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Abstract

Aggressive pituitary tumors are rare but difficult to manage, as
there is no effective chemotherapy to restrict their growth and
cause their shrinkage. Within these tumors, growth-promoting
cascades, like thePI3K/mTORpathway, appear tobe activated.We
tested the efficacy of two inhibitors of this pathway,NVP-BKM120
(Buparlisib; pan-PI3K) and NVP-BEZ235 (dual PI3K/mTOR),
both in vitro on immortalized pituitary tumor cells (GH3) and
onprimary cell cultures of humanpituitary tumors and in vivoona
rat model of prolactin (PRL) tumors (SMtTW3). In vitro, NVP-
BEZ235 had a potent apoptotic and cytostatic effect that was
characterized by decreased cyclin D/E and Cdk4/2 protein levels
and subsequent accumulation of cells in G1. In vivo, the effect was

transient, with a decrease in mitotic index and increase in apo-
ptosis; long-term treatment had no significant inhibitory effect on
tumor growth. In contrast, while NVP-BKM120 had little
effect in vitro, it dramatically limited tumor growth in vivo.
Increased Akt phosphorylation observed only in the NVP-
BEZ235–treated tumors may explain the differential response to
the two inhibitors. Primary cell cultures of human PRL pituitary
tumors responded to NVP-BEZ235 with reduced cell viability
and decreased hormone secretion, whereas NVP-BKM120 had
little effect. Altogether, these results show a potential for
PI3K inhibitors in themanagement of aggressive pituitary tumors.
Mol Cancer Ther; 15(6); 1–10. �2016 AACR.

Introduction
Aggressive pituitary tumors and carcinomas have to date shown

persistent resistance to hormonal therapy with dopamine ago-
nists or somatostatin analogs and as such represent a therapeutic
challenge (1). Although conventional chemotherapies are largely
ineffective (2, 3), recent case reports using temozolomide, an oral
alkylating agent used in the management of glioblastoma, have
given some hope, especially at early stages (4–6). However, about
60%of the published cases demonstrated only an initial response
to temozolomide therapy (5, 7) with up to 25% of these patients

becoming resistant to temozolomide during follow-up (5, 7–9).
Because temozolomide treatment is not effective for all pituitary
carcinomas or aggressive tumors, the development of new ther-
apeutic options is necessary.

The PI3K/Akt/mTOR pathway is constitutively activated in
human tumors (10) and is a key regulator of tumor cell growth,
proliferation, and apoptosis. This pathway is overexpressed
and/or activated in pituitary tumors (11, 12), suggesting that
pituitary adenomas would be sensitive to treatment with mTOR
inhibitors. Treatment with the allosteric mTOR inhibitor ever-
olimus decreased viability among pituitary tumor cell lines (13)
and primary cell cultures of human nonfunctioning pituitary
tumors (14), indicating mTOR inhibition as a promising anti-
proliferative therapeutic option for aggressive pituitary tumors.
However, mTOR inhibitors fail to induce a response in most
human pituitary tumors in vitro (15) and to date have had no
successful application in clinical practice (16).

Resistance to the mTOR inhibitor rapamycin is in part attrib-
uted to elimination of the negative feedback loop of the mTOR
target p70 S6K onto the PI3K pathway. In an attempt to bypass
this resistance by an upstreamblockade of the PI3K pathway (17),
PI3K inhibitors and dual PI3K/mTOR inhibitors were developed
with favorable safety profiles (18, 19). The dual PI3K/mTOR
inhibitor NVP-BEZ235 has induced G1–S cell-cycle arrest and
apoptosis in neuroendocrine tumor cell lines of various origins
(20), reduced viability and activated apoptosis among human
bronchial carcinoid tumor cells in vitro (21), and inhibited cell
viability of a rat model of pituitary adenomas in vitro (22). In
xenograft models, the pan-Class I PI3K inhibitor NVP-BKM120
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(Buparlisib) has demonstrated dose-dependent inhibition of
tumor growth in vivo (19).

The aimof our present studywas to investigate the potential use
of PI3K/Akt/mTOR pathway inhibitors in the treatment of aggres-
sive pituitary tumors.We chose prolactin (PRL)-secreting pituitary
tumors as our test model, because while most of these tumors are
easily managed with dopamine agonists, those that acquire resis-
tance constitute a large portion of all aggressive pituitary tumors
and carcinomas with a poor prognosis (5, 23). We compared the
effects of the pure PI3K inhibitor NVP-BKM120 with those of the
dual PI3K/mTOR inhibitor NVP-BEZ235 both in vitro on soma-
tolactotroph pituitary tumor GH3 cells and in vivo on a rat model
of PRL pituitary tumor, SMtTW-3 (24, 25).

