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Abstract

This paper presents a critical approach to the non-intrusive load monitoring (NILM) problem, by thoroughly reviewing the exper-
imental framework of both legacy and state-of-the-art studies. Some of the most widely used NILM datasets are presented and
their characteristics, such as sampling rate and measurements availability are presented and correlated with the performance of
NILM algorithms. Feature engineering approaches are analyzed, comparing the hand-made with the automatic feature extraction
process, in terms of complexity and efficiency. The evolution of the learning approaches through time is presented, making an effort
to assess the contribution of the latest state-of-the-art deep learning models to the problem. Performance evaluation methods and
evaluation metrics are demonstrated and it is attempted to define the necessary requirements for the conduction of fair evaluation
across different methods and datasets. NILM limitations are highlighted and future research directions are suggested.
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1. Introduction

The “Net Zero by 2050” report issued by the International
Energy Agency (IEA) declares that the energy sector is respon-
sible for three quarters of total greenhouse gas emissions [1].
Moreover, the constant increase in global energy demand com-
pared to power supply, introduces severe challenges for the effi-
ciency and reliability of the traditional power grid systems. On
the path towards zero CO2 emissions by 2050, the transforma-
tion of the electrical grids plays a critical role. The increase in
computational power combined with novel modeling and simu-
lation capabilities gives the opportunity for a smooth transition
from traditional grids to the smart grid era [2]. Rapid advance-
ments in advanced metering equipment, internet of things (IoT)
devices and artificial intelligence (AI) algorithms allow the
management, monitoring and control of the distribution grid,
optimizing energy utilization and thereby saving energy [3].
Smart grid is expected to integrate assets like Distributed En-
ergy Resources (DERs), Electric Vehicles (EVs), Energy Stor-
age Systems (ESSs) and utilize intelligent services aiming to
unlock the flexibility potential that will allow the generation,
distribution and consumption of energy in a more efficient way.
Non-intrusive load monitoring (NILM) is a service that con-
tributes towards this target by estimating the consumption of a
building’s individual appliances.
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NILM, or else load disaggregation, aims to identify the op-
erational state (on/off) and the precise power consumption of
individual electrical loads, considering as input only the aggre-
gated consumption of these loads. This concept was firstly in-
troduced by Hart in 1992 [4], but it has been developed exten-
sively over the last decade, due to the progress made in the field
of machine learning and deep learning algorithms. Disaggrega-
tion algorithms are usually implemented in the residential sec-
tor, however there are also studies focused on industrial [5, 6, 7]
or shipboard applications [8, 9]. As the term non-intrusive sug-
gests, this method is implemented with minimum interruption
of the users’ privacy. Measurements are obtained only from a
single point (aggregated load), so there is no need for deploy-
ment of extra equipment that would increase the complexity and
the cost of the installation. The unique energy consumption of
each electrical appliance is often called ”load signature”. Based
on their load signatures the appliances can be grouped into the
following categories:

• Type-I: ON/OFF state. Those appliances are considered
to have only two states of operation. Lamps, toaster, boiler
and resistive loads in general belong to this category.

• Type-II: Finite State Machines (FSM). The appliances be-
longing to this category have a multiple (finite) number
of operating states. Washing machine and stove burner
are some examples of type-II appliances. They usually
have a repeating pattern of alterations over their opera-
tional states, which makes it easier to recognize their load
signature.

• Type-III: Continuously Variable Devices (CVD). They do
not have a fixed number of states, as their consumption
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varies constantly. Dimmer lights are an example of CVD
appliances. Due to their way of operation, they are consid-
ered hard to disaggregate from the total consumption.

• Type-IV: According to [10, 11], a fourth appliance type
is identified by the authors, namely permanent consumer
devices. As their name indicates, they remain active at all
times, consuming energy. TV receivers and smoke detec-
tors are some typical examples of type-IV appliances.

Having access to appliance specific data, rather than whole
house measurements, introduces a number of benefits both for
consumers and the utility companies. Starting with the con-
sumers, they are able to understand better their energy con-
sumption, as they see which appliances are more energy inten-
sive. Thus, they can make more informed decisions regard-
ing their energy habits. The majority of the consumers are not
aware of the energy they consume and do not realize their im-
pact on the environment. Increased awareness can lead to a
more rational use of their home appliances. More specifically,
consumers may select to use less their top-consuming devices
and in some cases they may also want to replace old appliances
that are not energy efficient. According to [12, 13], customers
consistently achieve energy savings when they receive appli-
ance specific feedback regarding the energy usage of their ap-
pliances. Taking it a step further, feedback could be enriched
with a set of recommendations that give the opportunity to the
customer to achieve specific energy saving goals with measur-
able rewards. Recommendations could even perform remote di-
agnostics to a household’s appliances, notifying the occupants
for unusual usage patterns of the existing appliances. Util-
ity companies could also benefit from NILM, by strengthening
their link with customers, providing a better understanding of
the usage and consumption of electric power. Discovering cer-
tain behaviors, could help utilities effectively implement mar-
ket segmentation, namely identify clusters of customers having
similar needs and demands. This way they can design more
efficient marketing strategies, or even diversify their strategies
on the basis of personalized services provision. The analysis
of historical data, may reveal patterns regarding the time of us-
age for each appliance, giving the opportunity for personalized
recommendations that fit each customer’s needs. Understand-
ing how customers are consuming power is essential for the
utilities, since more accurate day ahead or short-term load fore-
casting can be achieved. As a result, the implementation of de-
mand response (DR) strategies is facilitated. Consumers could
be given some incentives in order to constrain or time shift the
usage of some appliances, giving the opportunity to the grid op-
erators to create a more precise matching between power sup-
ply and demand. The energy savings potential deriving from
energy disaggregation, is expected to have a positive impact on
the environment. Less global energy needs means that our de-
pendence on fossil fuels is reduced, since the energy demand
can be covered at a greater percentage from RES.

