Density results on floating-point invertible numbers

G. Hanrota,*, J. Rivatb, G. Tenenbaumb, P. Zimmermanna

aINRIA Lorraine, Technopôle de Nancy-Brabois, 615 rue du Jardin Botanique, F-54602 Villers-lès-Nancy Cedex, France

bInstitut Élie Cartan, Université Henri Poincaré, B.P. 239, F-54506 Vandœuvre-lès-Nancy, France

Received 5 January 2001; received in revised form 18 April 2001; accepted 5 December 2001

Abstract

Let F_k denote the k-bit mantissa floating-point (FP) numbers. We prove a conjecture of Muller according to which the proportion of numbers in F_k with no FP-reciprocal (for rounding to the nearest element) approaches $\frac{1}{2} - \frac{3}{2}\log_2\frac{3}{2} \approx 0.06847689$ as $k \to \infty$. We investigate a similar question for the inverse square root.

Keywords: Floating-point number; Reciprocal; Inverse square root

1. Introduction

For integer $k \geq 3$, we consider the set F_k of exponent-unbounded, k-bit mantissa, binary floating-point (FP) numbers, viz.

$$F_k := \{ m2^e : m, e \in \mathbb{Z}, \ 2^{k-1} \leq m < 2^k \} \cup \{0\}.$$

The result of an arithmetic operation with input values in F_k does not necessarily belong to F_k. Therefore, it needs to be rounded. The IEEE-754 standard defines four different rounding modes. In this article, we only consider rounding real numbers x to their nearest element in F_k, noted $x_{(k)}$. In case x is the exact mean of two consecutive elements of F_k, $x_{(k)}$ is defined as the neighbour with even m. In particular, we have $x_{(k)} = 1$ if, and only if, $1 - 2^{-k-1} \leq x < 1 + 2^{-k}$.

* Corresponding author.

E-mail addresses: guillaume.hanrot@loria.fr (G. Hanrot), rivat@iecn.u-nancy.fr (J. Rivat),
tenenb@iecn.u-nancy.fr (G. Tenenbaum), paul.zimmermann@loria.fr (P. Zimmermann).

0304-3975/02/$-$see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0304-3975(02)00222-0
We say that \(x \in F_k \) admits an **FP-reciprocal** if there exists \(y \in F_k \) such that \((xy)_{(k)} = 1\). One might expect that any \(x \in F_k \) admits exactly one FP-reciprocal. However, Muller showed in [4] that some elements of \(F_k \) have no FP-reciprocal (as \(\frac{3}{2} \) in \(F_6 \)), while others have two—as \(\frac{3}{2} \) in \(F_5 \), which admits \(\frac{1}{2} \) and \(\frac{1}{3} \) as FP-reciprocals. There cannot be more than two FP-reciprocals. Muller conjectures further that the proportion of numbers in \(F_k \) without an FP-reciprocal converges to \(\frac{1}{2} - \frac{3}{2} \log \frac{4}{3} \) as \(k \) tends to infinity. We prove this conjecture in a quantitative way.

Theorem 1. For \(r = 0, 1, 2 \), let \(\gamma_r(k) \) denote the number of \(x \in F_k \cap [1, 2[\) having exactly \(r \) FP-reciprocals. Then

\[
\gamma_0(k)/2^{k-1} = \frac{1}{2} - \frac{3}{2} \log \frac{4}{3} + O(2^{-k/3}) = 0.0684768917 \ldots + O(2^{-k/3}),
\]

\[
\gamma_1(k)/2^{k-1} = 1 - \frac{3}{2} \log \frac{9}{8} + O(2^{-k/3}) = 0.8233254464 \ldots + O(2^{-k/3}),
\]

\[
\gamma_2(k)/2^{k-1} = -\frac{1}{2} + \frac{3}{2} \log \frac{3}{2} + O(2^{-k/3}) = 0.1081976622 \ldots + O(2^{-k/3}).
\]

Muller also considered the problem of finding, for given \(x \) and \(z \) in \(F_k \), an element \(y \in F_k \) such that \((xy)_{(k)} = z\). This is solved by Theorem 1 when \(z \) is a power of 2, and our argument can easily be adapted to handle the general case.