Materials and Methods
Reagents

NVP-BEZ235 and NVP-BKM120 (Buparlisib) were kindly
provided by Novartis Pharma. Compounds were dissolved in
DMSO (Sigma-Aldrich) for in vitro studies. NVP-BEZ235 was
prepared in a 5% (w/v) methylcellulose solution (Colorcon),
and NVP-BKM120 in the same solution with 0.5% (v/v)
tween80 as vehicle for in vivo studies. The cell counting kit
assay (CCK-8) was purchased from Sigma. The Cycle Test Plus
DNA reagent Kit and FITC Annexin V Apoptosis detection kit
were purchased from BD Biosciences. Primary antibodies
against mTOR and p-mTOR (Ser2448; Millipore); Akt, p-Akt-
Ser473, S6, p-S6-Ser235/236, p-Rb-Ser780, PARP, cleaved
PARP (cl-PARP); cleaved caspase-3 (cl-caspase-3); p-p44/42
MAPK (Thr202/Tyr204); p44/42 MAPK, PTEN; and b-actin
were made in rabbit (Cell Signaling Technology). Primary
antibodies against cyclin D3, Cdk4 (Cell Signaling Technolo-
gy), cyclin E (Santa Cruz Biotechnology), and Cdk2 (BD Trans-
duction laboratories) were made in mouse. Anti-mouse and
anti-rabbit horseradish peroxidase–conjugated secondary anti-
bodies were used (purchased from Cell Signaling Technology.

Cell line and culture conditions
GH3 cell lines obtained from the ATCC were a kind gift from

Fabienne Rajas (INSERM U855) in 2009.The cells were authen-
ticated by measuring PRL and GH levels in culture media just
before our experiments (February 2014). Regular PCR tests were
performed to ensure the GH3 cell lines remained mycoplasma
free. GH3 cells were cultured in DMEM supplemented with 10%
(v/v) FBS, 2% (v/v) L-glutamine 200 mmol/L, and 2% (v/v)
penicillin (10.000 U/mL)–streptomycin (10.000 mg/mL; Life
Technologies) at 37�C and 5% CO2.

SMtTW tumor model
The rats used in the experiments were 2-month-old female

Wistar/Furth WF/Ico inbred strain (Charles River Laboratories).
All rats were treated according to guidelinesmeeting French Ethics
Committee approval (agreement n�BH2011-37).

The SMtTW lineage used was one of four generated in our
laboratory since 1985 from spontaneous pituitary tumors of
Wistar/Furth rats. Themain characteristics of the strains produced
and the grafting procedure for their generation have previously
been described in detail (25). Briefly, from each spontaneous
tumor, a thin piece (2 � 2 mm) was slipped under the kidney
capsule of female consanguineous rats (heterotopic and allogenic
graft) and produced a tumor. Each lineage was maintained by

serial grafts provided from these tumors growing under the kidney
capsule. In this study, we used the SMtTW3 tumor lineage that
presented a PRL phenotype with high plasma PRL levels (1–150
mg/mL) and a low secretion ofGH (0.4 mg/mL) that grows rapidly,
is invasive and sometimes necrotic and metastatic, and shares
common characteristics and gene expression profile with the
human aggressive prolactinomas (23, 25).

Four weeks after grafting, tumor-bearing rats were divided into
two groups of comparable tumor size distribution before being
administered via oral gavage 5 days a week, a vehicle (control), or
one of either the PI3K inhibitor NVP-BKM120 or the dual PI3K/
mTOR NVP-BEZ235. NVP-BEZ235 was administered at 20 mg/
kg/d for 3 (control, n ¼ 10; NVP-BEZ235, n ¼ 13) or 6 weeks
(control, n¼ 9; NVP-BEZ235, n¼ 13). NVP-BKM120 was admin-
istered at a reduced dose of 5 mg/kg/d (n ¼ 12) for 4 weeks only
and compared with control (n ¼ 8). This reduced dose and
duration were due to poor tolerance, and hyperglycemia induced
by high doses initially tested. Animal weight, blood glucose
(Freestyle blood glucose monitor; Abbott Diabetes Care), and
plasma PRL levels were regularly measured during treatment and
at autopsy. Tumors were removed, separated from kidney tissue,
measured, weighed, and prepared immediately according to
different analytical techniques.

