Projective Codes Which Satisfy the Chain Condition

S. ENCHEVA
Stord/Haugesund College
Børsnesg. 45, 5528 Haugesund, Norway

G. D. COHEN
Department of Inf., ENST and CNRS
46 rue Barrault, 75634 Paris, France

(Received November 1998; revised and accepted March 1999)

Abstract—Binary linear codes with length at most one above the Griesmer bound were proven to satisfy the chain condition by Helleseth et al. [1]. Binary linear projective codes with length two above the Griesmer bound which satisfy the chain condition are found. Necessary conditions for binary linear codes for which the two-way chain condition holds are derived. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords—Linear codes, Chain condition, Two-way chain condition.

1. INTRODUCTION

Let C be an $[n, k]$ binary linear code.

It is called projective if any two of its coordinates are linearly independent, i.e., if the dual code C^\perp has minimum distance $d^\perp \geq 3$.

For any subcode D of C, the support of D, supp (D), is the set of positions where not all the codewords of D are zero, and it is denoted by $\chi(D)$. The support of a binary vector is the set of its nonzero coordinates. The minimum support weight, d_r, of a code C is the size of the smallest support of any r-dimensional subcode of C. In particular, $d_1 = d$. The weight hierarchy of C is $\{d_1, d_2, \ldots, d_k\}$.

The concepts of chain condition (CC) and two-way chain condition (TCC) were introduced by Wei and Yang [2] and Forney [3], respectively; our definitions are slightly different. The TCC implies that the code possesses an efficient coordinate ordering, a highly desirable feature for trellis decoding (see [3]).

DEFINITION 1. An $[n, k]$ code C satisfies the chain condition if it is equivalent to a code \(\hat{C} \) such that there exists a chain of subcodes of \hat{C}, $D_1 \subset D_2 \subset \cdots \subset D_k = \hat{C}$, where for $1 \leq r \leq k$, we have $\dim(D_r) = r$, and $\chi(D_r) = \{1, 2, \ldots, d_r\}$.

DEFINITION 2. An $[n, k]$ code C satisfies the two-way chain condition if it is equivalent to a code \hat{C} with the following property: there exist two chains of subcodes of \hat{C}, the left chain $D^L_1 \subset \ldots \subset D^L_k = \hat{C}$ and the right chain $D^R_1 \subset \ldots \subset D^R_k = \hat{C}$.
$D^L_k \subset \ldots \subset D^L_1 = \mathcal{C}$, and the right chain $D^R_k \subset D^R_2 \subset \ldots \subset D^R_1 = \mathcal{C}$, where, for $1 \leq r \leq k$, we have $\dim(D^L_r) = \dim(D^R_r) = r$, $\chi(D^L_r) = \{1, 2, \ldots, d_r\}$, and $\chi(D^R_r) = \{n - d_r + 1, n - d_r + 2, \ldots, n\}$.

In Definition 2, the chain of subcodes D^L_i is actually the chain D_i from Definition 1. The chain of subcodes D^R_i is similar to the chain D_i but the order of coordinates is counted from the right to the left.

Theorem 1. (See [1].) A code C of length $n = g(k, d) + 1$ satisfies the chain condition.

Theorem 2. (Duality) (See [4].) Let C be an $[n, k]$ code and C^\perp be its dual code. Then $\{d_r : 1 \leq r \leq k\} = \{1, 2, \ldots, n\} \setminus \{n + 1 - d_r : 1 \leq r \leq n - k\}$.

From now on, C is a binary linear projective code.

The rest of this letter is organized as follows. In Section 2, we study conditions under which codes of length 2 above the Griesmer bound satisfy the chain condition. In Section 3, we give necessary and sufficient conditions for codes to satisfy the two-way chain condition.

2. PROJECTIVE CODES AND THE CHAIN CONDITION

For the description of generator matrices of projective codes, we need some further notations. A column in this description represents a sequence of columns in the generator matrix and the number of columns in the sequence is written above the column. Thus, a generator matrix of C can be written in the form

\[
\begin{array}{cccccccc}
\multicolumn{8}{c}{a} \\
0 & 0 & \ldots & 0 & 0 \\
G_0 & 0 & 0 & \ldots & 0 \\
\ast \ast \ast & 1 & 0 & \ldots & 0 \\
\ast \ast \ast & \ast & 1 & \ldots & 0 \\
\ast \ast \ast & \ast & \ast & \ldots & 1 \\
\end{array}
\]

For given k and d, there exists an $[n, k, d]$ code where $n(k, d) \geq g(k, d)$: $= \sum_{i=0}^{k-1} \lfloor \frac{d_i}{2^i} \rfloor$, $\lfloor x \rfloor$ being the least integer not smaller than x; this is known as the Griesmer bound.

Lemma 1. Let C be an $[n = g(k, d) + 2, k, d]$ code such that $d_1 = 3, d_2 = 5$. Then C satisfies the CC.

Proof. From Theorem 2 and conditions $d_1 = 3, d_2 = 5$ it follows that the weight hierarchy of C is $d_i = g(i, d)$ for $1 \leq i \leq k - 3, d_{k-2} = g(k - 2, d) + 1$, and $d_i = g(i, d) + 2$, for $i = k - 1, k$.

