
Hybrid QR Factorization Algorithm for
High Performance Computing Architectures

Peter G. Vouras Gerard G. L. Meyer

Radar Division, Code 5321 Dept. of Electrical and Computer Engineering
Naval Research Laboratory Johns Hopkins University

Washington, DC 20375 Baltimore, MD 21218

I. Abstract

This paper describes a novel QR decomposition
algorithm that utilizes both Givens rotations and Householder
reflections to give optimal performance on high performance
computing architectures. Computing the matrix factorization
A = QR is a mathematical step frequently encountered in
many signal processing applications, including adaptive
nulling. Efficient algorithms for computing the QR
factorization are vital to satisfying strict latency and
throughput constraints in real-time implementations of these
signal processing algorithms. By effectively combining the
use of Givens rotations and Householder reflections on a
parallel computing platform, it is possible to efficiently map
the computational algorithm to the available computational
hardware to best make use of the memory hierarchy and to
optimize performance. Furthermore, by introducing
adjustable software parameters that control load partitioning
among the processors, cache use, and the number of
computations done in serial fashion on one processor versus
the calculations done concurrently on several processors, it is
possible for the user to tune the algorithm to run on different
machines, without rewriting any code and still maintaining
optimum performance. Results given in this abstract show
that properly tuning the Hybrid QR algorithm on the SGI
O3000 provided better performance than the available
SCALAPACK library routine PSGEQRF for computing the
QR decomposition.

There exist two techniques for computing the QR
decomposition of a matrix. One technique is based on the use
of Givens rotations of the form

 −
cs
sc

.

Pre-multiplying rows i-1 and i of a matrix A by a 2x2 Givens
rotation matrix will zero the entry A(i,j). To ensure that the
application of subsequent Givens rotations do not fill-in
matrix entries previously zeroed, it is necessary that A(i,j) be
zeroed only if A(i-1,j-1) and A(i,j-1) are already zeroed. All
matrix entries that satisfy this condition may be zeroed
concurrently on separate processors.

The order chosen in which to zero matrix entries can
have a significant impact on the temporal locality of data in
cache, and consequently greatly affect performance. For
example, to zero the subdiagonal entries in a 4x4 array, one

may proceed in the sequence .,,,,, 433221423141 aaaaaa
By introducing the adjustable parameter c that controls how
many columns are in the computational sequence, the Hybrid
QR algorithm allows the user to maximize cache line reuse.
Furthermore, by aggregating the Givens rotations applied
during the computational sequence before updating all of the
columns in the matrix, the Hybrid QR algorithm minimizes
the floating point operations wasted updating columns that
will not be used by an immediately following Givens
rotation. Figure 1 illustrates the effect the parameter c has on
performance for the case of a real 100x100 array, using 4
processors on the SGI O3000, HP Superdome and Mercury
G4 computers. In this case, the parameter c varies from 1 to
87.

0 10 20 30 40 50 60 70 80 90
10

0

10
1

10
2

10
3

Ti
m

e
- m

se
c

c

• Mercury
• SGI O3000
• HP Superdome

Figure 1.

In the Hybrid QR algorithm, once all the available
concurrent Givens rotations in a group of c columns have
been performed on independent processors, all the processors
send their local rows of the array A to a root processor which
then utilizes Householder reflections to zero all remaining
subdiagonal entries in the group of c columns plus any
additional entries in a group of h columns. Thus, the

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 MAY 2003

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Hybrid QR Factorization Algorithm for High Performance Computing
Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Lab., Washington, DC 20375 and Johns Hopkins
University, Baltimore, MD 21218

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

2

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

parameter h may be selected by the user to effectively
increase or decrease the amount of serial work performed by
the Hybrid QR algorithm. This parameter is a useful tool for
amortizing the communication costs associated with passing
data between the processors to perform the Givens rotations
in parallel.

A Householder reflection is a matrix of the form

.2 T
T

vv
vv

I −

The vector v is called a Householder vector. When a column
of the matrix A is multiplied by an appropriately chosen
Householder reflection, it is possible to zero all the
subdiagonal entries in that column. Therefore, Householder
reflections are also frequently used to compute QR
factorizations. Since a Householder update involves a
matrix-vector multiplication and an outer product update, the
Hybrid QR algorithm makes heavy use of optimized BLAS
routines to perform the Householder computations. Once the
Householder step is complete, the Hybrid QR algorithm
proceeds by performing another set of Givens rotations in
parallel on the next block of c columns. Figure 2 shows the
effect on performance of varying the parameter h from 0 to
50, given that c=51, for the case of a 100x100 matrix on an
SGI O3000, HP Superdome, and Mercury G4 using 4
processors.

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

h

Ti
m

e
- m

se
c

• Mercury
• SGI O3000
• HP Superdome

Figure 2.

To make the most efficient use of the available
processors, the user must partition the computational load
between the processors as evenly as possible so that one
processor is not idle for long periods while the other
processors are working. In the Hybrid QR algorithm, two
parameters v and w allow the user to select how many rows of

the matrix A are assigned to each processor to perform
Givens rotations. Figure 3 shows the impact on performance
of varying the parameter w from 35 to 52 while v=15. In this
case, c=50 and h=15.

34 36 38 40 42 44 46 48 50 52
10

0

101

10
2

w

Ti
m

e
- m

se
c

• Mercury
• SGI O3000
• HP Superdome

Figure 3.

By optimizing performance over the parameter set c, h,
w, and v, it is possible to obtain the combination that yields
the minimum execution time. Table 1 shows the execution
time achieved using the Hybrid QR algorithm to factor a
100x100 real array on the SGI O3000 compared to the
execution time measured using the SCALAPACK library
routine PSGEQRF. The Hybrid QR algorithm demonstrated
a 16% improvement in execution time over PSGEQRF.

Table 1.

Hybrid QR (4 processors) PSGEQRF (4 processors)

7.9 msec attained with c=50,
h=15, w=51, v=15

9.4 msec

II. References

1. Boleng, Jeff and Misra, Manavendra, "Load

Balanced Parallel QR Decomposition", Technical
Report, Department of Math and Computer
Sciences, Colorado School of Mines.

2. Carrig, James J. and Meyer, Gerard G. L., "A Fast
Givens QR Algorithm for Efficient Cache
Utilization", Technical Report, Department of
Electrical and Computer Engineering, Johns
Hopkins University.

3. Golub, Gene H. and Van Loan, Charles F., Matrix
Computations, Third Edition, The Johns Hopkins
University Press, 1996.