Cell viability
The effect of NVP-BEZ235 and NVP-BKM120 on cell viability

was established using the CCK-8 assay according to the procedure
recommended by the supplier. Cells were plated in 96-well plates
at a concentration of 5 � 104 cells per 100 mL of medium/well,
incubated for 24 hours with each drug at 1, 10, 100, and 250
nmol/L. Controls were performed in DMSO with the same dilu-
tions. Absorbance was measured at 450 nm using a multiplate
reader (Multiskan Ex; ThermoFisher). Three replicate wells were
used for each analysis, and at least three independent experiments
were conducted.

Flow cytometry
After 24hours of treatment, all cells were collected and assigned

to different analytical procedures. For cell viability analysis, 1 mL
propidium iodide (BD Biosciences) was added to cells just before
data acquisition on theflow cytometer (Canto II; BDBiosciences).
For cell-cycle analysis, the Test Plus DNA reagent Kit was used
according to the recommended procedure. For apoptosis analysis,
the FITC Annexin V Apoptosis detection Kit was used according to
the recommended procedures, and immunolabeling was per-
formed on 4% (v/v) paraformaldehyde-fixed GH3 cells with
anticleaved caspase-3 rabbit antibody and Alexa488-labeled goat
anti-rabbit antibody. All experiments were repeated three times to
ensure reproducibility. All data concerning viability and apopto-
sis were analyzed using the DIVA software, and those relating to
the cell cycle were evaluated using the ModFit software.

Western blot
Pelleted GH3 cells or tumor fragments were extracted by

sonication in lysis buffer complemented with phosphatase and
protease inhibitors (Roche Diagnostics; ref. 26). Protein concen-
trationswere assessed byfluorometry using theQuant-iT AssayKit
(Life Technologies). SDS-PAGE electrophoresis (Criterion XT
Precast Gel, 4%–12% Bis-Tris; Bio-Rad Laboratories) was then
performed using 15 mg of total proteins for GH3 cells and 12 mg
for tumors before transfer to a nitrocellulose membrane (Protan
0.45, Whatman; ThermoFisher). After blocking with TBS-T
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Figure 1.
In vitro effects of NVP-BEZ235 and NVP-BKM120 treatments on cell viability and cell cycle in GH3 cells. Treatments consisted of DMSO or of the inhibitors NVP-
BEZ235 or NVP-BKM120 at 1, 10, 100, and 250 nmol/L (A, B, C, and E) or all except 10 nmol/L (D) for 24 hours. Cell viability was measured by colorimetric assay with
the CCK-8 test (A) and by flow cytometry with propidium iodide (B). Data are expressed as a percentage of control (mean� SEM). Data were analyzed statistically
by Mann–Whitney test: �, P < 0.05; �� , P < 0.01 compared with DMSO. Cell cycle was assessed by flow cytometry (C), and S-phase data were analyzed
statistically by Mann–Whitney U test: �� , P < 0.01 compared with DMSO. Protein expression levels of phosphorylated Rb (D) were determined by Western blot
analysis. The bar graphs represent the mean and SEM. Equal protein loading was examined by detection of b-actin, and data are expressed as a percentage
of control. One representative experiment out of three independent experiments at least is shown. The expression level of G1–S cell-cycle proteinswas established by
Western blot (E) using anti-cyclin D3, -Cdk4, -cyclin E, and -Cdk2; respective levels of b-actin are shown. Representatives of two experiments are shown.
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BSA5% (w/v), membranes were incubated with specific primary
antibodies (overnight), before their incubation for 1 hour with
secondary antibodies. Detection was achieved using an enhanced
chemiluminescence system (Immobilon Western; Millipore).
Densitometric quantification of the immunoblot bands was
performed using ImageJ software.

Mitosis
For light microscopy, tumor fragments were fixed in Bouin–

Hollande, embedded in paraffin, cut into 5-mm sections, and
stained with hematoxylin–eosin. For mitotic index, mitotic cells
were counted at 400� magnification in 10 representative fields
per tumor, with an average count of 5,000 nuclei.

