variable.

Theorem 5.1 Let k be a non-negative integer number and $p \in H^{k+3}(\Omega)$ be the exact solution of Problem (1a)-(1c). Let $p_h \in Q_h$ be the solution of (5a)-(5b) under assumption (HG). Then, there holds
\[\|p^T - p_h\|_{Q_h} \lesssim h^{k+2} \|p\|_{k+3,\Omega}. \] (44)

The proof of this theorem is postponed to subsection 5.3 as it requires the lifting operator and the discrete inf-sup condition, which are presented in subsections 5.1 and 5.2.

5.1. Lifting operator

Consider $E \in \Omega_h$. There exists a local lifting operator $R_E : X_E \to H(\text{div}, E)$ such that:
(R1) for every $v_h \in X_h$ it holds:
\[\text{div} R_E(v_h) = \nabla \nabla^T v_h \quad \text{in} \ E \] (45a)
\[n_{E,e} \cdot R_E(v_h) = \tilde{v}_h^e \quad \text{on every} \ e \in \partial E \] (45b)
(R2) for every vector field whose components have a $(k+1)$-degree polynomial restriction on E, i.e., $v_{\mid E} \in (P_{k+1}(E))^d$, it holds:
\[R_E((v_{\mid E})^T) = v_{\mid E} \]
for every \(v_h \in X_h \), it holds

\[
\rho_* |E| |v_h|_{E}^2 \leq ||R_E(v_h)||_{0,E}^2 \leq \rho^* |E| |v_h|_{E}^2,
\]

where \(|v_h|_{E}^2 \) is defined in (22).

Remark 5.1 The locally lifted field \(R_E(v_h) \) only depends on the degrees of freedom of \(v_h \) of cell \(E \). Here, as before, we prefer to use the more elegant notation \(R_E(v_h) \) instead of \(R_E((v_h)_E) \) or \(R_E(v_E) \).

Remark 5.2 In view of the stability condition (S1), condition (R3) is equivalent to

\[
\frac{\rho_*}{\sigma^*} \|v_h\|_{E}^2 \leq ||R_E(v_h)||_{0,E}^2 \leq \frac{\rho^*}{\sigma_*} \|v_h\|_{E}^2.
\]

By combining the local lifting operators, we define a global lifting operator \(R : X_h \rightarrow (L^2(\Omega))^d \), which is such that \(R(v_h)|_E = R_E(v_h) \). As is usual in the mimetic technology, the lifting operator is a valuable tool in the convergence analysis, but is not needed in any practical implementation of the method. Furthermore, a lifting operator satisfying the conditions listed above is not unique; however, only its existence is needed in the analysis. The existence can be proved as in [11, Chapter 3] or through direct construction by solving numerically the system of equations (45a)-(45b), for example, by the BDM\(_{k+1} - P_k \) scheme, on the sub-partition \(S^h \) of assumption (HG).

Using the lifting operator we can prove this lemma, which will be useful in the proof of Theorem 5.1.

Lemma 5.1 Let \((u,p) \) be the exact solution of Problem (1a)-(1c) with \(p \in H^{k+3}(\Omega) \), where \(k \) is a non-negative integer number. Let \((u_h,p_h) \in X_h \times Q_h \) be the solution of (5a)-(5b) under assumption (HG). Then, for every \(v_h \in X_h \) it holds that

\[
[p_h - p^I, \nabla v_h]_{Q_h} \lesssim h^{k+2} ||p||_{k+3,\Omega} \|v_h\|_{X_h}.
\]

Proof. We decompose the inner product as in (17), we note that \(\nabla v_h = (\nabla \tilde{v}_h)^I \), we use (19) and we note that \(\nabla \tilde{v}_h^I \) is a polynomial of degree \(k \) on \(E \) to obtain:

\[
[p^I, \nabla v_h]_{Q_h} = \sum_{E \in \Omega_h} [p^I, \nabla v_h]_E = \sum_{E \in \Omega_h} \int_E p \nabla \tilde{v}_h dV.
\]