Our proof of Theorem 1 relies on Lemma 1 below, which is also the key argument for the modern proof of Voronoi’s formula [12] on the divisor problem, viz.

\[
\sum_{n \leq x} \tau(n) = x \log x + (2\gamma - 1)x + O(x^{1/3} \log x),
\]

where \(\tau(n) \) denotes the number of divisors of \(n \) and \(\gamma \) is Euler’s constant.

While Theorem 1 is hence, in some sense, a consequence of Voronoi’s formula, our method extends to other problems of similar type. Lemmas 2 and 3 below are useful in many situations, and certainly deserve to be known outside number theory.

We say that a number \(x \in F_k \) admits an **FP-inverse square root** if there exists \(y \in F_k \) such that \((xy^2)_{(k)} = 1\). Such a \(y \) does not always exist: \(x = \frac{3}{2} \in F_3 \) has no FP-inverse square root in \(F_3 \)—the two numbers of \(F_3 \) around \(1/\sqrt{x} \) are \(y_1 = \frac{3}{4} \) and \(y_2 = \frac{7}{8} \), and \((xy_1^2)_{(3)} = (\frac{27}{12})_{(3)} = \frac{7}{4} \) while \((xy_2^2)_{(3)} = \frac{7}{4} \). If \(x \) has an FP-inverse square root, then so do \(4x \) and \(x/4 \), thus we may restrict the study to \(\frac{1}{2} \leq x < 2 \). We obtain the following result.

Theorem 2. Every number of \(F_k \) admits at most one FP-inverse square root.

Theorem 3. The number \(\delta^+(k) \) of elements \(x \in F_k \cap [1, 2[\) admitting an FP-inverse square root satisfies

\[
\delta^+(k)/2^{k-1} = \frac{3\sqrt{2} - 3}{2} + O(2^{-k/3}) = 0.621320343 \ldots + O(2^{-k/3}).
\]
Theorem 4. The number $\delta^-(k)$ of elements $x \in F_k \cap [\frac{1}{2}, 1]$ admitting an FP-inverse square root satisfies

$$\delta^-(k)/2^{k-1} = \frac{3\sqrt{2} - 3}{2\sqrt{2}} + O(2^{-k/3}) = 0.4393398278 \ldots + O(2^{-k/3}).$$

2. FP-reciprocals—Proof of Theorem 1

The number $x = 1$ admits $y = 1$ as unique FP-reciprocal; $x \in F_k \cap]1, 2]$ admits an FP-reciprocal if, and only if, $1 - 2^{-k-1} \leq xy \leq 1 + 2^{-k}$ for some $y \in F_k$. Writing $x = m/2^k$, $y = n/2^k$ with $2^{k-1} < m < 2^k$, $2^{k-1} < n < 2^k$ we see that the condition on xy is equivalent to

$$2^{2k-1} - 2^{k-2} \leq mn \leq 2^{2k-1} + 2^{k-1}.$$

With $y_1 := 2^{2k-1} - 2^{k-2} - 1$, $y_2 := 2^{2k-1} + 2^{k-1}$, since $]y_1/m, y_2/m\subset [2^{k-1}, 2^k]$, we see that the number of FP-reciprocals of x equals the number of integers n in the range $]y_1/m, y_2/m\$. This quantity is exactly $\lfloor y_2/m \rfloor - \lfloor y_1/m \rfloor$.