Figure 2.
In vitro effects of NVP-BEZ235 andNVP-BKM120 treatments on apoptosis and on the PI3K/Akt/mTOR pathway in GH3 cells. Treatments consisted of DMSOor of the
inhibitors NVP-BEZ235 or NVP-BKM120 at 1, 10, 100, and 250 nmol/L (A–C) or all except 10 nmol/L (D and E) for 24 hours. Staining of cleaved caspase-3 (A)
and Annexin V (C) was measured by flow cytometry. Data were analyzed statistically by Mann–Whitney U test, and values shown are the mean � SEM: � , P < 0.05;
�� , P < 0.01 compared with DMSO. One representative experiment out of three independent experiments at least is shown. Protein expression level of
total caspase-3 and cl-caspase-3 (B) and PARP and cl-PARP (D) was observed by Western blot analysis; respective levels of b-actin are shown. Representatives
of two experiments are shown. Expression levels and phosphorylation status of Akt, mTOR, and p-S6 were examined by Western blot analysis (E). One
representative blot out of three performed is shown for NVP-BEZ235 and out of two for NVP-BKM120.
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Human prolactinomas in primary cell culture
This study was approved by the Max-Planck-Institute ethics

committee, and informed consent was received from each patient
or from their relatives. Seven prolactinomas were included. The
tumors were removed by transphenoidal surgery, and a diagnosis
was reached according to clinical, biochemical, radiological, and
surgical findings. Postsurgical specimens were prepared as previ-
ously described (15). Cell viability, as determined by acridine
orange and ethidium bromide staining, was considered accept-
able above 80%. Cells were seeded in 96-well plates (10,000 cells
per well) and were left for 48 hours before the 24-hour treatment.
Cell proliferation was assessed using the nonradioactive colori-
metric WST-1 assay (Roche Molecular Biochemicals) according
to the manufacturer's instructions. Cells treated with DMSO
alone (in which NVP-BEZ235 and NVP-BKM120 were dissolved)
were used as a control. All treatments were carried out in
quadruplicate.

Serum PRL assay
Before and after 3- and 6-week treatments with control or NVP-

BEZ235 (20 mg/kg), or after a 4-week treatment with control or
NVP-BKM120 (5mg/kg), blood was drawn from the retro-orbital
sinus or collected at autopsy (24). Serum was collected for the
hormone assay, and PRL concentrations were measured by dou-
ble antibody radioimmunoassay with the reagents purchased at

the National Institute of Diabetes and Digestive and Kidney
Diseases (PRL rat reagents NIDDK). The intra-assay variability
was less than 10%, and the inter-assay variability was less than
12%. Results are expressed as the mean � SD.

Human PRL was determined using a radioimmunoassay from
DPCBiermann, according to themanufacturer's instructions. PRL
values were divided by the cell viability values, and data are given
in (ng/mL)/OD450 nm.

Statistical analysis
Statistical analysis was performed with GraphPad Prism 5

software. The nonparametric Mann–Whitney U test was used to
compare two groups (DMSO or control vs. treated). In vitro data
were assessed at least three times in triplicate. A P � 0.05 was
considered to be statistically significant.

Results
Effects of NVP-BEZ235 and NVP-BKM120 on GH3 cells in vitro

In GH3 cells, treatment with either NVP-BEZ235 or NVP-
BKM120 (1, 10, 100, and 250 nmol/L) for 24 hours dose-depen-
dently reduced cell viability, reaching statistical significance for
NVP-BEZ235 only. NVP-BEZ235 had a stronger inhibitory effect
on cell viability compared with NVP-BKM120 (50% vs. 23%
decrease, respectively, compared with control; P < 0.05; Fig. 1A),

Figure 3.
In vivo effects of NVP-BEZ235 and
NVP-BKM120 treatments on tumor
growth and prolactin secretion in the
SMtTW3 tumor model. Rats were
treated 5 weeks after graft placement
(A and C) with NVP-BEZ235
20 mg/kg/d, 5 days a week for 3 weeks
(Control-3, n ¼ 10; BEZ-3, n ¼ 13) or 6
weeks (Control-6, n ¼ 9 and BEZ-6,
n¼ 13) and (B andD)withNVP-BKM120
5 mg/kg/d, 5 days a week for 4 weeks
(Control-4, n ¼ 8 and BKM-4, n ¼ 12).
Tumor weights (A and B) were noted,
and different tumor sizes were
illustrated by pictures: bar, 1 cm. Serum
prolactin levels (logarithmic scale;
C and D) were assessed by
radioimunoassay before treatment
(Control-0, BEZ-0, BKM-0) and at
autopsy (Control-3, -4, -6, BEZ-3, -6,
and BKM-4). Data were analyzed
statistically by Mann–Whitney test, and
values shown are mean � SEM:
� ,P<0.05; ��� ,P<0.001 comparedwith
the corresponding control.
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using theCCK8assay. Thisdifferencewas lessprominent (17%and
11% reduction for 250 nmol/L NVP-BEZ235 and NVP-BKM120,
respectively;P<0.01 forNVP-BEZ235)using thepropidiumiodide
staining test (Fig. 1B).