In the past recent years various publications have reviewed
Energy Disaggregation. Each study, demonstrated a different
aspect of the literature. For instance, Iqbal et al. [14] presented

a critical review of the state-of-the-art residential and commer-
cial datasets. Another study [15] presented an experimental
overview of the NILM-API and performed comparisons and
evaluation of the state-of-the-art approaches. Finally, the au-
thors of [16] surveyed the application of deep neural networks
in low-frequency data. Table 1 presents several impactful re-
view publications for Non-Intrusive Load Monitoring:

Table 1: Energy Dissagregation review publications

Reference
Publication

Date
Dataset
analysis

Feature
Extraction

Learning
Approaches

Evaluation
Methods

Zeifman and Roth [17] 2011 ✗ ✓ ✓ ✓
Klemenjak and Goldsborough [18] 2016 ✓ ✓ ✓ ✓

Hosseini et al. [19] 2017 ✓ ✗ ✗ ✗

Pereira and Nunes [20] 2018 ✓ ✗ ✗ ✓
Bonfigli and Squartini [21] 2020 ✓ ✓ ✓ ✓

Donato et al. [22] 2020 ✗ ✗ ✗ ✗

Gopinath et al. [3] 2020 ✓ ✓ ✓ ✓
Iqbal et al. [14] 2020 ✓ ✗ ✗ ✗

Salem et al. [23] 2020 ✗ ✓ ✓ ✓
Huber et al. [16] 2021 ✗ ✗ ✓ ✓

However, a detailed and up-to-date study that will present a
comprehensive and complete overview of the current status and
the research gaps is missing. Based on this, the main contribu-
tion of this work are:

• An analytical overview of the most widely used datasets.
Different characteristics are presented along with appli-
ances availability, sampling rate and measurements dura-
tion. In addition, apart from residential or commercial
datasets that are usually reviewed in NILM literature we
analyze also datasets with measurements collected from
the industry domain.

• Comprehensive presentation of all the feature extraction
and pre-processing techniques that have been applied in
energy disaggregation domain. Approaches that have been
presented in deep learning and machine learning studies
are analyzed severally.

• Up-to-date detailed overview of the existing NILM ap-
proaches. In particular in section 4, all learning ap-
proaches are demonstrated, focusing mainly on the latest
machine and deep learning methods. Analytical descrip-
tion for each publication and the corresponding methods
are depicted in the Tables 3, 4, 5, while current limitations
and further research directions are highlighted.

The rest of this paper is organised as follows. Section 2
reviews the characteristics of some of the most widely used
NILM datasets and elaborates on data pre-processing tech-
niques. In Section 3, a comparison is made between automated
and handcrafted feature extraction methods. Section 4 analyzes
the learning approaches for the disaggregation task, mainly fo-
cusing on the state-of-the-art deep learning methods. Section
5 investigates the NILM algorithms evaluation process. Cur-
rent limitations and further work are discussed in section 6 and
finally, conclusions are drawn in 7.
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2. Data

2.1. NILM Datasets

In the past recent years, the rapid growth of data availability
has contributed towards the development of many research ar-
eas. NILM was affected by this explosion, with an increasing
number of datasets being published lately. Their development
and analysis were of paramount importance, to draw meaning-
ful performance comparisons of various NILM algorithms. In
the following sections, we present the most widely used pub-
licly available datasets. We analyze and compare the existing
datasets from different aspects (sampling rate, measurements
capturing period, attributes being registered, number of dif-
ferent houses and devices that each dataset contains, types of
buildings that are presented - residential, commercial or indus-
trial).

2.1.1. Residential Datasets
• REDD: Reference Energy Disaggregation Data Set

(REDD) [24], was published by MIT in 2011, contain-
ing both high and low-frequency recordings at 15 kHz and
0.5 Hz, respectively. It includes recordings from six res-
idential buildings in the United States with a total dura-
tion of 119 days. Also, ninety-two household appliance
measurements were included with a sampling frequency
at 1/3 Hz.

• UK-DALE: UK Domestic Appliance-Level Electricity
[25] comprises of power consumption data collected from
5 residential buildings in the United Kingdom from 2013
to 2015. More than 10 types of household appliances
are included in the dataset. Aggregate consumption fre-
quency ranges depending on the household (low frequency
at 1 Hz - high frequency at 16 kHz). All appliances are
sub-metered at 1/6 Hz.

• AMPds/2: The Almanac of Minutely Power dataset (Ver-
sion 2) [26] is an open dataset including 2 years of con-
sumption data for a single household in Canada, sampled
at 1 minute. The dataset contains a total of 21 power me-
ters, 2 water meters (with additional appliance usage an-
notations), and 2 natural gas meters. Power meters de-
scribe each appliance by registering 11 electrical param-
eters (voltage, current, active/ reactive/ apparent power
etc.). Billing information for cost analysis is also avail-
able.