Put $M := y_2 - y_1 = 3 \cdot 2^{k-2} + 1$, $N := 2^{k-1}$. Then $y_2/m - y_1/m \geq 1$ if, and only if, $m \leq M$, so x admits at least one FP-reciprocal when $m \leq M$ and has at most one when $m > M$. Therefore,

$$\gamma_0(k) = \sum_{M < m < 2N} \left(1 - \lfloor y_2/m \rfloor + \lfloor y_1/m \rfloor\right),$$

$$\gamma_2(k) = \sum_{N < m < M} \left(\lfloor y_2/m \rfloor - \lfloor y_1/m \rfloor - 1\right).$$

Introducing the first Bernoulli function $B_1(u) := u - \lfloor u \rfloor - \frac{1}{2}$, we obtain

$$\gamma_0(k) = 2N - M - 1 - \sum_{M < m < 2N} \frac{M}{m} + \sum_{M < m < 2N} B_1\left(\frac{y_2}{m}\right) - \sum_{M < m < 2N} B_1\left(\frac{y_1}{m}\right),$$

$$\gamma_2(k) = -M + N - 1 + \sum_{N < m < M} \frac{M}{m} - \sum_{N < m < M} B_1\left(\frac{y_2}{m}\right) + \sum_{N < m < M} B_1\left(\frac{y_1}{m}\right).$$

The sums involving B_1 will be handled by the following classical result.

Lemma 1. Let f be a real valued, twice continuously differentiable function on an interval I of length $|I| \geq 1$. Suppose that there exist $\lambda > 0$, $\alpha \geq 1$, such that

$$\lambda \leq |f''(x)| \leq \alpha \lambda \quad (x \in I).$$

Then we have

$$\sum_{n \in I} B_1(f(n)) = O(\alpha |I|^{1/3} + \lambda^{-1/2}).$$
In particular, we have, uniformly for all integers $N \geq 1$, intervals $I \subset [N, 2N]$ and real numbers $y \in [N^2, 3N^2]$,
\[\sum_{n \in I} B_1(y/n) = O(N^{2/3}). \] (3)

Applying (3) with $y = y_1$ and with $y = y_2$, we obtain
\[\gamma_0(k) = 2N - M - M \{ \log(2N/M) + O(1/M) \} + O(N^{2/3}), \]
\[\gamma_2(k) = -M + N + M \{ \log(M/N) + O(1/N) \} + O(N^{2/3}). \]

The estimates of Theorem 1 for $\gamma_0(k)$ and $\gamma_2(k)$ follow on replacing M and N by their explicit values. The result on $\gamma_1(k)$ is then a consequence of the identity
\[\gamma_0(k) + \gamma_1(k) + \gamma_2(k) = 2^{k-1}. \]

Lemma 1 is closely connected with Voronoï’s asymptotic formula [12] on the divisor problem. Indeed, an elementary computation yields that
\[\sum_{n \leq x} \tau(n) - x \log x - (2^{1/2} - 1)x = 2 \sum_{n \leq \sqrt{x}} B_1(x/n) + O(1) \quad (x \geq 1). \] (4)

Thus, Lemma 1 implies Voronoï’s formula and, conversely, all known proofs of Voronoï’s theorem, including the original proof and Vinogradov’s elementary generalization [11] provide (3). Note that estimate (3) with the slightly weaker error term $O(N^{2/3} \log N)$ formally follows from (1) and (4) when $I = [1, N], \ y = N^2$. Thus, Theorem 1 may be seen as a consequence of Voronoï’s theorem.

Van der Corput’s method [1], now a classical tool in analytic number theory, yields a simple and short proof of Lemma 1. It will enable us to provide the reader with a self-contained proof of Lemma 1.

A comprehensive study on the statistical behaviour of fractional parts of x/n and related sequences, also depending on van der Corput’s method, has been undertaken by Saffari and Vaughan [5,6,7].

2.1. Reduction to exponential sums

We write $e(u) = \exp(2i\pi u)$. The first Bernoulli function B_1 can be sharply approximated by trigonometric polynomials using the following handy result.