NVP-BEZ235 at concentrations of 10 to 250 nmol/L dose-
dependently induced an accumulation of GH3 cells in the G0

–G1 phase, alongside a 35% decrease of those in S-phase (P < 0.01
vs. DMSO). NVP-BKM120 treatment on the other hand had
limited effect on the cell cycle (Fig. 1C). This differential
effect on the cell cycle was reflected by a reduction in Rb phos-
phorylation observed only after NVP-BEZ235 treatment at con-
centrations of 1, 100, and250nmol/L;NVP-BKM120hadnoeffect
(Fig. 1D).

Western blot for cell-cycle proteins involved in G1–S revealed a
strong reduction in Cdk2 and cyclin E protein levels in the NVP-
BEZ235–treated GH3 cells (10–250 nmol/L; Fig. 1E). NVP-
BEZ235 treatment also decreased Cdk4 and cyclin D3 protein
levels, though only at the high nanomolar range (100–250
nmol/L) with no effect at lower doses. In contrast, NVP-BKM120
had no effect on Cdk4, cyclin D3, or Cdk2 levels, although it did
suppress cyclin E (Fig. 1E).

NVP-BEZ235 at 100 to 250 nmol/L induced a significant and
dose-dependent increase in apoptosis, as shown by an increase
both in cleaved caspase-3 (P < 0.01; Fig. 2A and B) and in
Annexin V (P < 0.01; Fig. 2C), both hallmarks of apoptosis.
Furthermore, as shown in Fig. 2D, NVP-BEZ235 treatment
increased cleaved PARP levels. NVP-BKM120 on the other hand
had no significant effect on Annexin V, cleaved caspase-3, or
cleaved PARP (Fig. 2).

Concerning the PI3K/Akt/mTOR pathway, NVP-BEZ235 treat-
ment reduced levels of Akt and pS6 phosphorylation as well as
mTORphosphorylationat Ser2448(mediatedbyp70S6K; ref. 27)
in a dose-dependent manner (Fig. 2E). Although NVP-BKM120
decreased Akt phosphorylation, it had no effect on pS6 phos-
phorylation and mTOR. Neither treatment affected total protein
level at any dose.

Effect of NVP-BEZ235 and NVP-BKM120 on SMtTW3
tumors in vivo

At the doses used, neither inhibitor affected rat survival. How-
ever, although the growth curve of the NVP-BEZ235 group of rats
was similar to that of the control group (243 g vs. 262.4 g at 6
weeks; Supplementary Fig. S1A and S1B), the NVP-BKM120
group showed a reduction in body weight after 4 weeks of
treatment (183.7 g vs. 238.7 g, P < 0.001; Supplementary
Fig. S2A). Moreover, blood glucose concentrations transiently
increased after initiation of NVP-BKM120 treatment and then
normalized for the remaining 4 weeks (132.833mg/dl vs. 73.375
mg/dl, NS; Supplementary Fig. S2B).

In vivo, NVP-BEZ235 treatment showed a weak inhibitory
effect on tumor growth that reached statistical significance
after 6 weeks (10.1 � 1.3 g vs. 11.8 � 1.8 g at 3 weeks and
36.6 � 5 g vs. 49.4 � 3.9, at 6 weeks, P < 0.05; Fig. 3A). In
contrast, NVP-BKM120 treatment induced a strong reduction
of tumor weight relative to the control group (5.4 � 0.5 g vs.
30.6 � 1.9 g, P < 0.001) after 4 weeks of treatment, at which
point the treatment was terminated in view of the endpoint