We substitute (45a) above and integrate by parts on each cell, we sum over all the cells and note that \(n_{E,e} \cdot R_E(v_h) \) only depends on the degrees of freedom of edge/face \(e \) and takes opposite signs on the two sides of each internal edge/face:

\[
\sum_{E \in \Omega_h} \int_E p \nabla \tilde{v}_h dV = \sum_{E \in \Omega_h} \left(-\int_E \nabla p \cdot R_E(v_h) dV + \sum_{e \in \partial E} \int_e n_{E,e} \cdot R_E(v_h) p dS \right)
\]

\[
= -\int_\Omega \nabla p \cdot R_E(v_h) dV + \sum_{e \in \partial \Omega} \int_e n_{E,e} \cdot R_E(v_h) p dS.
\]

The last term above is further developed by using (45b) and (6) (with the boundary condition \(g = p|_\Gamma \)):

\[
\sum_{e \in \partial \Omega \cap E} \int_e n_{E,e} \cdot R_E(v_h) p dS = \sum_{e \in \partial \Omega \cap E} \int_e \overline{v}_h p dS = \langle p, v_h \rangle_{h}.
\]

Combining (49) and (50) in (48) yields

\[
[p^I, \nabla v_h]_{Q_h} = -\int_\Omega \nabla p \cdot R_E(v_h) dV + \langle p, v_h \rangle_{h}.
\]

Using scheme’s equation (5a) and (51), we transform the left-hand side of (47) as follows

\[
[p_h - p^I, \nabla v_h]_E = [u_h, v_h]_E + \langle p, v_h \rangle_{h} - [p^I, \nabla v_h]_E = [u_h, v_h]_E + \int_\Omega \nabla p \cdot R_E(v_h) dV.
\]
We add and subtract $\nabla \tilde{p}$, where \tilde{p} is the $(k+2)$-interpolant of p as in (M4):
\[\int_E \nabla p \cdot R_E(v_h) \, dV = \int_E \nabla \tilde{p} \cdot R_E(v_h) \, dV + \int_E \nabla(p - \tilde{p}) \cdot R_E(v_h) \, dV. \]
(52)

We integrate by parts, use again (45a)-(45b) and (24) to develop the first term in the right-hand side of (52):
\[\int_E \nabla \tilde{p} \cdot R_E(v_h) \, dV = -\int_E \tilde{p} \text{div} R_E(v_h) \, dV + \sum_{e \in \partial E^*} \int_{e} \tilde{p} n_{E,e} \cdot R_E(v_h) \, dS \]
\[= -\int_E \tilde{p} \text{div} R_E(v_h) \, dV + \sum_{e \in \partial E^*} \int_{e} \tilde{p} v_h \, dS \]
\[= \left[(\Pi_{k+1}^E(K \nabla \tilde{p}))^T, v_h \right]_E. \]
(53)

We substitute (53) in (52) and add and subtract u^i to obtain the final expression:
\[\sum_E \left([u_h, v_h]_E + \int_E \nabla p \cdot R_E(v_h) \, dV \right) \]
\[= \sum_{E \in \Omega_h} \left([u_h - u^i, v_h]_E + \left[(u + \Pi_{k+1}^E(K \nabla \tilde{p}))^T, v_h \right]_E + \int_E \nabla(p - \tilde{p}) \cdot R_E(v_h) \, dV \right) \]
\[= T_1 + T_2 + T_3. \]
(54)

To evaluate term T_1, we apply the Cauchy-Schwarz inequality, definition (20) and the result of Theorem 4.1:
\[T_1 \leq \sum_{E \in \Omega_h} \|u_h - u^i\|_E \|v_h\|_E \leq \left(\sum_{E \in \Omega_h} \|u_h - u^i\|_E^2 \right)^{1/2} \left(\sum_{E \in \Omega_h} \|v_h\|_E^2 \right)^{1/2} \]
\[= \|u_h - u^i\|_{x_h} \|v_h\|_{x_h} \lesssim h^{k+2} \|p\|_{k+3, \Omega} \|v_h\|_{x_h}. \]