• REFIT [27]: It was published in 2017 and it includes elec-
tricity data from 20 households in the United Kingdom.
Unlike UK-DALE or REDD, REFIT readings are regis-
tered ceaselessly for the full two-year period. REFIT has a
low sampling rate with a sampling period of 8 seconds for
the mains and individual appliances active power. Also,
noteworthy information about this dataset is that in three
households (3,11 & 21) solar panel was installed, so most
of the research studies on energy disaggregation exclude
these houses from the final dataset.

• Dataport [28]: It was introduced in 2012, including power
consumption recordings from 722 houses and commercial
buildings across different cities in the United States. Ev-
ery home measuring period was different, from 2011 to
2015, and the dataset provides total real and aggregate
power consumption and sub-meter appliance level record-
ings. Dataport dataset is considered also, a low-frequency
dataset, with a sampling period of 1 minute for aggregate
and appliance signal.

• ECO [29]: It is comprised of electricity measurements
gathered from 6 residential buildings for over 8 months in
Switzerland. Active power, voltage, and current are reg-
istered at a low sampling rate of 1 Hz. Each building in-
cludes different appliances, data granularity at a different
level, and also the dissimilar duration deployment.

• ENERTALK

[30]: It includes data collected from 22 houses in Korea,
for a period from 29 to 122 days for each site. Overall,
the dataset records readings for 5 home appliances. This
dataset also provides active and reactive power measure-
ments for aggregate signal and individual power consump-
tion for each device, with a sampling frequency of 15 Hz.
A small amount of readings are not properly registered due
to logs and meters issues, so pre-processing techniques for
missing values are suggested by the authors.

• iAWE The first dataset that included data from households
in India published in 2013. The Indian Dataset for Am-
bient Water and Energy (iAWE) [31] contains ambient,
water, and electricity data from a residential building in
New Delhi. The dataset’s total duration is approximately
73 days and measurements are collected from thirty-three
sensors daily. The recordings provide also information
about active, reactive, apparent power, voltage, and current
with a sampling period from 1 to 6 seconds representing
over 63 electrical appliances.

• BLUED The Building-level fully labeled dataset for elec-
tricity disaggregation (BLUED) [32] is a publicly avail-
able dataset utilized for the NILM task. The dataset was
released in 2012, and contains one-week electricity data
from a domestic site in the United States, with a current
and voltage high-sampling frequency of 12 kHz. The ag-
gregated active power measurements are at 60 Hz includ-
ing more than 50 appliances. Finally, this dataset also cap-
tures the state transition of each appliance, labeled with all
the necessary time stamps.

• PLAID The Plug-Level Appliance Identification Dataset
(PLAID) [33] is a load identification dataset that contains
current and voltage measurements from 56 domestic sites
in the United States. Overall, it contains 1094 observa-
tions with a sampling frequency at 30 kHz and 11 power
consumption from 11 different household devices. These
appliances are: Air Conditioner(AC), Compact Fluores-
cent, Lamp(CFL), Fridge, Hairdryer, Laptop, Microwave,
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Washing Machine, Bulb, Vacuum, Fan, Heater. In addi-
tion to PLAID’s original version, PLAID II [34] was re-
leased to handle the restrictions of the first version. An-
other 719 observations were added to avoid biasing. Fi-
nally, the latest version PLAID III [35] was published,
and increased the number of appliances by two. PLAID
is the only dataset that excludes active and reactive power
recordings.

• DRED [36] is a residential dataset that was released
in 2015 and contains energy consumption data from a
household in Netherlands. The Dutch Residential Energy
Dataset includes electricity measurements for the aggre-
gate and submetered signal with a total duration over six
months. Regarding the appliance level recordings, twelve
devices are measured with a sampling rate of 1 Hz. More-
over household metadata information are provided, num-
ber of inhabitants, house layout, mapping between appli-
ance and location.

• SynD [37] is a synthetic dataset, constructed for energy
disaggregation task, in residential buildings. The creation
of real datasets requires long-term capturing periods and a
great number of resources spent on recording equipment.
Also real datasets, often are affected by equipment mal-
functions that produce corrupted measurements. To over-
come these boundaries, synthetic datasets were employed.
This dataset, simulated electric energy consumption read-
ings for one home for 180 days. The data include ag-
gregate and twenty-one appliance measurements with a
sampling frequency at 5 Hz. In this dataset, the measure-
ments campaign was based on the monitoring of twenty-
one different home devices from two residential sites in
Austria. During the campaign, consumption patterns were
observed, and then operation cycles were extracted. After
that, the simulation process began where the SynD dataset
was generated.

• Georges Hebrail UCI [38] is a dataset containing individ-
ual household electric power measurements. The sampling
rate is at one minute both for the aggregated consumption
and the sub-metered appliances, while the whole dataset
contains a period of four years. The electrical quantities
of active power, reactive power, voltage and current are
registered. The house includes three sub-metering points,
where each point corresponds to a room and as a result
contains more than one sub-metered appliances.