Since $d \leq 2^{k-2}$, $d_{k-2} = g(k - 2, d) + 1$ and $d_2 = 5$, then $d_{k-3} = g(k - 3, d)$. By Theorem 2, the highest d_i's are $d_k = n, d_{k-1} = n - 1, d_{k-2} = n - 3, d_{k-3} = n - 5$. Since $d_1 = 3$, a generator matrix of C can be written in the form (1) with $s = k - 2, a = 2$, where G_{k-2} generates an $[n - 3 = g(k - 2, d) + 1, k - 2, d]$ code C_{k-2}. The code C_{k-2} generated by the first $k - 2$ rows has length $n - 3 = g(k - 2, d) + 1$, and according to Theorem 1 satisfies the CC. From $d_{k-3} = g(k - 3, d)$, it follows that the weight hierarchy of C_{k-2} coincides with the first $k - 2$ elements of the weight hierarchy of C, completing the proof.

Definition 3. Let c be a nonzero codeword of C and G a generator matrix for C, with c as first row. The code generated by the restriction of G to the columns in which c has zero coordinates is called the residual code of C with respect to c and denoted by $\text{Res}(C, c)$.

Theorem 3. A necessary and sufficient condition for an $[n = g(k, d) + 2, k, d]$ code C with weight hierarchy $\{d_1, d_2, \ldots, d_k\}$ to satisfy the chain condition is that there exists an $[n - d, k - 1, d'_1 = d_2 - d]$ code $C' = \text{Res}(C, c)$ with weight hierarchy $d'_1, d'_2 = d_3 - d, \ldots, d'_{k-1} = d_k - d$ which satisfies the CC.
PROOF. Let C be a code as described in the theorem and satisfies the CC. W.l.o.g. its generator matrix G can be written in the form (1) in such a way that its rows display the chain of subcodes of Definition 1. Let c be the first row in G. Now, we should prove that $C' = \text{Res}(C, c)$ satisfies the CC.

Since C is a code with length n above the Griesmer bound, there are integers $0 < m < p < k$ such that $d_1 = d, d_2 = g(2, d), \ldots, d_m = g(m, d), d_{m+1} = g(m+1, d) + 1, d_{p+1} = g(p+1, d) + 2, \ldots, d_k$. Now, we prove that $m \neq p$. Suppose that there exists a code C with parameters as described in the theorem and an integer s such that $0 < s < k$, $B_j = 0, j = 1, 2, \ldots, k - s - 2$ and $B_k-s-1 > 0$, with furthermore $d_i = g(i, d)$ for $1 \leq i \leq s$, $d_i = g(i, d) + 2$ for $s + 1 \leq i \leq k$. In other words, suppose that $l = p = s$. Assuming w.l.o.g. that a codeword of C' has for support the last $k - s$ positions. Then a generator matrix of C can be written in the form (1) where G_s generate a subcode of length $n - (k - s)$ and dimension s and $n = 3$.

The last $k - s - 2$ columns in (1) are linear independent. The second column after $G_s, (h_2)$, is a linear combination of all $k - s - 2$ columns on its right since $B_k - s - 1 > 0$. The first column after C_s differs from h_2 by the projectivity assumption. Therefore, it can be a linear combination of at most $k - s - 3$ columns chosen among the last $k - s - 2$. This contradicts the assumption that $B_j = 0, j = 1, 2, \ldots, k - s - 2$. Hence, $m \neq p$.

Let us calculate d_{i-1}' and d_i': $d_{i-1}' = d_l - d = g(l - 1, d'_1), d_i' = d_{i+1} - d = g(l, d'_1) + 1$. The same relations are valid between d_p, d_{p-1}' and d_p+1, d_p'. Therefore, C' has weight hierarchy $d_1' = d_2 - d, d_2' = d_3 - d, \ldots, d_{k-1}' = d_k - d$ and satisfies the CC.

Conversely, let C be an $[n = g(k, d) + 2, k, d]$ code with weight hierarchy $\{d_1 = d, d_2, \ldots, d_k\}$ and such that there exists an $[n - d, k - 1, d'_1 = d_2 - d]$ code $C' = \text{Res}(C, c)$ with weight hierarchy $\{d_1', d_2' = d_3 - d, \ldots, d_{k-1}' = d_k - d\}$ satisfying the CC. From the definition of a residual code, it follows that C satisfies the CC.

PROPOSITION 1. If C is an $[n = g(k, d) + 2, k, d \leq 2^{k-l+1}]$ code with $d_1^l = l \geq 3$ containing an $[n - l, k - l + 1, d]$ subcode, then C satisfies the CC.

PROOF. Since C is projective, its generator matrix can be written in the form (1) where G_s spans an $[n - l, k - l + 1, d]$ code C_{k-l+1}.

From Theorem 1, it follows that C_{k-l+1} code satisfies the CC because $n - l = g(k, d) + 2 - l = g(k-l+1, d) + 1$.

