Giacomo Indiveri

Giacomo Indiveri
University of Zurich | UZH · Institute of Neuroinformatics

PhD

About

483
Publications
104,272
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,828
Citations
Introduction
I am engineer by training, but fascinated also by physics, computer science, and neuroscience. I combine these disciplines to study real and artificial neural processing systems, and to build hardware neuromorphic cognitive systems in VLSI technology. These are real-time behaving systems comprising multi-purpose spiking neural architectures, which I use to validate brain inspired computational paradigms in real-world scenarios, and to develop a new generation of computing technologies.
Additional affiliations
January 2009 - December 2011
Italian Institute of Technology (IIT)
Description
  • The goal of this project was to design asynchronous neuromorphic vision sensors with non-uniform morphology and to develop a data-driven asynchronous computational paradigm for machine-vision radically different from conventional image processing.
January 2009 - present
Johns Hopkins University
January 2006 - present
Education
October 2006 - October 2006
ETH Zurich
Field of study
  • Neuromorphic Engineering
October 2001 - December 2004
Università degli Studi di Genova
Field of study
  • Computer Science
September 1992 - August 1995
National Research Program on Bioelectronic Technologies
Field of study
  • Biotechnologies

Publications

Publications (483)
Article
Full-text available
Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of real-time, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to...
Preprint
Full-text available
Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-signal neuromorphic device to process the ECoG in real-time. We exploit the variability of the inhomog...
Article
Full-text available
Current low-latency neuromorphic processing systems hold great potential for developing autonomous artificial agents. However, the variable nature and low precision of the underlying hardware substrate pose severe challenges for robust and reliable performance. To address these challenges, we adopt hardware-friendly processing strategies based on b...
Preprint
Full-text available
Many neural computations emerge from self-sustained patterns of activity in recurrent neural circuits, which rely on balanced excitation and inhibition. Neuromorphic electronic circuits that use the physics of silicon to emulate neuronal dynamics represent a promising approach for implementing the brain's computational primitives, including self-su...
Preprint
Full-text available
Bio-signal sensing represents a pivotal domain in the medical applications of bioelectronics. Traditional methods have, so far, focused on capturing these signals as accurately as possible, leading to high sampling rates in clocked synchronous architectures. Given the sparse activity of bio-signals, this approach often results in large amounts of d...
Preprint
Full-text available
Mixed signal analog/digital neuromorphic circuits represent an ideal medium for reproducing the dynamics of biological neural systems in real-time with bio-physically realistic dynamics. However, similar to their biological counterparts, these circuits have limited resolution and are affected by a high degree of variability. Considering this, we de...
Article
In this paper, three different implementations of an Axon-Hillock circuit are presented, one of the basic building blocks of spiking neural networks. In this work, we explored the design of such circuits using a unipolar thin-film transistor technology based on amorphous InGaZnO, often used for large-area electronics. All the designed circuits are...
Preprint
Full-text available
Low-power event-based analog front-ends (AFE) are a crucial component required to build efficient end-to-end neuromorphic processing systems for edge computing. Although several neuromorphic chips have been developed for implementing spiking neural networks (SNNs) and solving a wide range of sensory processing tasks, there are only a few general-pu...
Preprint
Full-text available
Many neural computations emerge from self-sustained patterns of activity in recurrent neural circuits, which rely on balanced excitation and inhibition. Neuromorphic electronic circuits that use the physics of silicon to emulate neuronal dynamics represent a promising approach for implementing the brain's computational primitives, including self-su...
Preprint
Full-text available
Hardware implementations of Spiking Neural Networks (SNNs) represent a promising approach to edge-computing for applications that require low-power and low-latency, and which cannot resort to external cloud-based computing services. However, most solutions proposed so far either support only relatively small networks, or take up significant hardwar...
Preprint
Full-text available
The design of asynchronous circuits typically requires a judicious definition of signals and modules, combined with a proper specification of their timing constraints, which can be a complex and error-prone process, using standard Hardware Description Languages (HDLs). In this paper we introduce Yak, a new dataflow description language for asynchro...
Preprint
Full-text available
Multi-core neuromorphic systems typically use on-chip routers to transmit spikes among cores. These routers require significant memory resources and consume a large part of the overall system's energy budget. A promising alternative approach to using standard CMOS and SRAM-based routers is to exploit the features of memristive crossbar arrays and u...
Article
Full-text available
Neuromorphic processing systems implementing spiking neural networks with mixed signal analog/digital electronic circuits and/or memristive devices represent a promising technology for edge computing applications that require low power, low latency, and that cannot connect to the cloud for off-line processing, either due to lack of connectivity or f...
Article
Full-text available
In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly refer...
Preprint
Full-text available
