Georgios Velentzas

Georgios Velentzas
King's College London | KCL · Department of Informatics

Master of Science

About

7
Publications
1,678
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
59
Citations

Publications

Publications (7)
Article
Full-text available
Using assistive robots for educational applications requires robots to be able to adapt their behavior specifically for each child with whom they interact.Among relevant signals, non-verbal cues such as the child’s gaze can provide the robot with important information about the child’s current engagement in the task, and whether the robot should co...
Conference Paper
Full-text available
Using robots as therapeutic or educational tools for children with autism requires robots to be able to adapt their behavior specifically for each child with whom they interact. In particular, some children may like to be looked into the eyes by the robot while some may not. Some may like a robot with an extroverted behavior while others may prefer...
Article
Full-text available
Dynamic uncontrolled human-robot interactions (HRI) require robots to be able to adapt to changes in the human’s behavior and intentions. Among relevant signals, non-verbal cues such as the human’s gaze can provide the robot with important information about the human’s current engagement in the task, and whether the robot should continue its curren...
Conference Paper
Fast adaptation to changes in the environment requires agents (animals, robots and simulated artefacts) to be able to dynamically tune an exploration-exploitation trade-off during learning. This trade-off usually determines a fixed proportion of exploitative choices (i.e. choice of the action that subjectively appears as best at a given moment) rel...
Preprint
Full-text available
Fast adaptation to changes in the environment requires both natural and artificial agents to be able to dynamically tune an exploration-exploitation trade-off during learning. This trade-off usually determines a fixed proportion of exploitative choices (i.e. choice of the action that subjectively appears as best at a given moment) relative to explo...
Conference Paper
Full-text available
Online model-free reinforcement learning (RL) methods with continuous actions are playing a prominent role when dealing with real-world applications such as Robotics. However, when confronted to non-stationary environments, these methods crucially rely on an exploration-exploitation trade-off which is rarely dynamically and automatically adjusted t...

Network

Cited By

Projects

Project (1)