2.1.2. Commercial buildings Datasets
• COMBED [39], released in 2014, is the first non-

residential dataset in NILM literature. Nowadays,
COMBED is one of the few datasets that provides record-
ings from commercial buildings. Power consumption data
were gathered from IIT Delhi, an educational campus,
which is constituted of 8 institutional buildings. Smart
meters are employed throughout the campus and across
the different buildings to collect active power and current

measurements. The total recordings acquisition duration
is one month and the sampling frequency is 30 seconds.

2.1.3. Industrial Datasets
• Industrial Machines Dataset for Electrical Load Disag-

gregation
[6] is a public dataset that includes measurements from
an industrial site for the energy disaggregation task. It
contains power consumption recordings from a poultry
feed factory in Brasil for a working period of 111 days.
The measurements are collected during the factory’s op-
erational hours, Mondays through Fridays, 10:00 PM to
05:00 PM. The aggregate and the appliances power con-
sumption are gathered through eleven meters, with a sam-
pling frequency of 1 Hz. One meter measures the total fac-
tory power signal and there are other two collecting power
consumptions from the pelletizing and milling processes,
correspondingly. The other eight meters record the factory
appliances: pelletizer I (PI), pelletizer II (PII), double-pole
contactor I (DPCI), double-pole contactor II (DPCII), ex-
haust fan I (EFI), exhaust fan II (EFII), milling machine
I (MI), and milling machine II (MII). Additionally, every
meter sends data about RMS voltage, RMS current, ac-
tive power, reactive power, apparent power, and active en-
ergy. All machines are measured through the whole work-
ing period except the two milling machines, which were
measured only the last 12 days.

• Aachen Smart Factory dataset includes electricity
recordings from a smart factory and four of its machines at
FINESCE trial site Aachen/ Cologne. The data were gath-
ered in the context of EU FINESCE project. It contains
active power measurements for a total duration of 68 days.

• High-resolution Industrial Production Energy (HIPE):
Another public dataset from an industrial building is HIPE
[40]. Data are collected for a period of three months.
Ten smart meters were deployed, measuring ten machines
recordings. Also, the total power consumption is de-
rived from the main terminal. The measurements con-
tain values from different electrical quantities e.g. active,
reactive, apparent power, voltage, current with a resolu-
tion of 5seconds. The dataset was released officially in
2018 and it included the following electronic appliances:
PickAndPlaceUnit (1P), SolderingOven (3P), Washing-
Machine (3P), ScreenPrinter (1P), VacuumPump1 (3P),
VacuumPump2 (1P), HighTemperatureOven (3P), Vacu-
umOven (3P), ChipSaw (3P), ChipPress (3P). Finally, due
to the small number of publications for NILM in an in-
dustrial setting, there are not many works that performed
disaggregation in the HIPE dataset. However, in compar-
ison with all the related published datasets, it seems more
complete and precise.

2.2. Data Harmonization
• Data Filling: The problem of missing values in a time-

series dataset occurs on several occasions when data are
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Table 2: Main characteristics of all the aforementioned datasets in this section

Name Release Date Type Building(s)
Total

Appliances Period Characteristics
Aggregate
Sampling

Device
Sampling

REDD 2011 R 6 92 119 days P,V,I 15 kHz & 0.5 kHz 1/3 Hz
BLUED 2012 R 1 50 1 week P,Q,V,I 12 kHz 60 Hz

G. Hebrail UCI 2012 R 1 9 4 years P,Q,V,I 1min 1min
Dataport 2012 R & C 722 8598 4 years P, S 1 min 1 min

iAWE 2013 R 1 63 73 P,Q,S,V,I 1 − 6 sec 1 − 6 sec
AMPds 2013 R 1 20 360 days P, Q, S, V, I 1 min 1 min
PLAID 2014 R 65 1876 1-20 sec V,I, 30 kHz 30 kHz

COMBED 2014 C 8 - 1 month P,I, 30 sec 30 sec
UK-DALE 2015 R 5 109 2247 days P,Q,S,V,I 16 kHz & 1/6 kHz 1 Hz

DRED 2015 R 1 12 6 months P 1 Hz 1 Hz
ASF 2015 I 1 4 68 days P 1 Hz 1 Hz
ECO 2016 R 6 45 8 months P, V, I 1 Hz 1 Hz

AMPds2 2016 R 1 20 720 days P,Q,S,V,I 1 min 1 min
REFIT 2017 R 20 177 2 years P 8 sec 8 sec
IMD 2018 I 1 8 111 days P,Q,S,V,I 1 Hz 1 Hz
HIPE 2018 I 1 10 92 days P,Q,S,V,I 1/5 kHz 1/5 kHz

ENERTALK 2019 R 22 75 1714 P, Q 15 Hz 15 Hz
SynD 2020 R 1 21 180 days P 5 Hz 5 Hz

gathered from smart meters or sensors. These disconti-
nuities can be a great limitation in handling, analyzing,
and extracting important features from the data, which can
lead to a biased dataset. To overcome these issues, a va-
riety of methods is used that is aiming at data enhance-
ment. Though the selection of the appropriate data fill-
ing technique is an open discussion and it lies heavily on
the data characteristics. The method that is preferred with
greater frequency is interpolation. Three different inter-
polation techniques are utilized for missing values calcu-
lations, linear, quadratic, and cubic and they can be for-
mulated as first, second, and third-order polynomial equa-
tions, respectively [41]. According to, [42] the most ap-
propriate approaches for electricity consumption data are
linear and spline interpolation. However, there is not an
universal strategy about handing missing values in NILM
literature.