Biological neurons can detect complex spatio-temporal features in spiking patterns via their synapses spread across across their dendritic branches. This is achieved by modulating the efficacy of the individual synapses, and by exploiting the temporal delays of their response to input spikes, depending on their position on the dendrite. Inspired by...
Preprint
Full-text available
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and stren...
Preprint
Full-text available
The connectivity in the brain is locally dense and globally sparse - giving rise to a small-world graph. This is a principle that has persisted during the evolution of many species - indicating a universal solution to the efficient routing of information. However, existing circuit architectures for artificial neural networks neither leverage this o...
Preprint
Full-text available
Discrimination of hand gestures based on the decoding of surface electromyography (sEMG) signals is a well-establish approach for controlling prosthetic devices and for Human-Machine Interfaces (HMI). However, despite the promising results achieved by this approach in well-controlled experimental conditions, its deployment in long-term real-world a...
Article
Full-text available
Bioelectronic medicine treats chronic diseases by sensing, processing, and modulating the electronic signals produced in the nervous system of the human body, labeled 'neural signals'. While electronic circuits have been used for several years in this domain, the progress in microelectronic technology is now allowing increasingly accurate and targe...
Preprint
Full-text available
Artificial vision systems of autonomous agents face very difficult challenges, as their vision sensors are required to transmit vast amounts of information to the processing stages, and to process it in real-time. One first approach to reduce data transmission is to use event-based vision sensors, whose pixels produce events only when there are cha...
Preprint
Full-text available
Typical bio-signal processing front-ends are designed to maximize the quality of the recorded data, to allow faithful reproduction of the signal for monitoring and off-line processing. This leads to designs that have relatively large area and power consumption figures. However, wearable devices for always-on biomedical applications do not necessari...
Preprint
Full-text available
Current low latency neuromorphic processing systems, and future ones based on ultra-low power mixed-signal circuits in advanced technology nodes and memristive nano-scale devices, hold great potential for developing autonomous artificial agents. However, the variable nature and low precision of the underlying hardware substrate pose severe challeng...
Preprint
Neuromorphic processing systems implementing spiking neural networks with mixed signal analog/digital electronic circuits and/or memristive devices represent a promising technology for edge computing applications that require low power, low latency, and that cannot connect to the cloud for off-line processing, either due to lack of connectivity or...
Conference Paper
Full-text available
Memristors are commonly used in crossbar arrays as “in-memory computing” elements to solve the von-Neumann bottleneck problem. However, they can also be used as “in-memory routing” elements to configure on-chip interconnection schemes and route signals among computing elements in configurable multi-core neuromorphic processors. While there has been...
Article
Full-text available
Learning is a fundamental component of creating intelligent machines. Biological intelligence orchestrates synaptic and neuronal learning at multiple time scales to self-organize populations of neurons for solving complex tasks. Inspired by this, we design and experimentally demonstrate an adaptive hardware architecture Memristive Self-organizing S...
Preprint
Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of powerful, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to a...
Preprint
Full-text available
Autonomous agents require self-localization to navigate in unknown environments. They can use Visual Odometry (VO) to estimate self-motion and localize themselves using visual sensors. This motion-estimation strategy is not compromised by drift as inertial sensors or slippage as wheel encoders. However, VO with conventional cameras is computational...
Preprint
Real-time analysis and classification of bio-signals measured using wearable devices is computationally costly and requires dedicated low-power hardware. One promising approach is to use spiking neural networks implemented using in-memory computing architectures and neuromorphic electronic circuits. However, as these circuits process data in stream...
Preprint
Full-text available
Brain-inspired event-based neuromorphic processing systems have emerged as a promising technology in particular for bio-medical circuits and systems. However, both neuromorphic and biological implementations of neural networks have critical energy and memory constraints. To minimize the use of memory resources in multi-core neuromorphic processors,...
Preprint
Full-text available
Inferring the position of objects and their rigid transformations is still an open problem in visual scene understanding. Here we propose a neuromorphic solution that utilizes an efficient factorization network which is based on three key concepts: (1) a computational framework based on Vector Symbolic Architectures (VSA) with complex-valued vector...
Article
Full-text available
In the nervous system synapses play a critical role in computation. In neuromorphic systems, biologically inspired hardware implementations of spiking neural networks, electronic synaptic circuits pass signals between silicon neurons by integrating pre-synaptic voltage pulses and converting them into post-synaptic currents, which are scaled by the...
Article
Full-text available
Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such syst...
Preprint
