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Abstract We first study dark energy models with a minimally-coupled scalar field
and generalized exponential potentials, admitting exact solutions for the cosmological
equations: actually, it turns out that for this class of potentials the Einstein field equa-
tions exhibit alternative Lagrangians, and are completely integrable and separable.
We analyze their analytical solutions, especially discussing when they are compatible
with a late time quintessential expansion of the universe. As a further issue, we discuss
how quintessential scalar fields with exponential potentials can be connected to the
inflationary phase, building up a quintessential inflationary scenario: actually, it turns
out that the transition from inflation toward late-time exponential quintessential tail
admits a kination period, which is an indispensable ingredient of this kind of theoret-
ical models. All such considerations have been made by including also radiation into
the model.

Keywords Theoretical cosmology - Dark energy - Observational cosmology

1 Introduction

Scalar fields have been used extensively in cosmology, both in minimal and non
minimal coupling with geometry, since inflationary theories were first conceived in
1981 [1]. (An overview of scalar-tensor theories is given in Refs. [2,3].)
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When observational results on Type Ia supernovae (SNela) have strongly supported
the possibility that the universe is now in an accelerated stage of expansion [4-7], it
has become necessary to consider again a negative-pressure component. The late-time
inflation so generated is however soft with respect to the earlier one and can also be
based on the dominance of at least one scalar field, sometimes referred to as quintes-
sence [8—12] or, earlier, as x-field [13,14]. There is now a wide agreement that a form
of a so-called dark energy [15,16] has to be taken into account in any realistic cos-
mological model. Seen as a constant A-term [17-19], dark energy density has been
usually taken as the vacuum energy density, which leads to discrepancies between
theory and experiments [18-20].

On its side, the scalar field has gained new attention, and speculations about its
nature and evolution have got new strength. Papers like Refs. [21,22] have been recon-
sidered again under a new light, since they show how a scalar field could give an accel-
erated cosmological expansion today. Many models have thereof been constructed, first
of all trying to consider more appealing kinds of potentials driving the dynamics of
the scalar field. Among others, the potential has in fact to be seen as an important
ingredient of all the involved theoretical models, and many are the trials to give pre-
scriptions in order to reconstruct its form according to observational data (see Refs.
[23,24], for instance, but also Refs. [9-11,25-27]). Here we want to take into account
a specific class of generalized exponential potentials useful for the present evolution
of the universe, later investigating all the relative involved cases so derived in the
cosmological equations.

As commented in Ref. [28], for example, exponential potentials can be found in
theories with extra compact dimensions, such as Kaluza—Klein supergravity and super-
string models [29,30]. Despite having been studied extensively in the literature, expo-
nential quintessence has anyway been often discarded because of limits on big-bang
nucleosynthesis or based on fine tuning arguments, for instance when there is a fixed
point solution for the quintessence evolution in the universe. Nonetheless, it is possible
that we have not yet reached this fixed point. As a matter of fact, for example, in Ref.
[31] it is shown that there are regions of the parameter space of the simple exponential
potential model for quintessence which are allowed by some observational constraints,
and that the degree of fine tuning needed in these scenarios is not high [31-34]. As
shown in Refs. [33-35], they have in fact proved useful in describing several features
in the history of the universe, also reproducing the present acceleration and predict-
ing eventual future deceleration, so avoiding the horizon problem that appears in the
context of both perturbative quantum field and string theories. For example, the model
for quintessence studied in Ref. [33] yields an eternally accelerating universe with an
event horizon that seems to be incompatible with superstring theory [36], while, as
shown in Refs. [28,37], one possible way to make this model compatible with current
observations and with the absence of event horizons is to add a negative constant term
to the scalar field potential, equivalent to having a negative cosmological constant
[36]. As a matter of fact, we can consider an effective dark energy fluid as the source
of the accelerated expansion, hence splitting its energy density into the sum of two
components that might also work one against the other.

Interesting results can indeed be obtained by modelling dark energy by means of
both a scalar field and a cosmological constant, which can indeed be incorporated
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into the quintessence potential as a constant shifting the minimum of the potential.
On the other hand, the height of such a minimum can also be regarded as a part of
the cosmological constant. (For the purpose of separating them, the possible non-
vanishing height of that minimum can be included into the cosmological constant and
then set to zero.) Either provided by various kinds of quantum and/or classical matter
or originated in the intrinsic spacetime geometry, still there is no sufficient reason to
set the cosmological constant to zero [36]. For example, mechanisms to generate a
negative cosmological constant have been conceived in the context of spontaneous
symmetry breaking [38,39], although astrophysical data suggest a positive cosmolog-
ical constant. Also note that it is possible to obtain from the field equations that the
quintessence potential should be a double exponential plus a constant term [40]. Actu-
ally, such a potential was already analytically found by some of us in 1990, using the
Noether Symmetry Approach in cosmology for the first time [41]. In that paper, how-
ever, the constant term (resulting from the procedure itself and not guessed in advance)
was intimately related to the coefficients of the two exponentials, and putting it to zero
would annihilate the whole potential. Indeed, the fact that the cosmological constant
could not be postulated a priori but results from the form of the potential itself is
known [42]. On the other hand, in Ref. [43], it is also analyzed how quintessence is
directly related not only with geometry but also with the cosmological constant, so
that the latter turns out to be asymptotically deducible through the dynamics of the
scalar-tensor theory itself [43—45].

On their side, the exponential-type potentials have received much attention since
the late 1980’s [21,22,46,47] (but see also Refs. [25,26,48-57], just to cite only some
other papers). Besides the previous work made in Ref. [41], in Refs. [33,35] some
of us have found general exact solutions for two classes of exponential potentials for
a scalar field minimally coupled to gravity, in presence of another dust component
(ordinary non-relativistic pressureless baryonic matter), also showing [58] that such
solutions seem to fit SNela data given in Ref. [5]. (See Ref. [59] for much more on
confrontation of theoretical predictions with observational data.) Furthermore, in Ref.
[60] other approximate and exact solutions for cosmology with exponential potentials
can be found, and until recent times this kind of potentials is still widely considered (as,
for example, in Ref. [61], where the Noether Symmetry Approach [41,49] is used to
probe the nature of dark energy, well underlining the role of the exponential potential
in such a task). This seems to us a good motivation to investigate also some other gen-
eralizations of this kind of potentials. (Note that, among others, the hyperbolic sine
potential can be easily assimilated to some of the potentials studied in the following.)

Moreover, for the class of generalized exponential potentials we want to deal
with it is possible to exhibit some special properties: it turns out, actually, that the
Einstein field equations are integrable (in the Liouville sense) and separable, that is
they can be analytically integrated, at least by quadrature. Last, it is worth noting that
our class of exponential potentials can be selected by finding the most general vari-
ables transformation which diagonalizes the scalar field kinetic-energy form, leaving
the transformed Lagrangian simple.

We do not consider the presence of a constant A-term here, even if we find it
arising from the theory itself, in which we generalize the exponential potential to the
extent allowed by the particular technique used in Refs. [33,35] in order to integrate
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cosmological equations, still bearing in mind that a priori acceptable solutions, able
of describing the present universe, should always allow a late-time acceleration. Such
a technique is generally known as the Noether Symmetry Approach to cosmology
[41,49] and, as said above, it leads to prefer the exponential-type potentials. As in
Refs. [33,35] we anyway do not completely adopt it here, limiting ourselves to import
from it only the change of variables needed to solve equations and suggested by the
procedure itself. As a matter of fact, we have to point out that this transformation
(together with the choice of a specific kind of potential) has to be considered as the
main drawback of the approach above, leading to a point symmetry which certainly
applies to the background evolution, but nothing still assures about the actual sym-
metries of the full theory. We analyze the exact solutions that we find in this way,
discussing when they are compatible with a late time quintessential expansion of the
universe.