• Data Resampling: Another crucial issue, in data pre-
processing is the sampling frequency. In section 2.1 we
have presented the original sampling frequencies of all the
aforementioned datasets. However in many cases, missing
data or noise in the aggregate and the sub-metered signals
make data resampling a necessary procedure. According
to [43], the frequency resolution is one of the most impor-
tant aspects in NILM task, because of the non-identical
features and characteristics that different ranges of fre-
quency contain. Recent studies [44, 45], performed com-
parable experiments in several frequency ranges, attempt-
ing to define the most suitable sampling frequencies that
deliver decent disaggregation accuracy. In [44],the authors
executed both classification and regression experiments
and concluded that a sampling rate of at least 1Hz and 3Hz
respectively, is required. However, a more detailed anal-
ysis presented in [45] suggests that the favourable sam-
pling rate falls within the range of 1Hz to 1/30Hz. In-
terestingly, in specific datasets there are certain appliances
(dishwasher, fridge and washing machine) where the pre-
dictive accuracy is improved as the sampling rate is de-
creased.

2.3. Data Augmentation

A large amount of data is essential for training large and com-
plex neural network architectures. However, in most real-world
settings, predictive algorithms address insufficient training sets
or datasets with inbalanced classes. In those situations, deep
learning models tend to overfit, and consequently, they lack pre-
dictive accuracy. As a solution, a method that is called data aug-
mentation is employed that aims at generating synthetic data by
applying transformations to the original set [46]. Especially in
many fields, such as computer vision (CV), Natural Language
Processing (NLP) and speech processing, data augmentation is
already an established methodology and has been proved very
effective at improving neural nets robustness [47]. Though, data
augmentation in time series data has drawn limited attention.
Due to time series data complex properties and nature, applying
transformations often causes distortions and loss of valuable in-
formation. Therefore, classical data augmentation methodolo-
gies, that emerged in other domains, such as flipping, zooming,
rotation are not well-suited for time series and are resulting in
poor synthetic data. Also opposite to computer vision, in time
series problems data augmentation strategies are task depen-
dant.

Considering these limitations, a set of different techniques
for data augmentation in time series, have been adopted. Most
of the existing methodologies manipulate the time series data
directly in the time domain. Such transformations are, window-
warping [48], cropping [49], noise injection, interpolation, and
magnitude-warping. One other approach is data augmentation
in the frequency domain. The aim of this method is to map
time-series data in frequency and utilize special features. Fre-
quency spectrum is calculated through Discrete Fourier Trans-
form [50] or Discrete Wavelet Transform [51] and perturbations
in amplitude and phase spectra are adopted to augment data. Fi-
nally, generative models have been used as an efficient data aug-
mentation technique. Several recent works [52, 53, 54], applied
Generative Adversarial Networks to create natural-looking syn-
thetic time-series data.

Data collection and annotation is a time-consuming pro-
cedure, especially for NILM. Also, often, real-world NILM
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datasets contain small amounts of data and suffer from miss-
ing measurements. Recently, various studies explore data aug-
mentation in NILM to overcome these boundaries, aiming to
improve predictive algorithms generalization ability. The first
attempt to generate synthetic data for NILM was made in [55]
by extracting appliance activations with random shifts and then
arbitrarily assign them in the input vector. The same procedure
also adopted in [56, 57, 58], even though this method doesn’t
imitate precisely the structure and shape of the real aggre-
gate data. Another data augmentation approach is presented in
[59, 60], and the intuition behind this method is the summation
of random sub-metered data windows to create the synthetic
aggregate signals. At last, two recent studies investigated data
augmentation techniques for low and high sampling frequency
data, respectively. According to [61], the authors proposed four
different interpolation techniques to generate augmented high
sampling frequency data, from low-frequency datasets, while
Delfosse in [62] proposed a data augmentation approach, that
performed simulations with appliances signatures to create syn-
thetic data.

3. Feature Engineering

The feature extraction process involves the techniques imple-
mented on the raw input signal and/or other external sources,
aiming to construct feature vectors that are able to describe the
characteristics of the predicted variable, in our case, the appli-
ances’ consumption. Feature extraction was initially conducted
manually based on the available expertise on the specific field
of study. The development of deep learning has recently un-
locked the potential for the automation of the feature extraction
process. Automated feature extraction is mainly used with im-
age data due to its effectiveness, however it is common to utilize
this technique with other modalities such as text, sound or tab-
ular data.

3.1. Data Preprocessing
As mentioned in Section 2 data collected from smart me-

ters or sensors oftenly need enhancement. Moreover, in order
to processed by predictive algorithms another import step is
data pre-processing, a process that aims to transform raw data
into the appropriate format for training and evaluation. In this
subsection core pre-processing steps are going to be analyzed,
along with several different strategies that have employed in
NILM literature through the years.