Figure 4.
In vivo effects of NVP-BEZ235 and NVP-
BKM120 treatments on cell proliferation
and apoptosis in the SMtTW3 tumor
model. Rats were treated 5 weeks after
graft placement, (A and C) with NVP-
BEZ235 20 mg/kg/d, 5 days a week, for
3 weeks (Control-3, n ¼ 10 and BEZ-3,
n¼ 13) or 6 weeks (Control-6, n¼ 9 and
BEZ-6, n ¼ 13) and (B and D) with NVP-
BKM120 5 mg/kg/d, 5 days a week, for
4 weeks (Control-4, n ¼ 8 and BKM-4,
n¼ 12). Mitoses (A andB)were assessed
on hematoxylin–eosin staining andwere
counted at 400x magnification in
10 fields per tumor. Level of cl-PARP
protein expression (C and D) was
determined by Western blot analysis.
The bar graphs represent the mean and
SEM. Equal protein loading was
examined by detection of b-actin, and
data are expressed as a percentage of
control. Data were analyzed statistically
by Mann–Whitney test, and values
shown are the mean � SEM:
� , P < 0.05; ��� , P < 0.001 compared with
corresponding control.
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having been reached (Fig. 3B). This reduction was accompa-
nied by significantly reduced PRL levels in the NVP-BKM120–
treated group compared with the control group (2,007 �
231 mg/L vs. 5,666 � 1,141 mg/L, P < 0.001) at 4 weeks (Fig.
3D). In contrast, PRL concentrations remained similar between
the NVP-BEZ235 group and control group after 3 and 6 weeks
of treatment (17,530 � 3,600 mg/L vs. 23,850 � 6,438 mg/L at
3 weeks and 33,900 � 12,780 mg/L vs. 31,760 � 14,090 mg/L at
6 weeks; Fig. 3C).

Although both treatments significantly reduced the tumor
mitotic index compared with controls (NVP-BEZ235: 37 � 3
vs. 106 � 13, P < 0.001; Fig. 4A and for NVP-BKM120: 29 � 6
vs. 58 � 7, P < 0.05; Fig. 4B), this effect was only transient with
NVP-BEZ235. Indeed, the significant effect of NVP-BEZ235
was lost after 6 weeks (43 � 7 vs. 58 � 12). Moreover,
although both treatments significantly increased cleaved PARP
levels, an indicator of apoptosis, NVP-BEZ235 had only a
transient significant effect observed only after 3 weeks of
treatment (P < 0.05). This NVP-BEZ235—induced effect had
lost its significance after 6 weeks, whereas NVP-BKM120
remained potent throughout the treatment period (P <
0.05; Fig. 4C and D).

Western blot analysis revealed increased phosphorylated
Akt-Ser473 levels in the tumors derived from the NVP-
BEZ235–treated rats (6 weeks, P < 0.01), whereas phosphory-
lated S6 remained unchanged or was slightly increased in some
cases (Fig. 5A and B). In contrast, phosphorylated Akt-Ser473
levels were reduced in most NVP-BKM120–treated tumors (P <
0.01; Fig. 5C and D).

These data show that the initial efficacy of the dual PI3K/mTOR
inhibitor NVP-BEZ235 was lost during treatment, an effect that
was accompanied by an inability to decrease Akt and S6 phos-
phorylation. In contrast, the single PI3K inhibitor suppressed Akt
phosphorylation and displayed rapid and effective antitumor
efficacy.

Effects of NVP-BEZ235 and NVP-BKM120 on primary cell
cultures of human PRL tumors

To test the efficacy of the two inhibitors in human pituitary
tumors, we used primary cell cultures of PRL-secreting pituitary
tumors. NVP-BEZ235 treatment at both 10 and 100 nmol/L
significantly decreased PRL secretion (% suppression 37 � 6 and
59 � 8.7, respectively, P < 0.001; Fig. 6A) in seven human
prolactinomas. In contrast, NVP-BKM120 was effective at the
100 nmol/L concentration only (33 � 23, P < 0.05). Regarding
cell viability, only 100 nmol/L NVP-BEZ235 led to a reduction
(%suppression 38� 12, P < 0.05) with the lower doses having no
significant effect and NVP-BKM120 remaining ineffective within
this nanomolar range (Fig. 6B).

Discussion
Since the recent reclassification of endocrine pituitary tumors

(28, 29), not all of these tumors are considered as benign. Indeed,
around 10% of them are aggressive and suspected of malignancy,
and some progress to carcinomas with metastases.