As a further step, we also consider and illustrate a possible scenario in the frame-
work of the quintessential inflation paradigm with scalar fields, where an inflationary
potential drives also the quintessential phase of the scalar field evolution, by means
of a simple exponential form of its late time tail. In this connection, we discuss how
such an evolution mechanism for the scalar field potential can be compatible with the
so-called inflation-kination transition, when the field energy density is dominated by
the kinetic energy of the scalar field ¢. All this clearly leaves apart the greater com-
plexity involved by the more general forms of the potential studied above, and will be
the subject of a forthcoming paper trying to discuss more in general the quintessential
inflation. Even if in this second paper we should be able to overcome the dichotomy
present in this work, where the two different parts of the paper could well live apart,
we believe that it is nonetheless already interesting to offer both the issues in a single
paper, trying to unify the whole subject a little forcibly.

In Sect. 2 we introduce the class of potentials and the general cosmological setting
for further considerations. In Sect. 3, we systematically derive, when possible, general
exact solutions case by case. In Sect. 4 we discuss connections between exponen-
tial potentials, quintessence and inflation. Finally, Sect. 5 is devoted to a conclusive
discussion.

2 Cosmological models with (generalized) exponential potentials

Let us assume a Friedmann—Lemaitre—Robertson—Walker (FLRW) metric and fix the
curvature scalar k = 0, according to the CMBR observational data (see Refs. [62,63]
for recent information). In what follows we have to consider the period of life of
the universe after the decoupling time, in order to be realistic when taking the two
components like dust and scalar field ¢ into account.

With ¢ minimally coupled to gravity, the cosmological equations are written as
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¢+3H¢+V'(p)=0. (2.3)
The fluids filling the universe have equations of state given by
Pm =0, py=wypy, 2.4

being p,, = Da~3, where the parameter D = pm0a03 is determined by the current
values of p,;, and a, and

1 1,
=307V @), pp=50" V(o) 2.5)
with
9> —2V(p)
Wy = —5—————. (2.6)
¢ +2V(p)
The equations above can then be rewritten as
-\ 2
a 871G 3 1
-) = Da3 4+ —¢* + V(p) 2.7
a 2 2
i (a\* 81G (1 2
2-+\-) =—— — V(p) (2.8)
a a c 2
g0+3( )<p+V(<p)—O (2.9)

It can be shown [41,49] that the last two equations are also deduced from an action
principle based on the point Lagrangian

L =3ad® — ¥ |:a (1([)2 — V((p)) — D} , (2.10)
c 2

so that cosmological dynamics can be considered on a space with two coordinates a and
@, a and ¢ being the velocities. The fact that £ has a constant additive term is understood
by considering Eq. (2.7), which can be seen as E = 0, where E, = 8 Z % —Lis
the so called energy function associated with £ and is zero for physical reasons (i.e.,
induced by the homogeneous and isotropic limit of Einstein’s general field equations).
In this way, once Egs. (2.8) and (2.9) are solved, Eq. (2.7) is nothing but a constraint
on the integration constants involved.
On defining

47 G G
T =3ai® — 22 a’¢?, U=—-"2a Vi) + D), 2.11)

c2

Equation (2.10) formally becomes £ = T — U. This has been already noted in Ref.
[42], where we found the most general transformation
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a=f(z,w) ¢ =gz, w) (2.12)
leading to a diagonalized and simpler form of the kinetic energy
T' = a?7? — 22, (2.13)

with o and B nonnegative real numbers. This simplification in 7 implies, of course,
a complication in the transformed U’. However, in Ref. [41] we also found that there
is at least one class of potentials not giving such a complicated expression for U’,
rendering, on the contrary, the transformed £’ simpler than £. It turns out that such
potentials are exponentials:

Vi) = Vo (A2 exp (2C) + B2 exp (—2C¢) — 2AB), (2.14)

with C = 37G) /c2 and A, B real parameters, while Vj simply fixes the scale of
the potential. The above expression of V (¢) in fact allows an exact integration of the
cosmological equations [41,49]. Moreover, it is worth noting that, for such a class of
exponential potentials,

Vip) = Viexp (2Cyp) 4+ Vaexp (—2Cop) + A, (2.15)

being Vi, Va, Ag all free parameters, the Einstein field equations admit alternative
Lagrangians, which is a circumstance somehow exceptional for a dynamical system,
with many meaningful consequences: actually, it turns out that it is integrable (in the
Liouville sense) and it is separable, i.e. there is a suitable change of variables by which
it is splitted into separated one-dimensional systems (which are integrable by quadr-
atures [64]). Note also that the Ao-term acts as a cosmological constant and, being a
product of the theoretical procedure, has to be taken into account together with the
exponential part of the potential for the scalar field ¢. As already commented in the
introduction, this is not forbidden by theory and observations.

We thus feel motivated to continue considering exponential-like potentials. Let us
take in what follows the class of potentials

V(p) = A2exp (o¢) + B2 exp (—og) + A, (2.16)

where € = £1, 0 = /127 G/c? is a fixed constant, A? and B? are arbitrary nonzero
parameters, and A § 0 is the constant playing the role of the cosmological constant.
Equation (2.16) generalizes the exponential potentials already considered in Ref. [33],

which are
V(p) = B*exp(—09), V(p) =A’exp(og) + B exp(—ogp), (2.17)

as well as those derived in Ref. [41]. The two cases above are therefore omitted in this
paper. As noted in the introduction, also the case with both € = +1 and A = —2AB
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has been already treated and discussed in Refs. [41,42,49] and will not be touched
upon again here.

Since the theory is invariant under ¢ — —¢, the class of potentials in Eq. (2.16) is
the most general one of this type and, as mentioned, also includes the first one shown in
Eq. (2.17). V(¢) = B2 exp (—o ) is in fact derived from the expression in Eq. (2.16)
just setting (besides € = +1 and A = 0) also A> = 0, or B> = 0 and ¢ — —¢. The
second potential in Eq. (2.17) is instead easily obtained when A = 0 and € = +1, with
A% #£ 0, B2 # 0. (Of course, in order to get exact general solutions, the treatment has
to be different from the beginning for each one of the potentials in Egs. (2.16) and
(2.17).)

As in Ref. [33], then, let us use again the transformation

2_ .2 1 B
I 1 ‘M (2.18)

“@= C YT O A=)

leading to the new variables u and v. Such a change of variables is invertible, provided
that a # 0. Note that, when the solution for the scale factor eventually has a zero
in the future, we cannot follow it beyond that point. We must in fact consider such a
solution as good just berween this zero and the eventual other one it can have in the
past. (Later on, we will comment on this again.) Since we also wanta > 0, Eq. (2.18)
imposes the obvious restriction u? > v2 or (u+v)u—v) >0, giving u > v when
both u and v are nonnegative. It is obvious that A and B can be always chosen both

positive. In what follows, therefore, we shall consider
A>0, B>0, u>v, u>0, v>0. (2.19)

We can thus disregard the absolute value sign in the expression for ¢. By virtue of
Eq. (2.18), the potential in Eq. (2.16) becomes

B(u+v)2+e(u —v)?

V(u,v)=A 5 5

+ 4, (2.20)

us —v

and we define

u? + 2
Vi(u,v) = 2ABﬁ + A (2.21)
us—v
fore = +1, and
uv
V_(u,v) =4AB 5 5+ A (2.22)
us—v
fore = —1.