3.1.1. Input Configuration
Deep learning became the last few years the prevailing way to

address NILM. The neural networks’ ability to learn represen-
tations and extract complex features from raw data allowed so-
lutions to be designed with the minimum-required handcrafted
feature extractions. However, transforming signal data into
neural network’s input is a crucial matter, that has been paid
a lot of attention. The most commonly used technique is the
sliding window approach, which splits historical data into over-
lapping smaller sequences, with a fixed length. It has to be men-
tioned, that LSTMs have the ability to control the information

required by extending or erasing through gating mechanism.
This functionality enables the network to retain key information
during the training process. However, sequences that contain
a large amount of information can increase the computational
complexity and also smaller sequences can provide less infor-
mation to the network. Hence, it necessary the optimal selection
of the input lags as it impacts LSTMs [63, 64, 65, 66, 67].

Therefore, one of the most important aspect in time series
regression tasks, such as NILM, is the optimal length of the
receptive field. It is important to outline that there is not a uni-
versal methodology in NILM literature, for the selection of the
ideal input size. Most of the studies published have selected
experimentally the sliding window’s length, considering var-
ious characteristics, such as appliance type, individual appli-
ances operational duration, sampling frequency. Moreover, the
bigger the receptive field is, the bigger the operational cycles
it captures. But in many cases, very large sizes lead to com-
putational complex algorithms and poor disaggregation perfor-
mance. Of course, another important factor in determining the
optimal sequence length is the sampling rate of the input sig-
nal. According to [68], the sliding window size can be calcu-
lated by a formula that includes, size of the algorithm’s input,
original data sampling rate, and re-sampling factor. The exper-
imental results showed that their method applied on state-of-
the-art models, achieved superior performance, in comparison
with the previous work. Finally regarding the input configura-
tion, a different approach was employed with the differential of
raw signal as an input. The authors of [69] designed this tech-
nique, considering that a neural network tries to disaggregate
one appliance per training and sees the other appliances as a
noise. Based on this, they proposed to differentiate the raw ag-
gregate signal to make the output signal more distinguishable
and improve disaggregation performance.

3.1.2. Feature normalization
A significant procedure that has a great impact on neural net-

works training routine, is feature scaling or data normalization.
Especially in time series, raw data represent a wide range of val-
ues that can lead a DNN model in convergence failure. Scaling
features, can prevent gradient vanishing or explosion and speed
up the learning process [70]. While in time series regression
and classification tasks there are several feature scaling tech-
niques employed, in NILM researchers adopted mainly two of
them. The first one, is z-score normalization, where mean and
standard deviation are calculated at the complete training set
both for main and sub-metered signal. Z-score normalization is
denoted by the following equation:

xz−norm =
Xt − X
σ
, (1)

where Xt is the aggregate or extracted power consumption at
time t, X is the mean value of a main or appliance reading and
σ is the standard deviation. The second scaling technique that
is investigated in NILM literature, is min-max normalization.
In this approach, data are scaled to a range of [0, 1] or [−1, 1].
Minimum and maximum values of the whole training set are
calculated both for mains and per appliance signals and then
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the min-max normalization is calculated from the following for-
mula.

xmin−max =
X − Xmin

Xmax − Xmin
, (2)

where X is the dataset’s readings and Xmax and Xmin, are the
maximum and minimum power consumption values for each
signal, correspondingly. Even though, it is a common-used
technique in time series data, it is less preferred in the NILM
literature because of its sensitivity to outliers. Finally, there is
a small amount of studies implementing neural network archi-
tectures, applying feature scaling as a pre-processing step. In
contrast, normalization layers are adopted in [71, 72, 73] in an
effort to prevent convergence issues.

3.1.3. 2D Representations
The recent advances on the Computer Vision field, in com-

bination with the neural networks’ ability to extract accurate
features and the novel image encoding techniques, enabled
researchers to adopt CV high-performance methods in other
tasks. In time series data, in order to transform them as images,
an encoding technique is required that creates 2-dimensional
representations. Several studies [74, 75, 76, 77], explored time
series to images encoding techniques and three of them are
mainly adopted.

• Gramian Angular Summation / Difference Fields
(GASF / GADF): In Gramian Angular Summa-
tion/Difference Fields time series data are represented
in Polar coordinate system, which means that each data
point is the the cosine of the summation of angles. In
order to apply GAF methods, raw data scaling is needed
using min-max normalization. Transformation to polar
coordinates is processed with the initial value as the
angular cosine, and the timestamp as the radius. Then
the Grammar Angular Field is constructed, selecting one
of the two main approaches, GASF or GADF where
their main difference is that the final angular perspective
is extracted by calculating the summation or difference
respectively for each timestamp.

• Markov Transition Fields (MTF): MTF is a visualiza-
tion method for time series data, that represents the tran-
sition probabilities of the input sequence. The final output
is a Q × Q Markov transition matrix, which is calculated
by the weighted assignments of xi to the corresponding q j

quantile bin. The xi is an element of the input sequence X
and the q j is an element of the extracted quantile bin Q.

• Recurrence Plot: Is the visual that is obtained from a
N × N array of dots when a x j is sufficiently close to a
xi [78]. The distance between the two data points is cal-
culated through euclidean distance. Finally a threshold is
applied and binary representation is constructed.

