
Geraud Nangue Tasse- PhD candidate
- PhD Student at University of the Witwatersrand
Geraud Nangue Tasse
- PhD candidate
- PhD Student at University of the Witwatersrand
About
15
Publications
758
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
48
Citations
Introduction
Geraud is interested in Theoretical Physics and Artificial Intelligence.
Skills and Expertise
Current institution
Publications
Publications (15)
Combining reinforcement learning with language grounding is challenging as the agent needs to explore the environment while simultaneously learning multiple language-conditioned tasks. To address this, we introduce a novel method: the compositionally-enabled reinforcement learning language agent (CERLLA). Our method reduces the sample complexity of...
Skill composition is a growing area of interest within reinforcement learningresearch. This approach promotes efficient use of knowledge and represents arealistic, human-like style of learning. Existing work has demonstrated how simple skills can be composed using Boolean operators to solve new, unseen taskswithout further learning. However, this a...
looseness=-1 While task generalisation is widely studied in the context of single-agent reinforcement learning (RL), little research exists in the context of multi-agent RL. The research that does exist usually considers task generalisation implicitly as a part of the environment, and when it is considered explicitly there are no theoretical guaran...
Reinforcement learning (RL) has progressed substantially over the past decade, with much of this progress being driven by benchmarks. Many benchmarks are focused on video or board games, and a large number of robotics benchmarks lack diversity and real-world applicability. In this paper, we aim to simplify the process of applying reinforcement lear...
An important problem in reinforcement learning is designing agents that learn to solve tasks safely in an environment. A common solution is for a human expert to define either a penalty in the reward function or a cost to be minimised when reaching unsafe states. However, this is non-trivial, since too small a penalty may lead to agents that reach...
We propose world value functions (WVFs), a type of goal-oriented general value function that represents how to solve not just a given task, but any other goal-reaching task in an agent's environment. This is achieved by equipping an agent with an internal goal space defined as all the world states where it experiences a terminal transition. The age...
A major challenge in reinforcement learning is specifying tasks in a manner that is both interpretable and verifiable. One common approach is to specify tasks through reward machines -- finite state machines that encode the task to be solved. We introduce skill machines, a representation that can be learned directly from these reward machines that...
An open problem in artificial intelligence is how to learn and represent knowledge that is sufficient for a general agent that needs to solve multiple tasks in a given world. In this work we propose world value functions (WVFs), which are a type of general value function with mastery of the world - they represent not only how to solve a given task,...
We leverage logical composition in reinforcement learning to create a framework that enables an agent to autonomously determine whether a new task can be immediately solved using its existing abilities, or whether a task-specific skill should be learned. In the latter case, the proposed algorithm also enables the agent to learn the new task faster...
We propose a framework that learns to execute natural language instructions in an environment consisting of goal-reaching tasks that share components of their task descriptions. Our approach leverages the compositionality of both value functions and language, with the aim of reducing the sample complexity of learning novel tasks. First, we train a...
The ability to compose learned skills to solve new tasks is an important property of lifelong-learning agents. In this work, we formalise the logical composition of tasks as a Boolean algebra. This allows us to formulate new tasks in terms of the negation, disjunction and conjunction of a set of base tasks. We then show that by learning goal-orient...
The ability to produce novel behaviours from existing skills is an important property of lifelong-learning agents. We build on recent work which formalises a Boolean algebra over the space of tasks and value functions, and show how this can be leveraged to tackle the lifelong learning problem. We propose an algorithm that determines whether a new t...
We propose a framework for defining a Boolean algebra over the space of tasks. This allows us to formulate new tasks in terms of the negation, disjunction and conjunction of a set of base tasks. We then show that by learning goal-oriented value functions and restricting the transition dynamics of the tasks, an agent can solve these new tasks with n...
We propose a framework for defining a Boolean algebra over the space of tasks. This allows us to formulate new tasks in terms of the negation, disjunction and conjunction of a set of base tasks. We then show that by learning goal-oriented value functions and restricting the transition dynamics of the tasks, an agent can solve these new tasks with n...