Giacomo Valerio Iungo

Giacomo Valerio Iungo
The University of Texas at Dallas | UTD · Department of Mechanical Engineering

PhD

About

96
Publications
18,945
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,140
Citations

Publications

Publications (96)
Article
Full-text available
Stochastically generated instantaneous velocity profiles are used to reproduce the outer region of rough-wall turbulent boundary layers in a range of Reynolds numbers extending from the wind tunnel to field conditions. Each profile consists in a sequence of steps, defined by the modal velocities and representing uniform momentum zones (UMZs), separ...
Article
Full-text available
The American WAKE ExperimeNt (AWAKEN) is a multi-institutional field campaign focused on gathering critical observations of wind farm–atmosphere interactions. These interactions are responsible for a large portion of the uncertainty in wind plant modeling tools that are used to represent wind plant performance both prior to construction and during...
Article
Full-text available
The atmospheric boundary layer (ABL) height plays a key role in many atmospheric processes as one of the dominant flow length scales. However, a systematic quantification of the ABL height over the entire range of scales (i.e., with periods ranging from one minute to one year) is still lacking in literature. In this work, the ABL height is quantifi...
Article
Full-text available
Neglecting the velocity reduction in the induction zone of wind turbines can lead to overestimates of power production predictions, and, thus, of the annual energy production for a wind farm. An experimental study on the induction zone associated with wind turbine operations is performed in the boundary‐layer test section of the BLAST wind tunnel a...
Article
Full-text available
Understanding the organization and dynamics of turbulence structures in the atmospheric surface layer (ASL) is important for fundamental and applied research in different fields, including weather prediction, snow settling, particle and pollutant transport, and wind energy. The main challenges associated with probing and modeling turbulence in the...
Article
Full-text available
Flow modifications induced by wind turbine rotors on the incoming atmospheric boundary layer (ABL), such as blockage and speedups, can be important factors affecting the power performance and annual energy production (AEP) of a wind farm. Further, these rotor‐induced effects on the incoming ABL can vary significantly with the characteristics of the...
Article
To maximize the profitability of wind power plants, wind farms are often characterized by high wind turbine density leading to operations with reduced turbine spacing. As a consequence, the overall wind farm power capture is hindered by complex flow features associated with flow modifications induced by the various wind turbine rotors. In addition...
Article
Full-text available
The power performance and the wind velocity field of an onshore wind farm are predicted with machine learning models and the pseudo‐2D RANS model, then assessed against SCADA data. The wind farm under investigation is one of the sites involved with the American WAKE experimeNt (AWAKEN). The performed simulations enable predictions of the power capt...
Article
Full-text available
Over the last decades, pulsed light detection and ranging (LiDAR) anemometry has gained growing attention in probing the marine atmospheric boundary layer (MABL) due to its ease of use combined with compelling spatio‐temporal resolution. Among several scanning strategies, fixed scans represent the most prominent choice when high‐frequency resolutio...
Article
Full-text available
The American wake experiment (AWAKEN) is taking place in northern Oklahoma, USA, close to the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) atmospheric observatory. The planning for the deployment of the instruments in this observational field campaign required an assessment of the wind characteristics of the site. This paper an...
Article
Full-text available
The exponential growth of wind energy and the need to exploit wind resources over areas with higher energy potential have led to the construction of neighboring wind turbines and farms with relatively small separation distances. As a result, for specific wind and atmospheric conditions, the wakes generated by an upstream wind farm may affect wind r...
Article
Full-text available
Recent works on wall-bounded flows have corroborated the coexistence of wall-attached eddies, whose statistical features are predicted through Townsend's attached-eddy hypothesis (AEH), and very-large-scale motions (VLSMs). Furthermore, it has been shown that the presence of wall-attached eddies within the logarithmic layer is linked to the appeara...
Article
Full-text available
Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading‐edge (LE) erosion of wind turbine blades is important to design cost‐effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) ther...
Preprint
Full-text available
Different machine learning (ML) models are trained on SCADA and meteorological data collected at an onshore wind farm and then assessed in terms of fidelity and accuracy for predictions of wind speed, turbulence intensity, and power capture at the turbine and wind farm levels for different wind and atmospheric conditions. ML methods for data qualit...
Preprint
Full-text available
Recent works on wall-bounded flows have corroborated the coexistence of wall-attached eddies, whose statistical features are predicted through Townsend's attached eddy hypothesis (AEH), and very-large-scale motions (VLSMs), which are not encompassed in the AEH. Furthermore, it has been shown that the presence of wall-attached eddies within the loga...
Article
Full-text available
A field experiment was conducted to investigate the effects of the thrust force induced by utility-scale wind turbines on the incoming wind field. Five wind profiling LiDARs and a scanning Doppler pulsed wind LiDAR were deployed in the proximity of a row of four wind turbines located over relatively flat terrain, both before and after the construct...
Article
Full-text available
The American WAKE experimeNt (AWAKEN) is a multi-institutional collaborative field campaign, starting in March 2022, that will gather an unprecedented data set including both atmospheric observations and wind plant operational data. This comprehensive data set will be used to characterize the wind plant performance and turbine loading in different...