Lemma 2 (Vaaler [10]). For $H \in \mathbb{N}$, $h \in \mathbb{Z}$, $1 \leq |h| \leq H$, let
\[0 < b_H(h) := \pi \frac{|h|}{H + 1} \left(1 - \frac{|h|}{H + 1} \right) \cot \left(\pi \frac{|h|}{H + 1} \right) + \frac{|h|}{H + 1} < 1. \]

Then, the trigonometric polynomial
\[B_H^*(x) = -\frac{1}{2i\pi} \sum_{1 \leq |h| \leq H} b_H(h) e(hx) \]
satisfies for \(x \in \mathbb{R} \)

\[
|B_1(x) - B^*_H(x)| \leq \frac{1}{2H + 2} \sum_{|h| \leq H} \left(1 - \frac{|h|}{H + 1} \right) e(hx) = \frac{\sin^2 \pi(H + 1)x}{2(H + 1)^2 \sin^2 \pi x}.
\]

Proof. For \(x \notin \mathbb{Z} \) this is inequality (7.14) of Vaaler [10]—see also [2], Theorem A.6. For \(x \in \mathbb{Z} \), both sides are equal to \(\frac{1}{2} \), so the result remains true. \(\square \)

We now prove Lemma 1. We note at the outset that we may assume \(\lambda \leq 1 \) since the result is otherwise trivial. Applying Lemma 2 to the left-hand side of (2), we get

\[
\left| \sum_{n \in I} B_1(f(n)) \right| \leq \frac{|I|}{2H + 2} + \sum_{1 \leq |h| \leq H} \left(\frac{1}{2\pi|h|} + \frac{1}{2H + 2} \right) \left| \sum_{n \in I} e(hf(n)) \right|
\]

\[
\leq \frac{|I|}{2H} + \sum_{1 \leq |h| \leq H} \frac{2}{h} \left| \sum_{n \in I} e(hf(n)) \right|.
\]

We note that this upper bound, with possibly other numerical constants, could also be formally deduced from the classical Erdős–Turán inequality (see, e.g. [3], p. 112 and 114).

The exponential sum on the right-hand side above may be handled by the following basic result in van der Corput’s theory.

Lemma 3 (van der Corput [1]). *Under the assumptions of Lemma 1, we have

\[
\sum_{n \in I} e(f(n)) = O(\alpha |I| \lambda^{1/2} + \lambda^{-1/2}).
\]

Proof. See, e.g., Theorem 5.9 of [9], Theorem 2.2 of [2], or Théorème I.4.5, p. 96 of [8]. \(\square \)

We derive from Lemma 3 that

\[
\sum_{1 \leq h \leq H} \frac{1}{h} \left| \sum_{n \in I} e(hf(n)) \right| = \sum_{1 \leq h \leq H} \frac{1}{h} O(\alpha |I| \sqrt{\lambda h} + \sqrt{1/\lambda h})
\]

\[
= O(\alpha |I| \sqrt{\lambda H} + \sqrt{1/\lambda})
\]

and so

\[
\left| \sum_{n \in I} B_1(f(n)) \right| = O \left(\frac{|I|}{H} + \alpha |I| \sqrt{\lambda H} + \sqrt{1/\lambda} \right).
\]

Selecting \(H = \lceil \lambda^{-1/3} \rceil \), we obtain the required estimate.
3. FP-inverse square roots

As noticed above, we may assume without loss of generality that \(\frac{1}{2} \leq x < 2 \). We have \((xy^2)_k = 1 \) if, and only if, \(1 - 2^{-k-1} \leq xy^2 \leq 1 + 2^{-k} \).

The number \(x = 1 \) admits \(y = 1 \) as unique FP-inverse square root. Uniqueness follows from the inequalities

\[
1 - 2^{-k-1} < \sqrt{1 - 2^{-k-1}} \leq y \leq \sqrt{1 + 2^{-k}} < 1 + 2^{-k}.
\]

Conversely, \(x = 1 \) is the only number in \(F_k \) having \(y = 1 \) as FP-inverse square root.