In NILM literature the first study that tried to encode signal
data as an image, was [79]. The authors utilized the current-
voltage trajectories to create binary images. These visualiza-
tions were used for event detection. Another recent study [80],

proposed two novel load signatures to be utilized with the V-
I trajectories to create image representations for load classifi-
cation. In [81] the GADF encoding technique is investigated,
in two residential datasets, for state detection. It was the first
study, that utilized an encoding technique in active power con-
sumption data. In [82], on the other hand, Recurrence Plot is
applied on the aggregate signal and comparisons are performed
with previously applied techniques. Finally, the authors of [83]
employed signal to image transformations for load disaggrega-
tion. They compared all the three techniques mentioned above
in three datasets. The GAF technique outperformed the other
two approaches.

3.2. Handcrafted feature extraction

According to [84], load signature is the unique pattern of
an individual appliance, when it is on an operational state.
Each electrical appliance has certain distinct characteristics that
determine its electrical behavior and are defined by variables
such as voltage, current, active and reactive power. The hand-
crafted feature extraction process aims at extracting the max-
imum amount of information from the aggregated metering
point (main panel), in a feature space that makes each appli-
ance’s signature discrete. Distilling information from hand-
crafted features requires a level of expertise on the scientific
domain in which the problem belongs. More specifically in
NILM, the comprehension of the electrical properties of each
appliance (resistive, inductive, capacitive loads) is of utmost
importance, for the extraction of discriminative characteristics.

3.2.1. Steady-state
Steady state features are extracted when the appliances oper-

ate on a steady state. Smart meter data at a low sampling rate
usually lead to the exploitation of steady state features. Ac-
tive power and its temporal variations is the most commonly
used electrical measurement in NILM studies. Purely resistive
loads, without any capacitive or inductive elements can be dis-
aggregated by using active power as a single feature. However,
most of the residential and industrial loads operate with a phase
shift between current and voltage waveforms which means that
they either generate or consume reactive power. Consequently,
the inclusion of reactive power as a feature has been found to
increase the models’ predictive accuracy [85, 56]. The distri-
bution of residential loads in the P-Q plane creates overlapping
among appliances that operate on the same active power levels
[86]. Several studies have also included information deriving
from the V-I trajectories such as area, slope, curvature, asym-
metry, over-shoot and trajectory centroid [87]. The usage of sta-
tistical features like mean, min/max, variance, skewness, kurto-
sis, quantiles and zero-crossings are experimentally found to
increase disaggregation accuracy, while optimal results are ob-
tained when combining electrical and statistical features [88].
All of the aforementioned features are extracted on the time do-
main, but there also studies that utilize the power signal trans-
formation into the frequency domain for steady state features
extraction. For example, Fourier analysis for the detection of
steady-state current harmonics is used in [84, 89].
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3.2.2. Transient
Transient state features are extracted when data are captured

with a high sampling rate (kHz range) that allows the detection
of the appliances’ transient signatures during their operation.
Transient features may help distinguish two or more appliances
when they operate simultaneously, since the transient state re-
veals unique information for each appliance and transient sig-
natures are less overlapping between appliances compared to
steady state. Capturing data at this rate may introduce some
problems since not all hardware equipment is able to process
signals at high sampling rates. Moreover, data storage prob-
lems and computational issues arise from the processing of such
large volume of data for the models’ training. Some of the most
typical transients features found in most studies are: transient
power, transient V-I trajectories, start-up current, transient volt-
age noise [90]. A common method for analyzing the signal in
those high frequencies, is the conversion to the frequency or the
wavelet domain. Short-time Fourier Transform (STFT) and fast
Fourier Transform (FFT) are widely used for the extraction of
current harmonics that can help differentiate transient load sig-
natures [91, 92]. Wavelet Transform (WT) offers a more flex-
ible approach since it enables the representation of the signal
both on the frequency and the time domain, allowing access
to localized information about the signal [93, 94]. An early
study analyzing the STFT and WT approaches, concluded that
the formation of feature vectors making use of the Continuous
Wavelet Transform (CWT) resulted into optimal results with
less computational requirements compared to the STFT method
[95].

3.2.3. External
Steady state and transient features usually rely on electrical

measurements, however there are also some other external fac-
tors that can be modelled and add useful information to the pre-
dictive models. The seasonal patterns of usage for each ap-
pliance is a common example of those external features. Start
time, end time, peak time, time-of-day, day-of-week and day-
of-year information is important, since the frequency of usage
of certain appliances may vary depending on the profile of a
household’s residents [96, 97, 98]. For example, home appli-
ances, may operate more often during the evening or during
the night, when a household’s residents follow a 9-to-5 work-
ing schedule during weekdays. An encoding process is required
for the appropriate modeling of those temporal features associ-
ated to periodic appliance usage. One-hot-encoding is a choice
that treats seasonality as a categorical variable and most im-
portantly, it ignores the cyclicality of the temporal features. A
more accurate encoding is suggested in [99], where temporal
features are considered as cyclically repeated variables being
transformed into sines and cosines representations and finally
mapped onto a circle to preserve the right relationships between
them. Environmental factors may also affect the usage pattern
of some loads, and more specifically HVAC loads which tend
to operate only when they need to adjust (either hot or cold)
outside temperatures [100]. Occupancy information (whether
or not the house is occupied by users) has been also used as
additional feature that can increase the disaggregation accuracy

and moreover reduce the algorithm’s computational cost during
non-occupancy periods [101, 102].