Now, transforming the other terms in Eq. (2.10) by means of Eq. (2.18), we can
eventually arrive at two expressions for the point Lagrangian, according again to the

@ Springer



2618 E. Piedipalumbo et al.

two opposite values of €,

2

Lo=i?— i+ % [(2AB + M) + 2AB — )02 + 4D] L 23
2
L =i — i+ % [4ABuv Faed—0)) + 41)] . (2.24)

In order to find equations and solutions for the cosmological model, at this point, it is
better to consider the various different cases separately, and this is what we are going
to do in the next section, pointing out that we are facing what we can call impure
quintessence models, because of the presence of the A-term introduced in the theory
by the expression of the potentials.

In the following, we fix four conditions (see Ref. [35] for further details). First of
all, we set the origin of time by choosing a(0) = 0. This condition has to be interpreted
just as an arbitrary choice of the time origin. The real beginning (of physical meaning)
for the model starts a little bit afterwards, at a certain time 1, without forbidding the
substantial invertibility of the change of variables performed in Eq. (2.18). This delay
is otherwise arbitrary, so that the setting we chose does not seem to exclude important
cases, as said before, and leads to a great simplification in the formulae. Now, a(0) = 0
implies that we have thus to set #(0) = 0 or v(0) = 0 in evaluating initially Eq. (2.18).

The second condition here assumed is that the present time is the unit of time,
to = 1. Since ¢ is unknown, this is not exactly the age of the universe, but the differ-
ence can be considered irrelevant for our purposes; anyway, even if it were possible
to avoid this condition, we thus get rid of a badly known quantity. Our third condition
is to set ap = a(ty) = a(l) = 1, which fixes the normalization of the scale factor a
as standard, while the fourth and last condition is to set H(tg = 1) = Hy. After the
choice of g, this latter parameter turns out to be of order 1, even if it is not the same
as the usual .. As a matter of fact, since we are using an arbitrary unit of time, such a
parameter does not give any information on the observed value for Hy [35].

As far as A = 0 is concerned, as already said, some considerations are made in Ref.
[33]. When A = A2 = 0 and € = +1, for instance, we should use the new change of
variables

a® = uv, (2.25)

1 u
¢ = ——log —, (2.26)
o v

which easily leads to general exact solutions for a(¢) and ¢(¢) [33]. For A = B =0,
everything remains the same, since there is symmetry in the potential in Eq. (2.16)
with respect to a change of sign in . The situation with both A% # 0, B> # 0, and
€ = +1 has also been partially examined in Ref. [33].

In what follows, even if we will also consider situations with A # 0, we will focus

our attention first on the A = O-case with A% # 0, B> # 0 and € = —1 (when
Eq. (2.18) is in order), choosing not to consider at all the situation with A = A% =0
and € = —1, since it involves an always negative potential and may also give a nega-

tive energy density, by virtue of Eq. (2.5). Most of all, let us note that it never allows
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the pressure to be negative, which forbids the possibility of describing the accelerated
expansion we observe today.

We will also rule out the trivial case given by V = A (i.e. what is known as the
ACDM model), while the remaining possible situations will be dealt with systemati-
cally.

3 Solutions

Once we have fixed our Lagrangian expressions in Eqgs. (2.23) and (2.24), we can
soon derive the related equations for cosmology as Euler-Lagrange equations. If our
transformation in Eq. (2.18) then works, such equations should turn out to be solvable,
even if, of course, exact integration is not always easy. The analysis strongly depends
on the relative values assumed by the constants involved. Thus, in what follows we
separately discuss each situation generated, as a first step, by a different choice of
X values. Then, we pass to further investigate the features of the equations and their
solutions, starting from consideration of the two allowed values of €.

3.1 The L = 0 case

As mentioned, this situation is what we can call a pure quintessence case and, with
respect to the peculiar potential used, has already been partially treated. In Ref. [33],
three cases have in fact been studied: (i) A> = 0 and € = +1, (ii) B2 =0, and (iii)
A2 # 0, B2 # 0, and € = +1. The case with A2 = 0 and € = —1 has already
been touched upon at the end of Sect. 2, noting that it is not so interesting here in our
considerations on current cosmology. On the other hand, when both A2 and B? vanish,
the potential vanishes and ¢ is free, giving p, = p, = @?/2 > 0, and wy, = 1. This
means that the scalar field behaves like stiff matter and introduces a term o< % in the
cosmological equations, thus becoming soon negligible in the expanding evolution of
the universe. In this way, ¢ would never produce a late-time inflation, for instance, as
instead recent observations seem to require.
There only remains one case to discuss, i.e.,

A>#£0, B>#0, e=—1, (3.1

which is in agreement with what we set before in Eq. (2.19), being AB > 0. With
such assumptions, setting & = 0 in Eq. (2.24) yields

247G
L= -+ ciz(ABuv + D). (3.2)

so that the related Euler-Lagrange equations are
i = 0, V=—0’u, (3.3)
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where

»_ 127GAB _

w 3 oc“AB. 3.4)
c
It can be shown that the solution reads as
c3+c4 wt . wt . wt
u(t) = cosh{ — ) +cpsinh|{ — ) |sin|{ —
=2t () o (] ()
(c3 —cq . wt t\] t
— sinh{ — ) +cjcosh|{ — ) |cos{ — ), 3.5
|V (ﬁ) ! (ﬁ) (ﬁ) )
o |: 3 — 4 h(a)t) _h(a)t)] . (a)t)
v(t) = | — cosh{— ) —cysinh{ — ) |sin| —
N VoY V2 V2
(3 +cq . ot ot \] wt
+ sinh{ — ) +cycosh|{ — ) |cos{ — ), 3.6
|V (ﬁ) : (ﬁ) (ﬁ) GO

depending on four arbitrary parameters (u1, u2, t1, and #,). By virtue of the energy
constraint £, = 0, which is written

247G
)

2 2

w2 — 02— 20%uv — D =0,

(3.7)

Equation (3.4) yields

2 2
D=AB(Z—% _c0)). (3.8)
2w?

If we define k3 = (¢3 + c4)/ (ﬁw) and k4 = (c3 — cq)/ («/ia)) we then get D =
AB(k3ks — c1c2). The initial scale factor at # = 0 is such that the volume a3 (¢) is at
the beginning a’(0) = (¢;2 — czz)/4, in light of Eq. (2.18). For sake of simplicity,
we have fixed the origin of time in such a way as to get a vanishing scale factor. This,
let us recall it again, is completely arbitrary, and we must always remember that the
real beginning of time for the model under examination is actually afterwards, i.e.
at an after-decoupling moment which can be arbitrarily delayed for the kind of con-
siderations we are making here. This also means, then, that we are setting c; = ¢»
or, possibly, c; = ¢a = 0 (since we have put a(0) = 0). Anyway, as required, both
choices still allow D to be non vanishing and positive. (Of course, this would be gained
even by taking ¢y = 0 simply.) We here put ¢; = ¢ = 0, so that we can write

D = ABks3ky4, 3.9)

from which we find that the two constants k3 and k4 have the same sign, i.e., k3ks > 0,

implying that c3% > ¢42.
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Let us also note that, from Eqgs. (3.5) and (3.6), we get u(0) = —c; and v(0) = c3.
Thus, independently of all considerations above, Eq. (2.18), implies

o0) — L1og BUOFUO) 1) BCciter) G10)
o Aw@Q) —v©0) o A(—c1 — )
and the choice ¢; = ¢ or, equivalently, a(0) = 0, soon gives ¢(0) = 0. (This is also
true for ¢; = ¢ = 0, but one has then to be more cautious.)
By substituting Egs. (3.5) and (3.6) into the expressions in Eq. (2.18) for a3(t) and
@(t), after some algebra we find the cosmological solutions

2

\3/ B2 [cos(ﬁwl 1) cosh(v/2w11)— 1]

a(t) = 22;;1 , (3.11)
3 Igg_t%(eﬁmur]) sin(t%) n Be t«a/)i (e‘/z"”lfl) cos([%)
2o, V2o 1
@(t) = —log o e o
Bt . (to 2w o
| Be ﬁ(e I 1+1) sm(Tzl) ~ Be ﬁ(e I 171)005(%)
\/ia)l \/Ewl
(3.12)

The scale factor in Eq. (3.11) appears to describe a sort of cyclic universe with spatially
flat hyper-surfaces. However the solution describing expansion should be considered
in one cycle only, since we squeezed the whole evolution of the universe in the range
[0, 1]. As we see in Figs. 1 and 2, such a solution makes it possible for us to describe
the current accelerated expansion of the universe.