Let \(x \in F_k \cap [1, 2[\) and assume that \(x \) admits \(y \) as an FP-inverse square root. We write \(x = \frac{m}{2^{k-1}} \) and \(y = \frac{n}{2^k} \) with \(2^{k-1} \leq m, \ n < 2^k \). We have

\[
y_0 \leq mn^2 \leq y_2
\]

with \(N := 2^{k-1} \), \(y_0 := 4N^3 - N^2 \), \(y_2 := 4N^3 + 2N^2 \). Arguing as before, we obtain that the number of FP-inverse square roots of \(x \) is the number of integers in the interval

\[
\left[\sqrt{y_0/m}, \sqrt{y_2/m} \right]. \quad (5)
\]

Similarly, for \(x \in F_k \cap [\frac{1}{2}, 1[\) we write \(x = \frac{m}{2^k} \) with \(2^{k-1} \leq m < 2^k \) and conclude that the number of FP-inverse square roots of \(x \) is the number of integers in the interval

\[
\left[\sqrt{y_0/(2m)}, \sqrt{y_2/(2m)} \right]. \quad (6)
\]

Proof of Theorem 2. It suffices to show that both intervals above have length < 1 and hence contain each at most one integer. The length of interval (6) is smaller than that of interval (5) by a factor \(1/\sqrt{2} \). The length of interval (5) does not exceed

\[
\frac{y_2 - y_0}{2\sqrt{my_0}} \leq \frac{3N^2}{2\sqrt{3mN^3}} = \frac{\sqrt{3}}{2} \frac{\sqrt{N}}{m} < 1
\]

since \(m \geq N \). \(\Box \)

Proof of Theorem 3. Retaining the above notation, and putting \(y_1 := 4N^3 - N^2 - 1 \), we may assert that \(\lfloor \sqrt{y_2/m} \rfloor - \lfloor \sqrt{y_1/m} \rfloor \) is 1 or 0 according to whether \(m/2^{k-1} \) has or not an FP-inverse square root. Thus

\[
\delta^+(k) = \sum_{N \leq m < 2N} \left(\lfloor \sqrt{y_2/m} \rfloor - \lfloor \sqrt{y_1/m} \rfloor \right)
\]

\[
= \sum_{N \leq m < 2N} \left(\sqrt{y_2/m} - \sqrt{y_1/m} \right) - \sum_{N \leq m < 2N} \{ B_1(\sqrt{y_2/m}) - B_1(\sqrt{y_1/m}) \}.
\]

Let us call the first of the above two sums the ***main term***, and the second one the ***remainder term***. We now turn to estimates for those two sums.
By the mean value theorem, we see that the main term is
\[
\sum_{N \leq m < 2N} \frac{1}{\sqrt{m}} \left\{ \frac{3N^{1/2}}{4} + O \left(\frac{1}{\sqrt{N}} \right) \right\} = \frac{3\sqrt{2}}{2} - \frac{3}{2} N + O(1).
\] (7)

To estimate the remainder term, we apply Lemma 1 with \(f(x) := \sqrt{y/x} \). We obtain that, uniformly for all integers \(N \geq 1 \), all intervals \(I \subset [N, 2N] \) and all real numbers \(y \in [N^3, 6N^3] \), we have
\[
\sum_{n \in I} B_1(\sqrt{y/n}) = O(N^{2/3}).
\] (8)

This is plainly sufficient. \(\square \)

Proof of Theorem 4. We argue exactly as in the proof of Theorem 3, except that we deal with interval (6) instead of interval (5), and so the main term is divided by \(\sqrt{2} \). \(\square \)

Acknowledgements

The authors take pleasure in thanking J.-M. Muller for his interest in, and some suggestions on, the present work.

References