Géraldine Gentric

Géraldine Gentric
Institut Curie · Stress and Cancer Lab

PhD

About

26
Publications
3,157
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,264
Citations
Citations since 2016
19 Research Items
1165 Citations
2016201720182019202020212022050100150200250300
2016201720182019202020212022050100150200250300
2016201720182019202020212022050100150200250300
2016201720182019202020212022050100150200250300
Introduction

Publications

Publications (26)
Article
Full-text available
SF3B1 mutations are recurrent in cancer and result in aberrant splicing of a previously defined set of genes. Here, we investigated the fate of aberrant transcripts induced by mutant SF3B1 and the related functional consequences. We first demonstrate that mutant SF3B1 does not alter global nascent protein synthesis, suggesting target-dependent cons...
Article
Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell l...
Article
Full-text available
During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particula...
Article
Full-text available
A subset of cancer-associated fibroblasts (FAP+/CAF-S1) mediates immunosuppression in breast cancers, but its heterogeneity and its impact on immunotherapy response remain unknown. Here, we identify 8 CAF-S1 clusters by analyzing more than 19,000 single CAF-S1 fibroblasts from breast cancer. We validate the five most abundant clusters by flow cytom...
Article
Full-text available
Objectives Polyploidy is a fascinating characteristic of liver parenchyma. Hepatocyte polyploidy depends on the DNA content of each nucleus (nuclear ploidy) and the number of nuclei per cell (cellular ploidy). Which role can be assigned to polyploidy during human hepatocellular carcinoma (HCC) development is still an open question. Here, we investi...
Data
Table S2. List of Metabolic Proteins Differentially Expressed in High- and Low-OXPHOS HGSOCs, Related to Figure 1 List of proteins differentially expressed in high- and low-OXPHOS HGSOC, derived from Possemato et al. (2011) and analyzed in Figure 1. Proteins are named by uniprot and gene symbols. p values are calculated from Mann-Whitney test, adj...
Data
Table S4. List of All Detected Proteins Detected in High- and Low-OXPHOS HGSOCs from the Curie Cohort, Related to Figure 1
Data
Table S5. List of All Detected Metabolites Detected in High- and Low-OXPHOS HGSOCs from the Curie Cohort, Related to Figure 1
Article
Full-text available
High-grade serous ovarian cancer (HGSOC) remains an unmet medical challenge. Here, we unravel an unanticipated metabolic heterogeneity in HGSOC. By combining proteomic, metabolomic, and bioergenetic analyses, we identify two molecular subgroups, low- and high-OXPHOS. While low-OXPHOS exhibit a glycolytic metabolism, high-OXPHOS HGSOCs rely on oxida...
Article
Full-text available
High-grade serous ovarian cancers (HGSOC) have been subdivided into molecular subtypes. The mesenchymal HGSOC subgroup, defined by stromal-related gene signatures, is invariably associated with poor patient survival. We demonstrate that stroma exerts a key function in mesenchymal HGSOC. We highlight stromal heterogeneity in HGSOC by identifying fou...
Article
Full-text available
Significance: In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as source of ATP, constitute a growth advantage for tumors. This represents the universally known "Warburg effect...
Article
Polyploidization is one of the most dramatic changes that can occur in the genome. In the liver, physiological polyploidization events occur during both liver development and throughout adult life. Here, we determined that a pathological polyploidization takes place in nonalcoholic fatty liver disease (NAFLD), a widespread hepatic metabolic disorde...
Article
Full-text available
Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue...
Article
AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status that contributes to restoration of energy homeostasis by slowing down ATP-consuming pathways and activating ATP-producing pathways. Unexpectedly, in different system, AMPK is also required for proper cell division. In the current study, we evaluated...
Article
Full-text available
Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at t...
Article
Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago, and it is now recognized that polyploid cells form in many eukaryotes under a wide variety of circumstances. Alth...

Network

Cited By