To evaluate term T_2, we apply the Cauchy-Schwarz inequality, definition (20), substitute $u = -K \nabla p$, and apply Lemma 3.4:
\[T_2 \leq \sum_{E \in \Omega_h} \left\| (u + \Pi_{k+1}^E(K \nabla \tilde{p}))^T \right\|_E \|v_h\|_E \]
\[\leq \left(\sum_{E \in \Omega_h} \left\| -K \nabla p + \Pi_{k+1}^E(K \nabla \tilde{p}) \right\|_E^2 \right)^{1/2} \left(\sum_{E \in \Omega_h} \|v_h\|_E^2 \right)^{1/2} \]
\[= \left(\sum_{E \in \Omega_h} h_E^{2(k+2)} \|p\|_{k+3, E}^2 \right)^{1/2} \|v_h\|_{x_h} \lesssim h^{k+2} \|p\|_{k+3, \Omega} \|v_h\|_{x_h}. \]

To evaluate term T_3, we apply the Cauchy-Schwarz inequality twice, the error estimate in (M4) and the equivalence in (46):
\[T_3 \leq \sum_{E \in \Omega_h} \|\nabla(p - \tilde{p})\|_{0,E} \|R_E(v_h)\|_{0,E} \leq \left(\sum_{E \in \Omega_h} \|\nabla(p - \tilde{p})\|_{0,E}^2 \right)^{1/2} \left(\sum_{E \in \Omega_h} \|R_E(v_h)\|_{0,E}^2 \right)^{1/2} \]
\[\lesssim \left(\sum_{E \in \Omega_h} h_E^{2(k+2)} \|p\|_{k+3, E}^2 \right)^{1/2} \left(\sum_{E \in \Omega_h} \|v_h\|_E^2 \right)^{1/2} \lesssim h^{k+2} \|p\|_{k+3, \Omega} \|v_h\|_{x_h}. \]

The assertion of the lemma follows by combining the estimates for T_1, T_2, and T_3 in (54).
5.2. Discrete inf-sup condition

Lemma 5.2 For any scalar grid function \(q_h \in Q_h \), there exists a vector grid function \(v_h^q \in X_h \) such that
\[
[\mathbf{D} \nabla v_h^q, q_h]_{Q_h} = \|q_h\|_{Q_h}^2, \tag{55a}
\]
\[
\|v_h^q\|_{X_h} \lesssim \|q_h\|_{Q_h}, \tag{55b}
\]

Proof. The inf-sup condition can be proved by adapting a similar proof from [44]. Consider \(q_h \in Q_h \) and \(\tilde{q}_h \in L^2(\Omega) \), which is the piecewise \(k \)-degree polynomial on \(\Omega_h \) given by (14). We recall that \((\tilde{q}_h)^1 = q_h \) and that \(\|q_h\|_{\Omega_0} = \|q_h\|_{Q_h} \). Consider a ball \(B \) that contains domain \(\Omega \) and the function \(\tilde{q}_h \) zero outside \(\Omega \). We have that
\[
\|q\|_{L^2(\Omega)} \leq \|q\|_{L^2(B)} \leq \|q\|_{L^2(\Omega)},
\]
where constant \(C_B \) is a positive constant independent of \(\psi \) and \(\Omega \). Since \(\psi \in H^2(B) \) we have that \(\nabla \psi \in (H^1(B))^d \) and \(\nabla \psi_\Omega \in (H^1(\Omega))^d \subset V_h \), and, thus, the interpolant of \(\nabla \psi \) in \(X_h \) is well-defined. Take \(v_h^q = (\nabla \psi)^1 \). We immediately have that
\[
[\mathbf{D} \nabla v_h^q, \psi]_{Q_h} = [\mathbf{D} \nabla (\nabla \psi)^1, \psi]_{Q_h} = (\Delta \psi)^1 = (\tilde{q}_h)^1 = q_h,
\]
which proves (55a). Then, Lemma 3.3 implies that
\[
\|v_h^q\|_{E} \leq \|\nabla \psi\|_{E} \lesssim \|\nabla \psi\|_{E}^2 + h_E^2 \|\nabla \psi\|_{E}^2 \lesssim \|\nabla \psi\|_{E}^2.
\]
Summing over all \(E \in \Omega_h \) and using the \(H^2 \)-regularity inequality (56) prove (55b):
\[
\|v_h^q\|_{E}^2 = \sum_{E \in \Omega_h} \|v_h^q\|_{E}^2 \lesssim \sum_{E \in \Omega_h} \|\nabla \psi\|_{E}^2 \lesssim \|\nabla \psi\|_{E}^2 \lesssim \|\tilde{q}_h\|_{\Omega_0}^2 \lesssim \|q_h\|_{Q_h}^2.
\]
This concludes the proof of the Lemma. \(\square \)