Article
Full-text available
LiDAR measurements of isolated wakes generated by wind turbines installed at an onshore wind farm are leveraged to characterize the variability of the wake mean velocity and turbulence intensity during typical operations, which encompass a breadth of atmospheric stability regimes and rotor thrust coefficients. The LiDAR measurements are clustered t...
Article
Full-text available
Wind farm design primarily depends on the variability of the wind turbine wake flows to the atmospheric wind conditions and the interaction between wakes. Physics-based models that capture the wake flow field with high-fidelity are computationally very expensive to perform layout optimization of wind farms, and, thus, data-driven reduced-order mode...
Article
Full-text available
Next-generation models of wind farm flows are increasingly needed to assist the design, operation, and performance diagnostic of modern wind power plants. Accuracy in the descriptions of the wind farm aerodynamics, including the effects of atmospheric stability, coalescing wakes, and the pressure field induced by the turbine rotors, and low computa...
Conference Paper
View Video Presentation: https://doi.org/10.2514/6.2022-2294.vid Maximizing the aerodynamic efficiency of wind turbine blades is instrumental to increasing power capture, and, in turn, the annual energy production (AEP) of a wind power plant. In this work, a full-scale NACA 63-218 airfoil of the V27 wind-turbine blades is tested in the subsonic tes...
Preprint
Full-text available
Next-generation models of wind farm flows are increasingly needed to assist the design, operation, and performance diagnostic of modern wind power plants. Accuracy in the descriptions of the wind farm aerodynamics, including the effects of atmospheric stability, coalescing wakes, and the pressure field induced by the turbine rotors, and low computa...
Preprint
Full-text available
Wind farm design primarily depends on the variability of the wind turbine wake flows to the atmospheric wind conditions, and the interaction between wakes. Physics-based models that capture the wake flow-field with high-fidelity are computationally very expensive to perform layout optimization of wind farms, and, thus, data-driven reduced order mod...
Article
Full-text available
A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for the optimal design of lidar scans and retrieval of the velocity statistical moments is proposed. LiSBOA represents an adaptation of the classical Barnes scheme for the statistical analysis of unstructured experimental data in N-dimensional space, and it is a suitable technique for the evalu...
Article
Full-text available
The LiDAR Statistical Barnes Objective Analysis (LiSBOA), presented in , is a procedure for the optimal design of lidar scans and calculations over a Cartesian grid of the statistical moments of the velocity field. Lidar data collected during a field campaign conducted at a wind farm in complex terrain are analyzed through LiSBOA for two different...
Article
Full-text available
Continuous advancements in pulsed wind lidar technology have enabled compelling wind turbulence measurements within the atmospheric boundary layer with probe lengths shorter than 20 m and sampling frequency on the order of 10 Hz. However, estimates of the radial velocity from the back-scattered lidar signal are inevitably affected by an averaging p...
Conference Paper
Full-text available
Wind turbine wakes are responsible for power losses and added fatigue loads of wind turbines. Providing capabilities to predict accurately wind-turbine wakes for different atmospheric conditions and turbine settings with low computational requirements is crucial for the optimization of wind-farm layout, and for improving wind-turbine controls aimin...
Article
Full-text available
Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power capture, and, in turn, annual energy production for an entire wind farm with very low computational costs compared to higher-fidelity numerical tools. However, wake and power predictions obtained with engineering wake models can be insufficiently accurate...
Preprint
Full-text available
Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power capture, and, in turn, annual energy production for an entire wind farm with very low computational costs compared to higher-fidelity numerical tools. However, wake and power predictions obtained with engineering wake models can be not sufficiently accurat...
Preprint
Full-text available
Continuous advancements in LiDAR technology have enabled compelling wind turbulence measurements within the atmospheric boundary layer with range gates shorter than 20 m and sampling frequency of the order of 10 Hz. However, estimates of the radial velocity from the back-scattered laser beam are inevitably affected by an averaging process within ea...
Preprint
Full-text available
The LiDAR Statistical Barnes Objective Analysis (LiSBOA), presented in Letizia et al., is a procedure for the optimal design of LiDAR scans and calculation over a Cartesian grid of the statistical moments of the velocity field. The LiSBOA is applied to LiDAR data collected in the wake of wind turbines to reconstruct mean and turbulence intensity of...
Preprint
Full-text available
A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for optimal design of LiDAR scans and retrieval of the velocity statistical moments is proposed. The LiSBOA represents an adaptation of the classical Barnes scheme for the statistical analysis of unstructured experimental data in N-dimensional spaces and it is a suitable technique for the evalu...
Article
Full-text available
One‐way nested mesoscale to microscale simulations of an onshore wind farm have been performed nesting the Weather Research and Forecasting (WRF) model and our in‐house high‐resolution large‐eddy simulation code (UTD‐WF). Each simulation contains five nested WRF domains, with the largest domain spanning the north Texas Panhandle region with a 4 km...
Article
Full-text available
Wind measurements were performed with the UTD mobile LiDAR station for an onshore wind farm located in Texas with the aim of characterizing evolution of wind-turbine wakes for different hub-height wind speeds and regimes of the static atmospheric stability. The wind velocity field was measured by means of a scanning Doppler wind LiDAR, while atmosp...
Article
Full-text available