Aggressive pituitary tumors that are resistant to conventional
treatments have a poor prognosis. Their management requires

Figure 5.
In vivo effects of NVP-BEZ235 and NVP-BKM120 treatments on Akt and S6 ribosomal protein phosphorylation in the SMtTW3 tumor model. Rats were treated
5 weeks after graft placement (A and B) with NVP-BEZ235 20 mg/kg/d, 5 days a week, for 6 weeks (control-6, n ¼ 7 and BEZ-6, n ¼ 10) and (C and D) with NVP-
BKM120 5 mg/kg/d, 5 days a week, for 4 weeks (control-4, n ¼ 8 and BKM-4, n ¼ 9). Each Western blot (A–C) for the phosphorylated protein was followed by
blotting for the total protein after stripping in Tris buffer, pH 2.0. Signal represents mean � SEM, calculated as phosphorylated-to-total protein ratio
(B–D) and presented as a percentage of control. a.u., arbitrary units. � , P < 0.05.
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chemotherapeutics such as temozolomide, the success rate of
which is lower than initially believed and for which long-term
outcomes are questionable (30). The identification of new ther-
apeutic options is therefore necessary (1, 31).

The PI3K/Akt/mTOR pathway is one of the most commonly
overactivated pathways in cancer and represents a promising
pharmaceutical target (32).Numerous studies havedemonstrated
links between aberrant PI3K/Akt/mTOR signaling and the path-
ogenesis of endocrine tumors (11, 12) and in particular pituitary
tumors (for review of refs. 32, 33). However, investigations into
potential therapeutic options have been mainly based on in vitro
studies on cell lines or primary cell cultures of human pituitary
tumors, whereas in vivo data remain scarce. Currently, only two
studies have used a xenograft model of GH3 cells implanted
into the flanks of nude mice (32): the first examined the effect
on tumor growth of a combined treatment consisting of nelfi-
navir and radiotherapy (34), whereas the second investigated
the combination of temozolomide and XL765 (dual PI3K/
mTOR inhibitor; ref. 35). The development of robust xenograft
models must ideally consider the tissue-specific microenviron-
ment of the tumor entities they intend to emulate. In the case of
the pituitary gland, consideration of its dense vascular network
is critical, as these vessels can be compressed during the
development of a tumor mass, ultimately providing an escape
mechanism from the inhibitory control of the hypothalamus
(36). In this respect, the kidney microenvironment in which
our SMtTW3 tumor model grows allows us to study pituitary

tumor growth in a context of rich vascularization. In addition,
we have previously demonstrated that the SMtTW3 tumor
grafted under the kidney capsule acquires characteristics of
human aggressive PRL tumors with activation of common
proliferative pathways (37).

Using the SMtTW3 allograft rat model of aggressive PRL
pituitary tumors alongside the immortalized lactosomatotroph
GH3 cells, we have shown that both the dual PI3K/mTOR
inhibitor NVP-BEZ235 and the single PI3K inhibitor NVP-
BKM120 can limit pituitary tumor growth in vitro as well as
in vivo, but to different extents. NVP-BEZ-235, but not NVP-
BKM-120, displayed potent antiproliferative action in GH3
cells, by accumulation of cells in the G1 phase. The G1–S
cell-cycle progression is governed by the cyclin-dependent
kinases Cdk2, 4, and 6 and their associated cyclins D and E.
Cyclin D-Cdk4/6 and cyclin E-Cdk2 phosphorylate Rb, which
releases E2F transcription factors to drive the expression of
genes pivotal for the transition to the S phase (38). NVP-
BEZ235 treatment at concentrations within the high nanomo-
lar range decreased Cdk4 and cyclin D3 in GH3 cells and at the
low nanomolar doses also Cdk2 and cyclin E. NVP-BKM120 on
the other hand suppressed only cyclin E, reflecting their dif-
ferent antiproliferative efficacy in vitro.

Surprisingly, our in vitro results did not reflect the in vivo
situation, as NVP-BKM120 inhibited tumor growth more effec-
tively compared with NVP-BEZ235, which had only a minimal
effect after 6 weeks of treatment. This discrepancy could be due to
the bioavailability of NVP-BEZ235 in vivo and the concentration
used to treat our rats. The dose we used (20mg/kg/day) was lower
to that used inmice (40–45mg/kg/day; refs. 39, 40) yet similar to
that previously published in rats (41). Furthermore, NVP-BEZ235
decreased the tumor mitotic index and increased levels of cleaved
PARP, indicating a tumor cell response at least at the beginning of
the treatment.