Now, consider the mesh-dependent norm in \(X_h \) defined as \(\|v_h\|_{2,DV} = \|v_h\|_{X_h} + \|[\mathbf{D} \nabla v_h]\|_{Q_h} \). If \(v_h^q \) is the flux associated with \(q_h \) through the proof of Lemma 5.2 we know that \([\mathbf{D} \nabla v_h]_{Q_h} = q_h \). We add \(\|[\mathbf{D} \nabla v_h]\|_{Q_h} \) to both sides of (55b) and we have that \(\|v_h^q\|_{2,DV} \lesssim \|q_h\|_{Q_h} \). Using this inequality and both (55a)-(55b) we immediately find that
\[
\sup_{v_h \in X_h \setminus \{0\}} \frac{[\mathbf{D} \nabla v_h, q_h]_{Q_h}}{\|v_h\|_{2,DV}} \geq \frac{[\mathbf{D} \nabla v_h^q, q_h]_{Q_h}}{\|v_h^q\|_{2,DV}} = \frac{\|q_h\|_{Q_h}^2}{\|v_h^q\|_{2,DV}} \gtrsim \|q_h\|_{Q_h}.
\]
Dividing both sides by \(\|q_h\|_{Q_h} \) and taking the infimum on \(q_h \in Q_h \) gives the standard form for the discrete inf-sup inequality. We formally state this result, which can be seen as a corollary of Lemma 5.2, as follows by introducing the “inf-sup constant” \(\beta_* > 0 \).

Corollary 5.1 There exists a strictly positive constant \(\beta_* \), which is independent of \(h \), such that
\[
\inf_{q_h \in Q_h \setminus \{0\}} \sup_{v_h \in X_h \setminus \{0\}} \frac{[\mathbf{D} \nabla v_h, q_h]_{Q_h}}{\|v_h\|_{2,DV} \|q_h\|_{Q_h}} \geq \beta_*.
\]

5.3. Proof of Theorem 5.1

Let \(v_h^q \in X_h \) be the flux corresponding to \(q_h = p_h - p^1 \) in the discrete inf-sup condition of Lemma 5.2. Using Lemma 5.1 and 5.2 we have that
\[
\|p_h - p^1\|_{Q_h}^2 = [p_h - p^1, \mathbf{D} \nabla v_h^q]_{Q_h} \lesssim h^{k+2} \|p\|_{k+3,\Omega} \|v_h^q\|_{X_h} \lesssim h^{k+2} \|p\|_{k+3,\Omega} \|p_h - p^1\|_{Q_h}, \tag{57}
\]
which implies the assertion of Theorem 5.1. \(\square \)
5.4. Error estimates for the polynomial approximation of the scalar unknown

According to Remark 2.4, we can compute the polynomial \tilde{p}_h inside each cell E through (14) by using only the degrees of freedom of the mimetic solution \hat{p}_h pertinent to that cell. This polynomial provides a pointwise approximation of the exact solution p for $k \geq 0$ and its gradient ∇p for $k > 0$. The accuracy of such an approximation is stated in the following theorem.