Wind measurements were performed with the UTD mobile LiDAR station for an onshore wind farm located in Texas with the aim of characterizing evolution of wind‐turbine wakes for different hub‐height wind speeds and regimes of the static atmospheric stability. The wind velocity field was measured by means of a scanning Doppler wind LiDAR, while atmosp...
Article
Full-text available
In this study, a hybrid large-eddy simulation (LES) model is developed and applied to simulate the transport of oil droplet aerosols in wind over progressive water waves. The LES model employs a hybrid spectral and finite difference method for simulating the wind turbulence and a bounded finite-volume method for modeling the oil aerosol transport....
Article
Wandering of tornado-like vortices consists in random oscillations of the vortex core from its time-averaged position, which complicates efforts to characterize vortex characteristics. A procedure is then necessary to retrieve characteristics of tornado-like vortices not affected by wandering smoothing effects. This study explores two procedures to...
Article
Full-text available
Numerical simulations of the flow in a wind farm in north Texas have been performed with WRF (Weather Research and Forecasting model) and our in-house LES code. Five nested domains are solved with WRF to model the meso-scale variability while retaining a resolution of 50 meters in the wind farm region. The computational domain of our in-house LES c...
Article
Full-text available
The axial induction exerted by utility-scale wind turbines for different operative and atmospheric conditions is estimated by coupling ground-based LiDAR measurements and RANS simulations. The LiDAR data are thoroughly post-processed in order to average the wake velocity fields by using as common reference frame their respective wake directions and...
Chapter
The increased demand for wind energy had led to a continuous increase in the size of wind turbines and as a consequence in the size of wind farms.
Article
A numerical framework for simulations of wake interactions associated with a wind turbine column is presented. A Reynolds-averaged Navier-Stokes (RANS) solver is developed for axisymmetric wake flows using parabolic and boundary-layer approximations to reduce computational cost while capturing the essential wake physics. Turbulence effects on downs...
Article
The cover image, by Said El-Asha et al., is based on the Research Article Quantification of power losses due to wind turbine wake interactions through SCADA, meteorological and wind LiDAR data, DOI: 10.1002/we.2123.
Article
A general formulation is proposed to control the integral amplification factor of harmonic disturbances in weakly non-parallel amplifier flows. The sensitivity of the local spatial stability spectrum to a base-flow modification is first determined, generalizing the results of Bottaro et al. ( J. Fluid Mech. , vol. 476, 2003, pp. 293–302). This resu...
Article
Full-text available
Power production of an onshore wind farm is investigated through supervisory control and data acquisition data, while the wind field is monitored through scanning light detection and ranging measurements and meteorological data acquired from a met-tower located in proximity to the turbine array. The power production of each turbine is analysed as f...
Article
Optimization of the performance for a wind turbine column is performed by coupling a RANS solver for prediction of wind turbine wakes and dynamic programming. Downstream evolution of wind turbine wakes is simulated with low computational cost comparable to that of wake engineering models, but with improved accuracy and capability to simulate differ...
Article
Oscillations of a wing-tip vortex over planes orthogonal to the freestream direction are typically ascribed to a specific fluid dynamic phenomenon, which is referred to as vortex wandering or meandering. Vortex wandering affects noticeably fixed-point measurements, producing measured vortices with larger size and weaker intensity than the actual on...
Article
Full-text available
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with t...
Article
Full-text available
The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized...
Article
Full-text available
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity c...
Article
Full-text available
The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemomete...
Article
Full-text available
For a horizontally homogeneous, neutrally stratified atmospheric boundary layer (ABL), aerodynamic roughness length, \(z_0\), is the effective elevation at which the streamwise component of mean velocity is zero. A priori prediction of \(z_0\) based on topographic attributes remains an open line of inquiry in planetary boundary-layer research. Urba...
Article
Full-text available
Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary bound...
Article
The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers...
Article
Full-text available
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were performed with scanning wind lidars and Ka-band radars. Specifically, step-stare measurements were performed simultaneously with thr...
Article
Full-text available
Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow, but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boun...
Article
Full-text available
The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300-meter meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemo...
Article
Full-text available
Vertical profiles of the 3D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocit...
Article
Full-text available
To assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Department of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment...
Article
The characterization of wind turbine wakes produced for different loading conditions of the turbine and incoming wind is a crucial task for design of wind farm layout. Indeed, the optimization of the power harvested from a wind farm can only be achieved if detrimental wake interactions are carefully inhibited or mitigated. In this paper the importa...
Conference Paper
Full-text available
Dynamics and instabilities occurring in the near-wake of wind turbines have a crucial role for the wake downstream evolution, and for the onset of far-wake instabilities. Furthermore, wake dynamics significantly affect the intra-wind farm wake flow, wake interactions and potential power losses. Therefore, the physical understanding and predictabili...