0.8 F ]

0.6 ]

02F ]
0.0 F

0.5 1.0 1.5 2.0

Fig. 1 The time evolution of the second derivative of the scale factor represented in Eq. (3.11) for w = 1,
and B = 1: it turns out that such a model is compatible with a late time accelerated expansion
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05 1

0.0

—os|

Fig. 2 The dark energy equation of state w parameter as a function of ¢, for the potential in Eq. (3.12) for
A=10,B =1, =1and o = 0.1: it turns out that such a scalar field transits from w = 1 in the far past
to w = —1 in the future

3.2 The » > O case

Here, first of all, let us remind the reader that we are considering the impure quin-
tessence situation. We still have to distinguish between the two cases with € = +1
or ¢ = —1, i.e., between Lagrangian functions in Eq. (2.23) or (2.24), respectively.
Then, as we can see, our considerations must also take the relative values of AB and
A into account. In this respect, as already noted, the situation given by A2 = B2 =0
describes a universe filled in with dust and free scalar field in presence of a positive
cosmological constant, since the potential V (¢) reduces to A only. Since we have dis-
carded considering the contribution of only one exponential in the potential expression
(and by virtue of Eq. (2.19)), this means that, as already required, we need to limit our
considerations here to AB > 0.

3.2.1 The € = +1 value

First of all, let us note again that the case with ¢ = 41 and A = —2AB has been
already studied elsewhere [41,42,49] and would, however, lead to A < 0, the product
AB being positive assumed. Thus, we do not comment on it here. Now, on the other
hand, bearing in mind that it must also be u? > v, the choice € = +1 always gives
a positive potential for the scalar field and leads to two different cases, since we can
write (with 2AB # A)

o? 5
7(2AB +1) =ow’, (3.13)
o? 2
7(2AB —A) =, (3.14)
so that Eq. (2.23) becomes
Ly =0 =0+ o 2u’+w*v? +262D. (3.15)
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We thus deduce the equations
i =w’u, ¥=to’v, (3.16)

where the plus (minus) sign corresponds to the minus (plus) sign in the Lagrangian
L. In both cases we find

u(t) = aexp (wit) + pexp (—wit), (3.17)
o and B being integration constants. Furthermore, we get
v(t) = v sin (wat + vp) (3.18)
when the plus sign (2AB > A) is taken in the Lagrangian, or
v(t) = vy exp (wat) + vo exp (—woat) (3.19)

when the minus sign (2A B < A) is chosen therein (v; and v, are integration constants).
The integration constants are constrained by means of the equation E,, = 0,
which is

i — 9% — 0 2uP+w*v? — 202D = 0. (3.20)

This gives a relationship that, evaluated at + = 0, makes it possible to determine the
more physically meaningful constant D in terms of the other constants, i.e.,

(v12w22 + 40[,30)12)

D=— 352 >0 (3.21)
when the minus sign is taken in Eq. (3.20), and
2 2 _ 2
p = 2o —apor) (3.22)

o2

with the plus sign. First focusing on the situation described by Eq. (3.18), i.e. choosing
2AB > X, we see that the inequality (3.21) implies that —4aBwi®> > vi’w,?, i.e.,
aff < —v12(2AB — A)/[4(2QAB +1)], giving af < 0. Thus, when 8 = —«, one finds
u(t) = 2« sinh (w1t), and we may express the volume a3(t) as the difference between
the squares of a hyperbolic sine and a sine, where now 4a?w;?> > vi?w;2. On the
other hand, choosing vy = 0 does not change the sign of the value of D and implies
a(0) = 0, i.e., we can fix the origin of time as before. Of course, putting v; = 0 also
leads to a(0) = 0, but then we always have v(¢) = 0, so that a’(t) = 4a? sinh? (w1 1),
being u?(0) = 0. Anyway, let us stress that, in the case under examination, a(0) has
to vanish in order to avoid an initial negative value for the scale factor.
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At the same initial time ¢ = 0, the scalar field generally has the constant value

1 B(a + B + vy sinvy)

0)=—1 , 3.23
v o OgA(a+,B—v1sinv2) ( )
which gives rise to an undetermined form for 8 = —« and v = 0, unlike what was
found in the case studied above, when A = 0.
The cosmological solutions can be then written as
402 sinh? (w1t) — v12 sin? (wa1) 13
a(t) = |: 2 i| , (3.24)
1 B[2a sinh (w1t i t
o(t) = L log [ oes?n (w1t) + v1 s¥n (o )]7 (3.25)
o A2« sinh (w1t) — v sin (wat)]

so that the asymptotic behaviour of the scale factor is exponential (no hair behav-
iour). As before, it thus expresses a late-time nonsoft accelerated expansion of the
universe, but a better agreement with observations obviously demands a more refined
comparison with astrophysical data, and is postponed to future work.

On the other hand, discussing the other allowed situation, with 2AB < A, the con-
dition (3.22) implies that vivawy? > afwi?, ie., af < viva(h —2AB)/(2AB + 1),
and now we can only say that vivy < 0 gives a8 < 0, while viv, > 0 leaves the
possibility of having also o8 > 0. But let us note that a(¢) > 0 involves u — v > 0
as needed, and therefore u # 0, which means that ¢ # 0. If we then put 8 = —«
(i.e., af < 0), we get u(t) = 2asinhwt, as before; this, in turn, requires that
o > —viva(A —2AB)/(2AB + 1), giving no restriction on the sign of vjv,.

Thus, we can also choose vy = —vj (implying a? > vlz(k —2AB)/(2AB+A))and
get v(t) = 2v sinh (wyt), so that we may express the volume a3 (1) as the difference
between the squares of two hyperbolic sines. As before, this choice implies a(0) = 0
for every value of o and vi. Moreover, at t = 0, the scalar field has in general the
constant value

1 B
0(0) = L1og BETPHUIA ) (3.26)
o Al + B — vy — v7)
which is again undetermined when we choose 8 = —« and v, = —vj.
Now, the cosmological solutions are written as
212 212 173
a(t) = [a sinh? (@17) — v % sinh (a)zt)] , (3.27)
1 B[« sinh (w;t inh (wyt
o(t) = - log [ sinh (w1t) + v1 sinh (wa1)] (3.28)

o Ala sinh (wt) — vy sinh (wa1)]

The expression of a(t) is non-negative only when the constants «, w, vi, and w; are
such that the difference occurring in a(¢) is positive. In such a case, when wy < w; we
have an asymptotic exponential regime for the scale factor, as the one we already found
before, with the other choice for the signs of the constants. The case with w; > wy, on
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the other hand, has to be ruled out because it asymptotically leads to a non-physical
situation, with a negative infinite value of the scale factor.