Theorem 5.2 Let k be a non-negative integer number and $p \in H^{k+3}(\Omega)$ the exact solution of Problem (1a)-(1c). Let $p_h \in Q_h$ be the solution of (5a)-(5b) under assumption (HG), and \tilde{p}_h the piecewise polynomial function that in each cell E is given by (14). Then, it holds:

$$\|p - \tilde{p}_h\|_{0,\Omega} + h|p - \tilde{p}_h|_{1,\Omega} \lesssim h^{k+1}\|p\|_{k+3,\Omega}.$$

Proof. Adding and subtracting p_E^\perp and using the triangle inequality yield:

$$\|p - \tilde{p}_h\|_{0,\Omega} = \sum_{E \in \Omega_h} \|p - \tilde{p}_h\|_{0,E}^2 \lesssim \sum_{E \in \Omega_h} \left(\|p - p_E^\perp\|_{0,E}^2 + \|p_E^\perp - \tilde{p}_h\|_{0,E}^2\right).$$

Consider cell E. As noted in Remark 2.4, we have that $p_E^\perp = \Pi_E^k(p)$. Using the estimate for the projection operator yields

$$\|p - p_E^\perp\|_{0,E} = \|p - \Pi_E^k(p)\|_{0,E} \lesssim h^{k+1}_E \|p\|_{k+1,E},$$

so that

$$\sum_{E \in \Omega_h} \|p - p_E^\perp\|_{0,E}^2 \lesssim h^{2(k+1)} \sum_{E \in \Omega_h} \|p\|_{k+1,E}^2 \lesssim h^{2(k+1)} \|p\|_{k+3,\Omega}^2.$$

The second term can be estimated by first noting that

$$\|p_E^\perp - \tilde{p}_h\|_{0,E}^2 = \|(p_E^\perp - p_h)\|_{0,E}^2 = \|p_E^\perp - p_h\|_E^2$$

and, then, using the result of Theorem 5.1:

$$\sum_{E \in \Omega_h} \|p_E^\perp - \tilde{p}_h\|_{0,E}^2 = \sum_{E \in \Omega_h} \|p_E^\perp - p_h\|_E^2 = \|p_E^\perp - p_h\|_{Q,h}^2 \lesssim h^{2(k+2)} \|p\|_{k+3,\Omega}^2.$$

An $O(h^k)$ estimate can be derived for $|p - \tilde{p}_h|_{1,\Omega}$ by repeating the same argument since a standard inverse inequality implies that

$$\|
abla(p_E^\perp - p_h)\|_{0,E} \lesssim h^{-1}_E \|(p_E^\perp - p_h)\|_{0,E} \lesssim h^{-1}_E \|p_E^\perp - p_h\|_E.$$

The assertion of the theorem follows by combining together these estimates.

Remark 5.3 The piecewise polynomial approximation offered by \tilde{p}_h does not use the information provided by the flux approximation u_h. A better pointwise approximation to the exact solution p and its gradients could be given by devising some special post-processing technique as was done for the low-order MFD method in [22] and for the lowest-order version of this method (i.e., for $k = 0$) in [8, 12]. Post-processing for arbitrary k is currently under development and will be the content of a future paper.

6. Numerical Experiments

The numerical experiments presented in this section are aimed to confirm the a priori analysis of Sections 4 and 5. We consider here only the case $d = 2$; for $d = 3$ we expect to see the same behavior. In a preliminary stage, the consistency of the method i.e., the exactness of these methods for polynomial solutions, has been tested numerically by solving problem (1a)-(1c) with boundary and source data determined by $p(x,y) = x^m + y^m$ on different set of polygonal meshes and for $m = 1$ to 5. In all the cases, the method based on
polynomials of degree \(k \geq m \) provided errors whose magnitude was of the order of the arithmetic precision, thus confirming this property. These results are not reported here.

To study the accuracy of the method we solve the diffusion equation on the domain \(\Omega = [0, 1] \times [0, 1] \) using the variable diffusion coefficient:

\[
K(x, y) = e^{x+y} I + \begin{pmatrix}
1 + y^2 & -xy \\
-xy & 1 + x^2
\end{pmatrix}.
\]

The forcing term in (1b) and the Dirichlet boundary condition on \(\partial \Omega \) are set in accordance with the exact solution:

\[
p(x, y) = e^{-2\pi y} \sin(2\pi x) + \cos(2\pi (x + 2y)).
\]

The performance of the mixed mimetic method are investigated by evaluating the rate of convergence on three different sequences of five meshes, labeled by \(\mathcal{M}_1 \), \(\mathcal{M}_2 \), and \(\mathcal{M}_3 \), respectively. Fig. 2(a)-2(c) show the first mesh of each sequence. The meshes in \(\mathcal{M}_1 \) are built by partitioning the domain \(\Omega \) into square cells and relocating each interior node to a random position inside a square box centered at that node. The sides of this square box are aligned with the coordinate axis and their lenght is equal to 0.8 times the minimum distance between two adjacent nodes of the initial square mesh.