3. CODES AND THE TWO-WAY CHAIN CONDITION

Delsarte [5] has shown that the weights of a two-weight code C are of the form

$$w_1 = u2^t, \quad w_2 = (u + 1)2^t$$

for suitable integers u and t, $u \geq 1, t \geq 0$.

According to Klove [6], if a binary linear code C satisfies the TCC, then it contains two codewords with minimum weight and disjoint supports. Thus, $w_2 = 2w_1$. Using equation (2), we get $(u + 1)2^t = 2u2^t$, i.e., $u = 1$, proving the following lemma.

LEMMA 2. If C is a two-weight code which satisfies the TCC, then its weights are of the form $w_1 = 2^t, w_2 = 2^{t+1}, t \geq 0$.

PROPOSITION 2. If C is an $[n, k, 2^t]$ two-weight code with $t = k - 1 + j, j \geq 0$, which satisfies the TCC, then $n \geq 2^t + 2^j$.

PROOF. By Griesmer bound $g(k, 2^t) = \sum_{i=0}^{k-1} \binom{2^t}{2^i} = 2^{t+1} - 2^j$, if $t = k - 1 + j$. But we know that $n \geq w_2 = 2^{t+1}$. ■
LEMMA 3. If \(C \) is a self-complementary two-weight code, then it satisfies the TCC.

PROOF. Let \(C[n, k, 2^t] \) be such a code, with generator matrix \(G \). One has \(w_1 = 2^t, w_2 = 2^{t+1} = n \), since the code is self-complementary.

W.l.o.g. assume that the first row of \(G \) has support in the first \(2^t \) positions; call it \(c_1 \). Since \(n = 2^{t+1} \), its complement \(c_1^t \) has its support in the last \(2^t \) positions.

Let \(c_2 \) be any codeword not in \(\{c_1, c_1^t, 1\} \). Since wt\((c_1 + c_2) = 2^t \), we get \(d_2 = 3.2^{t-1} - 1 \) and \(d_2 - d_1 = 2^{t-1} \). Consider the union of the supports of \(c_1 \) and \(c_2 \) \(u_s(c_1, c_2) \) where wt\((c_1) = wt(c_1^t) = wt(c_1 + c_2) = 2^t \). Therefore, \(u(c_1, c_2) = 3.2^{t-1} - 1 \). Continuing in the same way, we see that \(u_s(c_1, c_2, c_3) = u_s(c_1^t, c_2, c_3) \) and so on. Hence, \(C \) satisfies the TCC.

PROPOSITION 3. MacDonald codes \([2^k - 2^u + 1, k, 2^k - 2^u] \) satisfy the TCC only for \(u = k - 2 \).

PROOF. MacDonald codes \([2^k - 2^u + 1, k, 2^k - 2^u] \) are two-weight codes with \(w_1 = 2^k - 2^u \) and \(w_2 = 2^{k-1} \). By Lemmas 2 and 3, we conclude that these codes satisfy the TCC only for \(u = k - 2 \).

LEMMA 4. A necessary condition for a code \(C \) to satisfy the two-way chain condition is that \(B_1 \geq 2 \), where \(d_1^l = l \geq 3 \).

PROOF. By Definition 2 (now we need only the left chain of subcodes of \(C \)) and the fact that \(C \) is projective, its generator matrix can be written written in the form \(\begin{array}{c} \end{array} \) with \(s = k - l + 1, a = 2, G_{k-l+1} \) spans the \([n - l - 1, k - l + 1, d + 1, k - l - 1, d] \) code \(C_{k-l+1} \). In other words, \(B_1 \geq 1 \). From the existence of the right chain in Definition 2, we conclude that \(B_1 \geq 2 \).

PROPOSITION 4. Subcodes of the extended \([24, 12, 8] \) Golay code with parameters \([24-p, 12-p, 8], 1 \leq p \leq 6 \) do not satisfy the TCC.

PROOF. All codes described in Proposition 4 are enumerated in [7].

By [7], there are exactly two \([18, 6, 8] \) codes. The first one has weight distribution

\[
A_0 = 1, \quad A_8 = 45, \quad A_{12} = 18.
\]

There is no codeword of weight 16, hence by Lemma 5, the code does not satisfy the TCC. The second one has \(B_2 = 1 \), thus does not satisfy the TCC by Lemma 6. Let \(C \) be a \([19, 7, 8] \) code.

If \(C \) satisfies the TCC, there must exist three codewords as follows:

\[
1111111100000000000 \\
0000011111110000000 \\
0000000000011111111.
\]

To see this, note that [6] for the TCC to hold, we need two codewords with minimum weight and disjoint supports; for the left chain, we need a two-dimensional subcode with weight hierarchy 8,12. They lead to a codeword of weight 14, which does not belong to the code since by [7], the unique \([19, 7, 8] \) code has weight distribution

\[
A_0 = 1, \quad A_8 = 78, \quad A_{12} = 48, \quad A_{16} = 1.
\]

Therefore, \(C \) does not not satisfy the TCC. Similar considerations complete the proof for the other five codes of lengths 20,21,22,23, and 24, respectively.

REFERENCES