Interestingly, neither NVP-BEZ235 nor NVP-BKM120 effec-
tively suppressed SMtTW3 cell proliferation in vitro (Supple-
mentary Fig. S3), yet NVP-BKM120 potently inhibited tumor
growth in vivo. No changes in MAPK phosphorylation or PTEN
levels that could explain these findings were found for either
treatment in GH3 cells or in tumors (Supplementary Fig. S4).
This last point lends support to the antitumoral effect of NVP-
BKM120 in vivo being mediated, at least in part, through the
tumor microenvironment. The PI3K/Akt/mTOR pathway is a
major regulator of tumor metabolism, angiogenesis, and
adherence (42). Abnormal tumor vascularization has been
associated with decreased response to therapy (43), and may
have rendered the somatolactotroph tumor cells resistant to
NVP-BEZ235 treatment in vivo. SMtTW-3 tumors have been
described as hemorrhagic, indicative of their extensive vascu-
larization (44). However, similar to observations in a renal cell
carcinoma model (45), NVP-BEZ235–treated tumors showed
no macroscopic evidence of an altered vascularization. Another
explanation could be that in vivo the tumor can evolve and
acquire resistance to the chemotherapeutic treatment, a process
that cannot take place in the short period of time allowed in in
vitro culture. The finding of decreased tumor mitotic index and
increased cleaved PARP levels in tumors at the initial but not at
the later stages of treatment with NVP-BEZ235 supports this
hypothesis. Despite their different antiproliferative efficacy,
both NVP-BEZ235 and NVP-BKM120 inhibited Akt phosphor-
ylation in vitro, supporting previous evidence that suppression of

Figure 6.
Effects of NVP-BEZ235 and NVP-BKM120 on human PRL pituitary tumors in
primary cell culture. NVP-BEZ235 and NVP-BKM120 dose-response (1, 10, 100
nmol/L) on basal PRL secretion (A) and cell viability (B) from human PRL
pituitary tumors in primary cell culture (n¼ 7). For all cell culture experiments,
each PRL radioimmunoassay value was divided by cell viability counts as
determined by WST-1 at OD450 nm. Data are the mean � SEM from seven
cultures and are presented as apercentageof control. � ,P<0.05; �� ,P<0.001.
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phosphorylated Akt-Ser473 is not always accompanied by a
potent antiproliferative response (46). Contrary to that
observed in vitro, NVP-BEZ235 significantly increased Akt phos-
phorylation in our in vivomodel. Increased Akt phosphorylation
has been observed in patient biopsies after treatment with
allosteric mTOR inhibitors, and has been proposed to lead to
or be indicative of treatment resistance (47). NVP-BEZ235 was
found to act as anmTOR inhibitor in some tumor types, andmay
be the principal mechanism behind its efficacy in pituitary
tumors of somatolactotroph origin (48), such as those used in
our study GH3 cells were previously shown to effectively
respond to allosteric mTOR inhibitors (13, 15), rendering plau-
sible the susceptibility of human somatolactotroph tumors to
mTOR inhibition. Indeed, NVP-BEZ235 effectively suppressed
cell viability and PRL secretion from human PRL pituitary
tumors in vitro. NVP-BKM120 was also able to suppress PRL
synthesis, despite the lack of effect on cell viability, indicating a
role for the PI3K cascade in the regulation of PRL synthesis.

The majority of PRL pituitary tumors can be effectively man-
aged with dopamine agonists, and only 5% of patients undergo
surgery for tumor resection, mainly due to dopamine agonist
resistance. Usually these tumors are macroadenomas (i.e., >10
mm diameter) and are frequently aggressive (49). The estrogen
receptor plays a crucial role in lactotrophphysiology, and together
with factors such as the bone morphogenic factor 4 (BMP4), it
contributes toward their tumorigenesis (50). Interestingly, estra-
diol was found to block the apoptotic action of PI3K inhibitors in
breast cancer cells (51). A similar mechanism may take place in
human PRL pituitary tumors and compromise their antiprolifera-
tive response toNVP-BEZ235 andNVP-BKM120. As our rat tumor
model required the use of females, wewere not able to address the
question of gender specificity in our study.

In conclusion, our data indicate that two inhibitors of the
PI3K/Akt/mTOR pathway showed various inhibitory effects on
in vitro and in vivo growth of human and rat pituitary tumors.
Therapies targeting this pathway may therefore be of interest at

least for treating PRL-secreting aggressive pituitary tumors and
carcinomas.
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