3.2.2 The ¢ = —1 value

Let us consider, now, the Lagrangian in Eq. (2.24), resulting from the potential V_
expressed in Eq. (2.22). Since V_ has to be positive, as we have always chosen for the
potential in this paper, one finds

4ABuv > —A(u* —v?), (3.29)

having taken A > 0, u? > v% u>v,and AB > 0.
Putting

a)12 = O’ZAB, a)22 = %)»02 (3.30)
into Eq. (2.24) gives
Lo =i — % + 20 uv + 02’ (u® — v?) + 207D, (3.31)
so that the resulting Euler-Lagrange equations are
2

i = a)12v +wyu, V= —w12u + wgzv. (3.32)

These equations are a linear system of homogeneous coupled ordinary differential
equations of second order, which can be rewritten as

W)\ _ (an an) (u®)
(U(t))_(azl azz)(v(t))’ (3.33)

where aj] = ay = a)%, and ajp = a)% = —ay). The method of solving such a system
reduces to diagonalizing the matrix
ajy a
A= (9 2 (3.34)
ay an

Actually, if we introduce the rotation matrix R (whose columns are the eigenvectors
Y1, Yrp of A), the transformation

j = R¥ (3.35)

(where we have set y = (y1(t), y2(¢)) and X = (u(z), v(¢))) decouples our starting
system. One has

¥y =RAR™'}, (3.36)
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where RAR™! is the eigenvalues’ diagonal matrix. Such eigenvalues are

1
E| = 5 (—\/(a” —an)? +4apax +an + 022) ) (3.37)
1 2

and the eigenvectors of A associated with E and E, are written as

. (\/(6111 —an)? +4apnay —an + azz) o
Y = — €1 + é, (3.39)
2a1
. (\/(all —axn)? +4anay +ai — 022) o
Yy = ey +ex. (3.40)
2(121

In terms of the transformed vector y, the system in Eq. (3.32) reduces to a linear system
of homogeneous decoupled ordinary differential equations of second order, which can
now be integrated exactly:

yi®)y _(E1 O yi (1)
(yza))‘(o Ez) (yza))' (3-41)

The solution, in its general form, is

yi = c1eVE 4 epe VI (3.42)
2 = c3eVE 4 cqeVE (3.43)

The transformation R~y provides the analytical expressions of u(¢) and v(t):

1 [ 2_: 2 ]2 2 202 [ 2. 2
u(l‘):—zl' Clet [2n zw2+C2€ avaoh m)2+l.e 1/ witio; C4+C3€2t witiow; ’

(3.44)
v(t) = % (ie_tm (cz + cleztm) + cset‘/‘m + C4e_t\/m) ’
(3.45)

the ¢; (with i = 1...4) being integration constants. It turns out that it is possible
to set the constants to find a real-valued function representing the scale factor a(z),
according to Eq. (2.18), so as to obtain the following form of the scale factor:

2 . £%sin (2{‘/@(1}2 sin (%)) sinh (2(4/5ta)2 cos (%))
16a)% 16w%

+ ({2 cos (2%2‘&)2 sin (%)) cosh (Zf/ztwg cos (%))) 16;2’ (3.46)

)

at)} = -
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Fig. 3 The time evolution of the second derivative of the scale factor for wp = 1, ¢ = 10: it turns out that
such a model is compatible with a late time accelerated expansion
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Fig. 4 The dark energy equation of state w parameter as a function of ¢, forwy =1, ¢ = 10

w7 and ¢ being positive constants. With such a choice of the integration constants we
obtain a complex scalar field

N (2=2i) sinh (v/T+ir) .
V2sinh (V/1=it) —(1+0) sinh (v/TFir) -
2A2

(1) = — . (3.47)

o

log

Through an appropriate choice of the integration constants it is possible to have a
real-valued function. It turns out that such a cosmological solution of the Einstein
field equations is able to describe a dark energy dominated evolution of the universe,
as shown in Figs. 3 and 4.

3.3 The A < O case

As above, we have again to discuss separately the two cases withe = 4+l ande = —1,
also considering that AB > 0 always. (Note that, should it be A2 = B2 = 0, we would
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be once again in a universe with a free scalar field plus dust, but, now, in presence of
a negative cosmological constant.)

3.3.1 The € = +1 value

Starting from Eq. (2.23), let us remember that, by virtue of AB > 0, one has c2(2AB+
1)/2 = +w1? and 60>(2AB — 1)/2 = w,”. This means that we have to consider only
one possible situation, because of the relative values of AB and A.

As a matter of fact, the Lagrangian in Eq. (2.23) is written as

Ly =i? — 0’+w’u’® + 02?0 + 202D, (3.48)
giving rise to the equations
. 2 . 2
U=xw“u, v=-—-wrv, (3.49)

where the plus (minus) sign corresponds to the minus (plus) in Eq. (3.48). Now, the
solution for u(t) is

u(t) = uy sin(wit + uo) (3.50)

for the minus sign in Eq. (3.48),i.e., with2AB < A < 0, and has therefore to be ruled
out. One finds instead

u(t) = uy exp(wit) + up exp(—wit) (3.51

when 2AB > A (41 and u; being integration constants). The solution v(#) is (in both
cases)

v(t) = asin(wat + B), (3.52)

a and B being integration constants. (In our considerations, of course, it has to be
taken coupled to Eq. (3.51).)

The constraint equation Ez, = 0 now becomes (taking only the plus sign in
Eq. (3.48))

i — 0% — 02U — w*v? —20%D =0, (3.53)

leading to

(a2w22 + 4u1u2w12)

D=—
202

> 0. (3.54)

From Eq. (3.54) we have ujuy < —a?(2AB — A)/[4Q2QAB + X1)] < 0. Now, choos-
ing up = —u1, one finds u(t) = 2u; sinh(wt), so that the volume a’(t) is written
as the difference (4u 2 sinh?(wi1) — a? sin®(wat + B))/4, with 12 > o*(2AB —
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M) /[4(2AB + 1)]. If we then set 8 = 0, this is consistent with the physically required
positive sign of D and, at the same time, ensures the vanishing of a(0). Note, on the
other hand, that the value o« = 0 gives v(¢) = 0 at any 7, and a’ (1) = u12 sinh? (w1t),
so that this choice still yields a(0) = 0. If we do want to have both a(0) = 0 and
assume o = 0 (leading to a finite constant ¢ (0) as well as an initially vanishing scale
factor, as we already said), we instead (and unfortunately) find a constant scalar field

at any time. Thus, even if it is true that, when both > = —u and 8 = 0, the argument
of the logarithm in the ¢-field becomes an undetermined form, the condition a(0) = 0
does require up = —uj and 8 = 0.

With such choices the cosmological scale factor and the scalar field are

att) = (4u12 Sinhz(a)]tl— o? sinz(a)zt))l/3 ’ (3.55)
1 B(Q2u sinh(w;t) + a sin(wyt))

)= —1 . 3.56

() = e s inh(@11) — a sin(@an) (3-56)

But, even if this solution were asymptotically good for describing an inflationary stage
at present in the universe, we must rule it out because of the above considerations.

