
Gernot PlankMedical University of Graz · Institute of Biophysics
Gernot Plank
MS PhD
About
432
Publications
51,801
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,745
Citations
Introduction
Additional affiliations
September 2018 - present
October 2000 - April 2002
July 2003 - September 2003
Publications
Publications (432)
Computational models of atrial electrophysiology (EP) are increasingly utilized for applications such as the development of advanced mapping systems, personalized clinical therapy planning, and the generation of virtual cohorts and digital twins. These models have the potential to establish robust causal links between simulated in silico behaviors...
A cardiac digital twin is a virtual replica of a patient-specific heart, mimicking its anatomy and physiology. A crucial step of building a cardiac digital twin is anatomical twinning, where the computational mesh of the digital twin is tailored to the patient-specific cardiac anatomy. In a number of studies, the effect of anatomical variation on c...
In 1924, the Dutch physiologist Willem Einthoven received the Nobel Prize in Physiology or Medicine for his discovery of the mechanism of the electrocardiogram (ECG). Anno 2024, the ECG is commonly used as a diagnostic tool in cardiology. In the paper ‘Le Télécardiogramme’, Einthoven described the first recording of the now most common cardiac arrh...
This State of the Future Review describes and discusses the potential transformative power of digital twins in cardiac electrophysiology. In this ‘big picture’ approach, we explore the evolution of mechanistic modelling based digital twins, their current and immediate clinical applications, and envision a future where continuous updates, advanced c...
Stroke is a leading cause of death and disability worldwide. Atrial myopathy, including fibrosis, is associated with an increased risk of ischaemic stroke, but the mechanisms underlying this association are poorly understood. Fibrosis modifies myocardial structure, impairing electrical propagation and tissue biomechanics, and creating stagnant flow...
Digital twins for cardiac electrophysiology are an enabling technology for precision cardiology. Current forward models are advanced enough to simulate the cardiac electric activity under different pathophysiological conditions and accurately replicate clinical signals like torso electrocardiograms (ECGs). In this work, we address the challenge of...
Myocardial infarction (MI) is one of the most prevalent cardiovascular diseases and consequently, a major cause for mortality and morbidity worldwide. Accurate assessment of myocardial tissue viability for post-MI patients is critical for diagnosis and treatment planning, e.g. allowing surgical revascularization, or to determine the risk of adverse...
Wolff-Parkinson-White syndrome is a cardiovascular disease characterized by abnormal atrio-ventricular conduction facilitated by accessory pathways (APs). Invasive catheter ablation of the AP represents the primary treatment modality. Accurate localization of APs is crucial for successful ablation outcomes, but current diagnostic algorithms based o...
CDT of human cardiac EP are digital replicas of patient hearts that match like-for-like clinical observations. The ECG, as the most prevalent non-invasive observation of cardiac electrophysiology, is considered an ideal target for CDT calibration. Recent advanced CDT calibration methods have demonstrated their ability to minimize discrepancies betw...
The development of biophysical models for clinical applications is rapidly advancing in the research community, thanks to their predictive nature and their ability to assist the interpretation of clinical data. However, high-resolution and accurate multi-physics computational models are computationally expensive and their personalisation involves f...
Ventricular tachycardia (VT) is a life-threatening heart rhythm and has long posed a complex challenge in the field of cardiology. Recent developments in advanced imaging modalities have aimed to improve comprehension of underlying arrhythmic substrate for VT. To this extent, high-resolution cardiac magnetic resonance (CMR) and cardiac computed tom...
Stroke is a leading cause of death and disability worldwide. Atrial myopathy, including fibrosis, is associated with an increased risk of ischemic stroke, but the mechanisms underlying this association are poorly understood. Fibrosis modifies myocardial structure, impairing electrical propagation and tissue biomechanics, and creating stagnant flow...
Cardiac arrhythmias remain a major cause of death and disability. Current antiarrhythmic therapies are effective to only a limited extent, likely in large part due to their mechanism-independent approach. Precision cardiology aims to deliver targeted therapy for an individual patient to maximize efficacy and minimize adverse effects. In-silico digi...
Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the pr...
State-space modeling (SSM) provides a general framework for many image reconstruction tasks. Error in
a priori
physiological knowledge of the imaging physics, can bring incorrectness to solutions. Modern deep-learning approaches show great promise but lack interpretability and rely on large amounts of labeled data. In this paper, we present a nov...
Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the pr...
To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, w...
Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the pr...
Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the pr...