Recurrent Neural Networks (RNN) are commonly used models to study neural computation. However, a comprehensive understanding of how dynamics in RNN emerge from the underlying connectivity is largely lacking. Previous work derived such an understanding for RNN fulfilling very specific constraints on their connectivity, but it is unclear whether the...
Article
Full-text available
Interictal high-frequency oscillations (HFO) detected in electroencephalography recordings have been proposed as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. Automatic HFO detectors typically analyze the data offline using complex time-consuming algorithms, which limits their clinical application. Neu...
Article
Full-text available
Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted...
Article
Full-text available
Plasticity circuits in the brain are known to be influenced by the distribution of the synaptic weights through the mechanisms of synaptic integration and local regulation of synaptic strength. However, the complex interplay of stimulation-dependent plasticity with local learning signals is disregarded by most of the artificial neural network train...
Preprint
Full-text available
Synapses play a critical role in memory, learning, and cognition. Their main functions include converting pre-synaptic voltage spikes to post-synaptic currents, as well as scaling the input signal. Several brain-inspired architectures have been proposed to emulate the behavior of biological synapses. While these are useful to explore the properties...
Conference Paper
A robust real-world deployment of autonomous edge devices requires on-chip adaptation to user-, environment- and task-induced variability. Due to on-chip memory constraints, prior learning devices were limited to static stimuli with no temporal contents. We propose a 0.45-mm$^2$ spiking RNN processor enabling task-agnostic online learning over seco...
Preprint
Full-text available
Biological nervous systems typically perform the control of numerous degrees of freedom for example in animal limbs. Neuromorphic engineers study these systems by emulating them in hardware for a deeper understanding and its possible application to solve complex problems in engineering and robotics. Central-Pattern-Generators (CPGs) are part of neu...
Preprint
Full-text available
Spiking Neural Networks (SNNs) can unleash the full power of analog Resistive Random Access Memories (RRAMs) based circuits for low power signal processing. Their inherent computational sparsity naturally results in energy efficiency benefits. The main challenge implementing robust SNNs is the intrinsic variability (heterogeneity) of both analog CM...
Article
Full-text available
Interictal High Frequency Oscillations (HFO) are measurable in scalp EEG. This development has aroused interest in investigating their potential as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. The demand for therapy monitoring in epilepsy has kindled interest in compact wearable electronic devices for...
Article
Full-text available
The design of robots that interact autonomously with the environment and exhibit complex behaviours is an open challenge that can benefit from understanding what makes living beings fit to act in the world. Neuromorphic engineering studies neural computational principles to develop technologies that can provide a computing substrate for building co...
Preprint
Full-text available
The stringent memory and power constraints required in edge-computing sensory-processing applications have made event-driven neuromorphic systems a promising technology. On-chip online learning provides such systems the ability to learn the statistics of the incoming data and to adapt to their changes. Implementing online learning on event driven-n...
Article
Full-text available
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In the Von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer te...
Chapter
Advances in electronics have revolutionized the way people work, play, and communicate with each other. Historically, these advances were mainly driven by CMOS transistor scaling following Moore’s law, where new generations of devices are smaller, faster, and cheaper, leading to more powerful circuits and systems. However, conventional scaling is n...
Article
Full-text available
Synapses play a critical role in memory, learning, and cognition. Their main functions include converting presynaptic voltage spikes to postsynaptic currents, as well as scaling the input signal. Several brain-inspired architectures have been proposed to emulate the behavior of biological synapses. While these are useful to explore the properties o...
Article
Full-text available
Mixed-signal analog/digital circuits emulate spiking neurons and synapses with extremely high energy efficiency, an approach known as “neuromorphic engineering”. However, analog circuits are sensitive to process-induced variation among transistors in a chip (“device mismatch”). For neuromorphic implementation of Spiking Neural Networks (SNNs), mism...
Article
Full-text available
Animal nervous systems are highly efficient in processing sensory input. The neuromorphic computing paradigm aims at the hardware implementation of neural network computations to support novel solutions for building brain-inspired computing systems. Here, we take inspiration from sensory processing in the nervous system of the fruit fly larva. With...
Preprint
Full-text available
In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly refer...
Preprint
Full-text available
Background: Interictal High Frequency Oscillations (HFO) are measurable in scalp EEG. This has aroused interest in investigating their potential as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. The demand for therapy monitoring in epilepsy has kindled interest in compact wearable electronic devices for...
Conference Paper
Bioelectronic medicine is driving the need to design low-power circuits for interfacing biological neurons to electronic neural processing systems, and for implementing real-time close-loop interactions with the biological tissue. This interaction would benefit from congruent features between the biological and artificial systems, such as their wor...