The meshes in \(\mathcal{M}_2 \) are built as follows. First, we determine a primal mesh by remapping the position \((\hat{x}, \hat{y})\) of the nodes of an uniform square partition of \(\Omega \) by the smooth coordinate transformation (see, for example, [19]):

\[
\begin{align*}
x &= \hat{x} + 0.1 \sin(2\pi \hat{x}) \sin(2\pi \hat{y}), \\
y &= \hat{y} + 0.1 \sin(2\pi \hat{x}) \sin(2\pi \hat{y}).
\end{align*}
\]

The corresponding mesh of \(\mathcal{M}_2 \) is built from the primal mesh by splitting each quadrilateral cell into two triangles and connecting the barycenters of adjacent triangular cells by a straight segment. The mesh construction is completed at the boundary by connecting the barycenters of the triangular cells close to the boundary to the midpoints of the boundary edges and these latters to the boundary vertices of the primal mesh.

The meshes in \(\mathcal{M}_3 \) are obtained by filling the unit square with a suitably scaled non-convex octagonal reference cell, which is cut at the right and top domain boundaries to fit the unit square domain \(\Omega \).

All the meshes are parametrized by the number of partitions in each direction. The starting mesh of every sequence is built from a \(5 \times 5 \) regular grid, and the refined meshes are obtained by doubling this resolution.

For each calculation we consider the relative errors...
\[E_{Xh} = \frac{\|u^1 - u_h\|_{X_h}}{\|u^1\|_{X_h}}, \quad E_{Qh} = \frac{\|p^1 - p_h\|_{Q_h}}{\|p^1\|_{Q_h}}, \quad E_{L^2} = \frac{\|p - p_h\|_{L^2}}{\|p\|_{L^2}}, \quad E_{H^1} = \frac{|p - p_h|_{H^1}}{|p|_{H^1}}. \]

Errors \(E_{Xh} \) and \(E_{Qh} \) are both expected to decrease to zero proportionally to \(O(h^{k+2}) \) in accordance with Theorems 4.1 and 5.1. Errors \(E_{L^2} \) and \(E_{H^1} \) are expected to decrease to zero proportionally to \(O(h^{k+1}) \) and \(O(h^k) \), respectively, in accordance with Theorem 5.2.

In Figures 3-5 we report the log-log plots of \(E_{Xh} \) (left plots) and \(E_{Qh} \) (right plots) versus the mesh size parameter \(h \) for calculations using mesh families \(M_1, M_2, \) and \(M_3 \). In Figure 6 we report the log-log plots of \(E_{L^2} \) and \(E_{H^1} \) versus the mesh size parameter \(h \) for calculations using the meshes in \(M_1 \). All calculations were carried out by using the mixed MFD method based on polynomials of degree from \(k = 0 \) to \(4 \) as indicated in the captions. The convergence rates are reflected by the slope of each error curve, which has to be compared with the exact slope shown in the plot by a triangle closed to each curve and indicated by the corresponding integer number. The rates observed experimentally for the flux approximation are always in good agreement with the estimate of Theorem 4.1 and the errors measured in the \(X_h \)-norm decrease proportionally to \(h^{k+2} \). Also, the approximation of the exact solution and its gradient that are provided by the piecewise polynomial function \(\tilde{p}_h \) and \(\nabla \tilde{p}_h \) behaves as expected from Theorem 5.2, and the errors measured in the \(L^2 \)- and energy norm decrease proportionally to \(h^{k+1} \) and \(h^k \). We show these error plots only for the calculations using \(M_1 \) as for the other meshes the behavior is the same. Instead, the approximation error \(E_{Qh} \) behaves as stated by Theorem 5.1 only for the lowest-order accurate scheme, i.e., for \(k = 0 \), where error \(E_{Qh} \) decreases like \(O(h^2) \). For \(k \geq 1 \), an ultraconvergence effect is visible for the three mesh families \(M_1, M_2, M_3 \), as error \(E_{Qh} \) decreases like \(O(h^{k+3}) \) instead of \(O(h^{k+2}) \) as we would expect from Theorem 5.1. An extensive validation on different kind of meshes, exact solutions and constant and variable diffusion tensors (results are not reported here) confirms that this effect seems to persist, and, therefore, to be quite general. Currently, we do not have a theoretical explanation of this phenomenon even if we may conjecture a connection with the nature of the degrees of freedom of the scalar variable \(p_h \). In fact, error \(E_{Qh} \) is a straightforward measure of how well the polynomial moments of \(p^1 \) of the exact solution \(p \) are approximated by the degrees of freedom of the mimetic approximation \(p_h \).