Computational models for cardiac electro-mechanics have been increasingly used to further understand heart function. Small cohort and single patient computational studies provide useful insight into cardiac pathophysiology and response to therapy. However, these smaller studies have limited capability to capture the high level of anatomical variabi...
Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the pr...
Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addit...
Background
Substrate assessment of scar-mediated ventricular tachycardia (VT) is frequently performed using late gadolinium enhancement (LGE) images. Although this provides structural information about critical pathways through the scar, assessing the vulnerability of these pathways for sustaining VT is not possible with imaging alone.
This study e...
Background:
The WiSE-CRT system permits leadless left ventricular (LV) pacing. Currently no intra-procedural guidance is used to target optimal electrode placement whilst simultaneously guiding acoustic transmitter placement in close proximity to the electrode to ensure adequate power delivery.
Objectives:
Assess the use of computed tomography (...
Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart p...
Pericardiectomy is recommended therapy for pericarditis, an inflammation of the pericardial layers that surround the heart and play a central role in maintaining cardiac performance. In some cases, the pericardium can be repaired or patched. However, the impact of changes in the pericardium on cardiac function is not clear. The objective of this st...
Introduction:
Conduction system pacing (CSP), in the form of His bundle pacing (HBP) or left bundle branch pacing (LBBP), is emerging as valuable cardiac resynchronization therapy (CRT) delivery methods. However, patient selection and therapy personalization for CSP delivery remain poorly characterized. We aim to compare pacing-induced electrical...
Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact an...
Background
Post myocardial infarction (MI) ventricles contain fibrotic tissue and may have disrupted electrical properties, both of which predispose to an increased risk of life-threatening arrhythmias. Application of epicardial patches obtained from human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a potential long-term th...
Biventricular endocardial (BIV-endo) pacing and left bundle pacing (LBP) are novel delivery methods for cardiac resynchronization therapy (CRT). Both pacing methods can be delivered through leadless pacing, to avoid risks associated with endocardial or transvenous leads. We used computational modelling to quantify synchrony induced by BIV-endo paci...
Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addit...
Aims
Existing strategies that identify post-infarct ventricular tachycardia (VT) ablation target either employ invasive electrophysiological (EP) mapping or non-invasive modalities utilizing the electrocardiogram (ECG). Their success relies on localizing sites critical to the maintenance of the clinical arrhythmia, not always recorded on the 12-lea...
Previous patient-specific model calibration techniques have treated each patient independently, making the methods expensive for large-scale clinical adoption. In this work, we show how we can reuse simulations to accelerate the patient-specific model calibration pipeline. To represent anatomy, we used a Statistical Shape Model and to represent fun...
The field of cardiac electrophysiology tries to abstract, describe and finally model the electrical characteristics of a heartbeat. With recent advances in cardiac electrophysiology, models have become more powerful and descriptive as ever. However, to advance to the field of inverse electrophysiological modeling, i.e. creating models from electric...
Computer models capable of representing the intrinsic personal electrophysiology (EP) of the heart in silico are termed virtual heart technologies. When anatomy and EP are tailored to individual patients within the model, such technologies are promising clinical and industrial tools. Regardless of their vast potential, few virtual technologies simu...
A significant number of right bundle branch block (RBBB) patients receive cardiac resynchronization therapy (CRT), despite lack of evidence for benefit in this patient group. His bundle (HBP) and left bundle pacing (LBP) are novel CRT delivery methods, but their effect on RBBB remains understudied. We aim to compare pacing-induced electrical synchr...
Computational models have made it possible to study the effect of fibrosis and scar on atrial fibrillation (AF) and plan future personalized treatments. Here, we study the effect of area available for fibrillatory waves to sustain AF. Then we use it to plan for AF ablation to improve procedural outcomes. CARPentry was used to create patient-specifi...
The bidomain model and the finite element method are an established standard to mathematically describe cardiac electrophysiology, but are both suboptimal choices for fast and large-scale simulations due to high computational costs. We investigate to what extent simplified approaches for propagation models (monodomain, reaction-Eikonal and Eikonal)...
We propose FiberNet, a method to estimate in-vivo the cardiac fiber architecture of the human atria from multiple catheter recordings of the electrical activation. Cardiac fibers play a central role in the electro-mechanical function of the heart, yet they are difficult to determine in-vivo, and hence rarely truly patient-specific in existing cardi...
A key factor governing the mechanical performance of the heart is the bidirectional coupling with the vascular system, where alterations in vascular properties modulate the pulsatile load imposed on the heart. Current models of cardiac electromechanics (EM) use simplified 0D representations of the vascular system when coupling to anatomically accur...