3.3.2 The € = —1 value

This situation has to be considered, now, starting from the Lagrangian in Eq. (2.24).
Putting w®> = 0>AB then yields

1
L_=i®— 0%+ 20%uv + Exa%ﬂ — v’ 4+ 262D, (3.57)

from which we deduce the equations

1 1
i = z)\azu + a)zv, U= Ekazv — o3u. (3.58)

It turns out that this system is of the same kind as the one in Egs. (3.32), with
aj] = ayp = %)\02, and ajp = —a»; = ?. It turns out that the solutions can be
represented as

t (\/ o2 +2m2 +2\/X(7)
B3Nt — g
291023 r0? 4 202
t(2«/ ro2 4202 +«/Xo)

o2
x 12V hoe V2 + Vo2 + 2w2e'V 5 te?

a(t) = (3.59)

wl—

t(s/ A02+2w2+2ﬁ0)

Lot
—Vro?2 + 202 V2 —2Vhoe V2
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Fig. 5 The time evolution of the second derivative of the scale factor represented in Eq. (3.59) for A = 1,
A = 1,and o = 1: it turns out that such a model is compatible with a late time accelerated expansion
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Fig. 6 The dark energy equation of state w parameter as a function of #, for the potential in Eq. (3.60) for
A = 1,2 =1,and o = I: it turns out that such a scalar field can be interpreted as a superquintessential
field

1
o) = —— {log | WW/ro? + 2! V200744 (eﬁﬁaz _ 1)
o

—log | 242 442507 1 20V (Vi +24io)

((V3oT524i0)
+2Vhoe” VI (ezm_l) 4 Vro? 4 2e!VBHE

(3.60)

Once again, it is possible to describe the current accelerated expansion of the universe,
as shown in Figs. 5 and 6.

Finally, it is worth noting that for consistency we have explicitly checked that the
solutions corresponding to A = 0 can be obtained as limit for A — 0 of the solutions
obtained for A # 0.
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4 Connection between quintessence and inflation for exponential
potential models

During inflation, the scalar field ¢ is supposed to be highly excited and slowly evolving
(“rolling down”) to the minimum of the potential. In this phase the potential energy
of the inflaton field dominates the energy density of the universe. After the period of
inflation, ¢ oscillates rapidly around the minimum of the potential and, by virtue of
coupling with other scalar and spinor fields, massive and massless particles are created
and the universe reheats, starting the standard post-Big-Bang evolution. Simple mod-
els of inflation use a scalar field with a potential of the form V (¢) = %mzfpz, where m
is the mass of the inflaton field. In the standard scenario the energy of the inflaton field
is then transformed into mass-energy of created particles. Another possibility can be
offered, for example, by a quartic potential

W) = a ((p2 - 52)2 , (4.1)

where « and § are parameters.

Many efforts have been made for constructing unified frameworks for inflation
and quintessence which employ a unique scalar field to drive both stages (see, for
instance, Refs. [65-68]). Actually, in such scenarios the scalar field responsible of late
time acceleration is nothing else but the remnant of the one which caused inflation at
early time. This implies that a successful model of quintessential inflation is subject
to the constraints of both inflation and quintessence simultaneously. For example, the
minimum of the potential must not have been yet reached by the scalar field (generally,
this requirement is satisfied by assuming the presence of a quintessential tail, i.e. by
assuming potentials with the minimum displaced at infinity). Moreover, ¢ should not
decay completely into a thermal bath of particles in order to survive until today, just to
drive the late phase of accelerating expansion. As a consequence of this, the universe
undergoes a period of kination expansion, when its energy density is dominated by
the kinetic energy of ¢. In this context, the standard reheating mechanism usually
assumed to generate the primordial plasma does not work; however, the mechanism
of gravitational particle production can still reheat the universe in the framework of
quintessential inflation. Actually, even if the amount of radiation produced by such a
mechanism is largely sub-dominant when compared with the energy field contribu-
tion during kination, the energy density of kination is redshifted by the cosmological
expansion much faster than the radiation density, and starts dominating at some tem-
perature.

Generally, the constraints and requirements which should be satisfied by quintes-
sential inflation are fulfilled by using a multi-branch scalar potential, where the change
of the potential, when the field moves from the inflationary to the quintessential frame
of its evolution, is fixed by hand [65] or is the outcome of a phase transition arranged
by the interaction with other scalar fields (see, for instance, Ref. [69]). Recently, the
possibility has been investigated to connect the inflationary and quintessential expan-
sion of the universe within the theoretical framework of particle production, usually
developed in the very early universe. (Even if the quantum aspect of the creation
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mechanism is not yet very well known, some classical aspects, due to kinetic col-
lisions in the hot dense regions of the early universe, have been discussed in the
literature.) This suggests that the same mechanism may occur in the late universe, also
leading to late time cosmic acceleration (see, for instance, Refs. [70,71]). In other
approaches, a large variety of quintessential inflationary potentials are derived from
theories of non-minimally coupled gravity (see, for instance, Ref. [72]).

In our model the quintessential inflation is formulated in terms of a multi-branch
scalar field, driving both the inflationary and the quintessential phases of the evolu-
tion of the universe. The quintessential tail is realized through a single exponential
potential (hence choosing the latter as our working potential for quintessence); on the
contrary, to describe the inflationary plateau we do not fix any inflationary potential,
but we propose a parametrization of the inflationary scalar field equation of state, and
implement the transition from an inflationary stage to a kination evolution, which is
characterized by the value w, = 1 of the equation of state, and corresponds just to
the asymptotic in the past value for the equation of state of the exponential potential
scalar field, as calculated from Eq. (2.6) [33,35].

4.1 The fiducial cosmological model

In order to illustrate our paradigm, we use, as fiducial cosmological model, the one
considered in Refs. [35,59]. This model is based on the simplest form of exponential
potential of the quintessence field

V(p) = voe*\/g“’, 4.2)

and the assumption that the universe is spatially flat and filled in with dark matter
and scalar field. (We postpone to a forthcoming paper the detailed investigation of the
impact of a kination-dominated phase generated by the class of potentials described
in the first part of this paper.) The equations that determine the dynamics of this model
are (i) the Friedmann equation

3H? = 0w + 0y, (4.3)

where we use units in which87G =c =1, H = % is the Hubble constant, g, ~ a3

is the density of matter, and g, = %(,bz + V (p) is the energy density of the scalar field,
(ii) the Raychaudhuri equation

2H +3H? = — (%& — V(go)) , (4.4)

and (iii) the generalized Klein—Gordon equation describing the evolution of the scalar
field
.. ., dv
¢+3Hp+ — =0. 4.5)
dg
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Fig.7 The dark energy equation of state w, parameter as a function of u
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Fig. 8 Omega parameters as functions of u, where Q, is marked in green and Q,, in blue (colour figure
online)

These equations take a simple form when instead of # as an independent variable one
uses a(t), the scale factor. Introducing a new independent variable by u = log(1+z) =

—log ( %)), where qy is the present value of the scale factor and z is the redshift, and
. ~ 5= Ly 5 = Qi | = Vo = -2
rescaling other variables as ¢ = 590 = 3 7 (where i = m, @), Vo 312 and
H = Hio where V) is a parameter and Hy the present value of the Hubble constant, we
thus obtain the following set of equations that contain only dimensionless variables:

2 om+V
A= fm—lg,w’ 4.6)
-3
_ 1 - dv
H*¢" =3 =om +V )¢ +— =0, 4.7)
2 do

with prime denoting derivative with respect to u. Such equations can be solved analyt-
ically but we here limit ourselves to display the plots of some important quantities of
the model, such as wy, (1), €2, (u) and 2, (). (See Figs. 7 and 8 for their behaviours.)