7. Conclusions

We presented the new family of mimetic finite difference schemes that extends to arbitrary order of accuracy the approximation of the scalar unknown and the flux of [19]. The well-posedness of the method and the convergence of the approximation are proved theoretically and convergence estimates for both the scalar and the flux variable are derived. The behavior of the method in solving diffusion problems with variable diffusion tensor is investigated experimentally and the numerical results confirm the convergence rates that are expected from the theory. An ultraconvergence effect is visible for the scalar variable when the error is measured in the mesh-dependent norm induced by the mimetic inner product for scalar functions.

A complete understanding of this phenomenon will be the topic of a future work.

Acknowledgements

This work was partially supported by the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics.

References

Fig. 3. Error curves \mathcal{E}_{X_h} (left plot) and \mathcal{E}_{Q_h} (right plot) with respect to the mesh size h using mesh family M_1 of randomized quadrilaterals. The MFD method uses polynomials of degree $k = 0$ (circles), $k = 1$ (squares), $k = 2$ (diamonds), $k = 3$ (up triangles), $k = 4$ (down triangles). Slopes proportional to h^{k+2} are shown in the left plot. As a superconvergence effect is present in the scalar approximation, for $k \geq 1$, in the right plot we show the slope for h^2 ($k = 0$) and the slopes proportional to h^{k+3} for $k \geq 1$.

Fig. 4. Error curves \mathcal{E}_{X_h} (left plot) and \mathcal{E}_{Q_h} (right plot) with respect to the mesh size h using mesh family M_2 of smoothly remapped hexagons. The MFD method uses polynomials of degree $k = 0$ (circles), $k = 1$ (squares), $k = 2$ (diamonds), $k = 3$ (up triangles), $k = 4$ (down triangles). Slopes proportional to h^{k+2} are shown in the left plot. As a superconvergence effect is present in the scalar approximation, for $k \geq 1$, in the right plot we show the slope for h^2 ($k = 0$) and the slopes proportional to h^{k+3} for $k \geq 1$.

25
Fig. 5. Error curves E_{X_h} (left plot) and E_{Q_h} (right plot) with respect to the mesh size h using mesh family M_3 of regular non-convex octagons. The MFD method uses polynomials of degree $k = 0$ (circles), $k = 1$ (squares), $k = 2$ (diamonds), $k = 3$ (up triangles), $k = 4$ (down triangles). Slopes proportional to h^{k+2} are shown in the left plot. As a superconvergence effect is present in the scalar approximation, for $k \geq 1$, in the right plot we show the slope for h^2 ($k = 0$) and the slopes proportional to h^{k+3} for $k \geq 1$.

Fig. 6. Error curves E_{L^2} (left plot) and E_{H^1} (right plot) with respect to the mesh size h using mesh family M_1 of randomized quadrilaterals. The MFD method uses polynomials of degree $k = 0$ (circles), $k = 1$ (squares), $k = 2$ (diamonds), $k = 3$ (up triangles), $k = 4$ (down triangles). Slopes proportional to h^{k+1} and h^k are shown in the left and right plot, respectively. The error curves for the gradient approximation measured by E_{H^1} starts at $k = 1$.