This model of the universe is described by an exact solution of the dynamical equa-
tions [33,35]. The arbitrary parameters that appear in the solution are determined by
specifying the initial conditions; we in fact require that at the present time, e.g. at
u = 0, one should have €,,(# = 0) = 0.3 and Q,(u = 0) = 0.7. The variable u is
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such that it decreases as time increases, and, at early times, the scalar field is almost
constant and only recently it starts increasing. On the other hand, the potential of the
scalar field at early times is constant and only recently is rapidly decreasing, while
in the future it assumes a constant value again. The dark energy equation of state wy,
parameter in the far past is equal to —1, so that at the early stage of the evolution of the
universe dark energy behaves as a cosmological constant, but (as is shown in Fig. 8,
through the behaviours of the 2 parameters) it only recently has started dominating
the expansion rate of the universe.

The quintessential exponential potential admits, as said, exact solutions of the Ein-
stein field equations. Actually, from them we find [33]

= \/51 2 4.8
o= §°g(m)’ @9

which was obtained by using as suitable unit of time the age of the universe, i.e. 7y = 1.
Thus, at the present time g9 = 0. At the time of reheating ¢ is virtually zero, so that

we may set gip = —,/ % log(2). We now shift ¢ to x = ¢ — ¢ip, so that the potential

V =4exp (—\/gx) , 4.9)

where the prefactor 4 is due to the particular choice of units (and, of course, is also the
initial value for V') and represents the value of the effective cosmological constant at
that time, so that it has the dimension of [length]_l. (In our units, the unit length is of
the order of Hubble length, just as the current estimate for A. An effective cosmolog-
ical constant close to 4 is thus slightly greater than this and slowly evolves towards a
smaller value of 2 nowadays.)

If we consider more realistically the inclusion of radiation, too, into such a model,
the dynamical equations do not have analytical solutions, as far as we know, and there-
fore we have to rely on numerical computations. Following the procedure used above,
we again use the variable u instead of time ¢ together with the rescaled variables, so that
the equations contain only dimensionless variables and can now be written in the form

may be written as

I:Iz—ém+ér+‘_/

— , (4.10)
1_%§0/2
72 =1 - 3 5\ =/ dv
H¢" —\or+ z0m+3V )¢ '+ —=0, (4.11)
2 do

where g, ~ a~* is the rescaled energy density of radiation.

We can numerically solve this system of coupled equations, specifying the initial
condition at u = 60, for example, and assuming that ¢(30), ¢’(30), and H (30) have
the same values as in the case without radiation, while €2, (60) is just the rescaled pres-
ent value of €2,. Some results of numerical integration are shown in Figs. 9 and 10.
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Fig.9 The dark energy equation of state wy, parameter as a function of u with radiation included
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Fig. 10 Omega parameters as functions of u in the universe filled in with matter, radiation and scalar field.
Q2 is marked in green, Q2 in red and Q;, in blue (colour figure online)

It can be seen that the presence of radiation is slightly changing the behaviour of the
scalar field, its potential, the Hubble constant, and the w parameter of the dark energy
equation of state. As expected, now, only the evolution of the 2 parameters is sub-
stantially different. At the initial time, again when u = 30, radiation dominates the
expansion rate of the universe, with dark energy and matter being subdominant, at a
redshift z of about 5,000; the energy densities of matter and radiation become equal
and, for a relatively short period, the universe becomes matter dominated until, at a
redshift of about 1, dark energy starts dominating the expansion rate of the universe.
With these results we then confirm the independent investigations of effects of radi-
ation on the evolution of the quintessence field by Franca and Rosenfeld [73]. From
our results it indeed follows that, during the epoch of nucleosynthesis (z ~ 10%), the
energy density of the scalar field is much smaller than the energy density of radia-
tion. In particular, during such an epoch the kinetic term in the scalar field energy
density vanishes, and the potential term is constant, so that the dark-energy term acts
as an effective cosmological constant A and does not affect the process of primordial
nucleosynthesis.

The presence of such an effective cosmological constant A in that early period of
the universe is a sign of the often artificial separation operated a priori between pure
and impure quintessence models. Actually, we here note that, even if we did not intro-
duce any A-term in the theory, it effectively can come out as a byproduct of the form
of the potential. What is more important, in our opinion, is how the universe behaves
as a whole, while the a priori presence or not of the A-term is not really meaningful
in a scalar-tensor theory of cosmology.
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4.2 Considerations about the inflation-kination transition

On the other hand, as remarked above, an indispensable ingredient of quintessential
inflationary scenarios is the existence of an early kination-dominated (KD) era, where
the universe is dominated by the kinetic energy of the quintessence field. During this
era, the expansion rate of the universe is larger compared to its value during the usual
radiation-domination (RD) epoch. A generic reasonable inflation-kination period can
be described by two main parametrizations of the transition, without specifying the
details of the model. One is a polynomial parametrization for a>(n) (n being the
conformal time) [74], and the other is a parametrization of the equation of state w,
smoothly connecting the inflation (w = —1) and kination (w = 1) regimes. For exam-
ple, in Ref. [75] a hyperbolic tangent parametrization is used to study gravitational
reheating in quintessential inflation. Moreover, the impact of a kination-dominated
phase generated by a quintessential exponential model or by quintessential power law,
or also by a running kinetic inflation model, has been already investigated in literature
(see for instance Refs. [75-77]).

Here our approach is different, since we do not fix a single-branch scalar field
potential which drives both the early-time inflationary and the late-time quintessence
evolution of the universe. We instead want to show that a quintessential exponential
potential tail can be (at least by hand) connected to the inflation through a kination
dominated era, because the asymptotic value (in the past) of the equation of state, wy,
is just! wy, = 1, which characterizes the kination phase. We illustrate such a mecha-
nism by using a new parametrization of the scalar field equation of state, which could
also be used to study statistical properties of massive non-relativistic bosons arising at
the first stage of reheating as a result of a quantum decay of a classical quantum field
in inflationary cosmological model without slow rolling [78].

The FLRW evolution of the universe in the inflationary epoch is described by the
equations

3H? = p,. (4.12)
a_ _ppt3by 4.13)

P > ) .

where we are using di ionl i - /3 Epp 2 10-25
g dimensionless units and agp = 8nlpl Foor = 107 cm.

Since the quantities py and Py are related by the equation of state Py, = wyp, =
(y(p - 1) Py, their evolution is described by the continuity equation

P +3H(py + Py) =0. (4.14)
From Egs. (4.12), (4.13), and (4.14) it turns out that

2 H
Yo = I (4.15)

! Tt is worth noting that this is the case of several quintessential solutions with exponential potential, as for
instance the ones described in Egs. (3.11) and (3.12).
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and for y, = 0 we have an exponential behaviour for a(?); if y, = yo # 0 is con-
stant, there is a power-law expansion, and we have inflation iff 3y < %, the more de
Sitter-like, the closer yy to zero.

All this suggests the possibility of parametrizing the dynamics of the universe
during such a phase in terms of y,, (7). Indeed, we have that

2 -1
H(N) =5 (/ y(pdt) , (4.16)
4 )
po() = ( / yq,dz) , 4.17)
4 -2
Po=35 (vp — 1) (/ ywdt) , (4.18)

1
Vip(n) = H*(1) (1 - Eyq)) : (4.19)

o) = /,/—%I-'Idt. (4.20)

The above Egs. (4.16)—(4.20) are parametric equations for the potential V, and can
allow to reconstruct the scalar field potential in terms of y,,. Thus, let us consider a
scalar field which, describing an inflationary stage at the beginning, undergoes a phase
transition into a kination phase. This can be achieved by choosing a special form for
Yy (and, therefore, wy,), and reconstructing the potential.

Our choice for y,, is

o 1 ! ,
I+ s exp(—B(t —tf))

Yo = 4.21)

where B and ¢ are parameters indicating the rate of the phase transition and the time
at which inflation ends, respectively. On the other hand, the parameter « is related to
the asymptotic value of w, which in our model is wy, = 1. For different values of o,
it is possible to obtain a transition from vacuum into dust or radiation. Moreover, by
using a slightly different parametrization of the equation of state, as

B
ealt=10) 1 oBCG=1p) 11

y(p) = 1, (4.22)

it is also possible to obtain a double transition from vacuum into kination and into
radiation, as illustrated in Fig. 11. Such a form, even if arbitrarily assigned, can easily
implement the transition from an inflationary stage to a kination one, as we see in
Figs. 12 and 13, where we plot the behaviour of the equation of state and the recon-
structed scalar field potential, respectively. We have to note that the potential changes
rather roughly from its value during inflation to its final values, and that the asymptotic
in the future value for the equation of state w, = 1 corresponds to the asymptotic in the
past value for the quintessential exponential potential. Thus, these behaviours can be
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Fig. 11 We show the double transition from vacuum into kination and into radiation obtained by using the
parametrization of Eq. (4.22), with A = 2.1, B =0.84,  =8.14, ¢ = —6.43, 1y = 12.3,19 = 2.58
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Fig. 12 Equation of state wy, as a function of time, when the universe is dominated by kination at the end
of inflation. The parametrization of Eq. (4.21) is used, witho = 2, 8 = 1.32, ty = 16.9
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Fig. 13 Behaviour of the scalar field potential as a function of time, when the universe is dominated by
kination at the end of inflation. The parametric equations for the potential V in Eq. (4.19) are used, with y,,
givenin Eq. (4.21) anda =2, B = 1.32,1y = 16.9
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Fig. 14 Evolution of the equation of state from the inflationary to the quintessential stage. Dashed in red,
the transition is plotted from the inflation into the kination when wy, = 1; we see that such an asymprotic in
the future value for the equation of state corresponds to the asymptotic in the past value for the quintessential
exponential potential (solid line) (colour figure online)
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Fig. 15 Behaviour of the scalar field potential during the two stages: it turns out that the quintessential
exponential potential (red dashed line) asymptotically behaves like the inflationary one (black dashed line)
(colour figure online)

connected, as shown in Fig. 14, where the time-scale has been arbitrarily taken in order
to show all the evolution from inflation into kination, toward the late-time exponential
quintessential stage, and the values of the parameters o, 8 and ¢ are fixed so as to
obtain the optimal link between the early and late time evolutions. Finally, in Fig. 15 we
compare the behaviours of the scalar field potentials (with radiation included) during
the two stages: it turns out that the quintessential exponential potential asymptotically
behaves like the inflationary one.

5 Discussion and conclusions
After the introduction of scalar fields in inflationary cosmology, the quite recent recon-

sideration of their crucial importance relies upon the fact that they can improve a
dynamical mechanism for giving rise today to a repulsive component in cosmic energy,
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the dark energy. In this paper dealing with exponential-like potentials for the scalar
field, our attention has been generally focused on how they could characterize current
cosmology. At first, we have discussed some models generalizing the simple expo-
nential form of the potential, in order to derive general exact solutions. The technique
used has been very simple, being based on a given ad hoc change of variables. Such
a procedure is generally possible either by chance or because there exists a sort of a
method to deduce that useful transformation. In our work we have adopted the second
procedure, i.e. the Noether Symmetry Approach to cosmology, borrowing from it here
not only the suggestion on the kind of useful transformations to apply to the variables
a and ¢ involved, but also on the natural kind of potential V (¢) to be studied. On the
other hand, the results we have found in this first part of the paper are not always easily
discernable. Basically, they have been mathematically derived but not yet appropri-
ately discussed on physical ground. This deserves, of course, further investigations in
a forthcoming paper, but we can however try here to sum up what has come out as
more interesting for nowadays cosmology.

When A = 0 in the potential, first of all, the only case we have discussed here is for
A% # 0, B2 # 0, = —1. In such a case the solution, which at first glance appears
to describe a sort of cyclic universe with spatially flat hyper-surfaces, allows us to
describe the current accelerated expansion of the universe, with a quintessential scalar
field, whose equation of state transits from w = 1 in the far past to w = —1 in the
future. The situation with A > 0, on the other hand, presents an accelerated evolution
fore = +£1.

In a forthcoming paper we are going into details of the cosmological evolution,
with regard to each specific solution discussed above, by performing the necessary
confrontation of these theoretical outputs with the observational data sets. We are
going to investigate also whether such models can be interpreted as the Einstein frame
counterpart of alternative gravity models formulated into the Jordan frame by a con-
formal transformation (see [79,80]). However, it is worth noting that the Jordan and
Einstein frames cannot be physically equivalent according to the choice of observable
quantities. Indeed, the Jordan frame is mapped into the Einstein frame with a mini-
mally-coupled scalar field but at the price of coupling matter to the scalar field (see
[81-83]). The second part of the paper is still connected with the exponential potential.
But, now, we instead focus on considering and illustrating a possible quintessential
inflationary scenario, formulated in terms of a multi-branch scalar field, driving both
the inflationary and the quintessential phases of the evolution of the universe. The
quintessential tail is realized through an exponential potential (choosing, thus,
the latter as our working potential for quintessence); on the contrary, for describ-
ing the inflationary plateau we do not fix any inflationary potential, but we propose
a parametrization of the inflationary scalar field equation of state, and implement the
transition from an inflationary stage to a kination evolution, which is characterized
by the value w, = 1 of the equation of state, just corresponding to the asymptotic
in the past value for the equation of state of the exponential potential scalar field. It
turns out that the reconstructed potential changes rather roughly from its value during
inflation to its final values, and the asymptotic in the future value for the equation of
state w, = 1 corresponds to the asymptotic in the past value for the quintessential
exponential potential. Let us stress again that these behaviours have been connected by
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hand, and the exponential form of the scalar field potential driving the late stage of the
universe could indeed be the asymptotic late time behaviour of the inflationary scalar
field, which transits from inflation into kination, toward the late quintessential stage. It
is worth noting that such a conclusion is somehow independent of the mechanism pro-
posed for the evolution of the scalar field potential, being only based on a parametric
description of the very early inflationary dynamics of the universe, and on the property
of the equation of state w, = 1, which characterizes our exponential potential. In our
cited forthcoming paper we are also going to select, among all solutions, the cases
which preserve such asymptotic behaviour with wy, = 1.

This mechanism for driving the transition from the inflationary evolution toward
the late time accelerated expansion has indeed to be considered as mainly exploratory,
and some topics need much more investigation. For example, particles’ production,
that is the gravitational production during the reheating or the preheating, in which
particles are produced by virtue of the variation of the classical inflaton field, needs
to be investigated in a forthcoming paper, considering the scalar field potential given
by Eq. (4.19).

To conclude, let us note that considering radiation in the model only changes the
evolution of the 2 parameters. Radiation initially dominates on matter, while later on
the energy densities of matter and radiation become equal; after that, for some time
matter dominates in the universe, while dark energy starts dominating the expansion
rate of the universe only afterwards. These results seem to confirm other investigations
of effects of radiation on the evolution of the quintessence field, according to which
the energy density of the scalar field during the epoch of nucleosynthesis (z ~ 10°) is
much smaller than the energy density of radiation. While the kinetic term in the scalar
field energy density vanishes and the potential term becomes constant, the dark-energy
term in fact behaves like an effective cosmological constant, not affecting the process
of primordial nucleosynthesis.

Acknowledgments G. Esposito and C. Rubano are grateful to the Dipartimento di Scienze Fisiche of
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