4. Learning Approaches

NILM studies have tested both supervised and unsupervised
approaches, depending on the available information and the im-
plemented predictive algorithm. Supervised methods require a
labelled dataset with sub-metered appliances, which may not al-
ways be available. Unsupervised methods can be implemented
without any prior knowledge of the environment, but the user
needs to verify the appliance patterns that are being recognized.
HMM-based, optimization and machine learning approaches
were predominantly used a decade ago. However, the develop-
ment of deep learning solutions introduced neural network ap-
proaches in the NILM context and it soon became the basis for
state-of-the-art implementations, outperforming previous stud-
ies. In this section, both classical machine learning and deep
learning approaches will be discussed. Emphasis will be given
on the latter category, since it is increasingly gaining interest in
the field of NILM studies over the recent years.

4.1. Hidden Markov Models
Early NILM studies were mainly based on Hidden Markov

Models (HMMs), which are typically used for probabilistic
modelling of time series data [103, 104]. A number of states
(consumption levels) is typically defined for each appliance,
with each state having its own probabilistic distribution. Dif-
ferent variants have been proposed, with the most popular be-
ing Factorial HMMs that generalize the HMM state representa-
tion by letting the state be represented by a collection of state
variables [105]. FHMM implementation for the NILM task
are initially presented in [24, 103]. More specifically in [103]
the incorporation of additional features to the HMM models,
providing information regarding the appliance usage profiles is
attempted. The formulated conditional factorial hidden semi-
Markov model outperforms typical FHMMs and the authors
consider this method a promising fully unsupervised approach
for energy disaggregation. Additive Factorial HMMs, which
were the basis for AFAMAP algorithm introduce a convex for-
mulation of approximate inference that overcomes the prob-
lems of computational efficiency and tackles local optima issues
[106]. This algorithm was considered to be a state-of-the-art
HMM-based approach, however there are now several studies
outperforming it [85, 107]. HMM-based techniques are usu-
ally inefficient when the number of disaggregated appliances in-
creases and moreover they suffer from high computational com-
plexity. A low complexity unsupervised solution, inspired by
a fuzzy clustering algorithm, called entropy index constraints
competitive agglomeration, is presented in [108]. The results
indicate that the proposed algorithm enables the generalization
of the features and produces a set that can be considered for
model learning. A cloud-based solution performing online en-
ergy disaggregation using HMMs is presented in [109]. The
algorithm consists of an event detection and an appliance mod-
elling part, while it has the advantage that it is a training-less
method, based on unsupervised learning.
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4.2. Optimization Methods
Optimization methods provide a different approach where the

main idea lies in finding the optimal combination of individ-
ual appliances that compose the aggregate signal. As stated in
[110], the increased complexity from a large number of appli-
ances and the loss of temporal continuity are two major draw-
backs in making use of optimization techniques for NILM. Tak-
ing a more detailed look at the optimization methods that are
being implemented, Genetic algorithms (GAs) seem to have
promising performance [111, 112], while a Graphical Signal
Processing (GSP) method, proposed in [113], offers a compet-
itive solution with reduced computational complexity. Sparse
optimization methods, mainly inspired from image process-
ing, have also gained attention, achieving results that outper-
form FHMMs [114, 115]. The study presented in [116] treats
disaggregation as a single-channel source separation problem.
Non-negative matrix factorization is implemented, including
additional information from the appliance dependencies. Com-
parison with other sparse coding approaches found in the lit-
erature demonstrated the superiority of the proposed method.
The authors of [117] attempted a linear blind source separa-
tion strategy, creating clusters of steady-state changes and then
employing a matching pursuit algorithm, trying to reconstruct
the original power signals using the clusters that were found as
the sources. The algorithm had decent performance on energy-
intensive appliances, while low-consuming ones were not cor-
rectly discriminated due to multiple errors taking place during
the clustering process, probably due to poor feature selection. A
two stage process is described in [118], where chi-squared GOF
and cepstrum smoothing are used for event detection, while the
parameters of those two methods are optimized using surrogate-
based optimization. Results indicate that both methods clearly
outperform standard chi-squared and moreover parameter opti-
mization is executed very fast compared to the brute force ap-
proach.

4.3. Shallow learning
The term shallow learning includes all of the traditional clas-

sification and regression algorithms (non-deep learning), and
implies that a handcrafted feature extraction process was fol-
lowed, utilizing domain expert knowledge. Those solutions are
easier to implement, they have lower computational complexity
compared to deep learning approaches and in certain cases they
have yielded encouraging results.

SVM implementations have attempted to deal with the prob-
lem both with linear [119] and non-linear [120] approaches.
Naive Bayes classifiers, assuming independence between each
of the appliance’s state are implemented in [121, 122], ob-
taining decent accuracy with only a small number of training
samples. Variations of the K nearest neighbors (K-nn) algo-
rithm are performed in [123], where the optimal setup is inves-
tigated. Tree-based implementations seem to be the best solu-
tion in shallow learning approaches, as they are often used un-
til today, challenging the dominance of deep learning methods
[124, 125, 126]. In [88] the importance of manually extracted
features is initially evaluated. It is concluded that electrical fea-
tures are more discriminative than the statistical ones. Several

regression algorithms are benchmarked, with Random Forests
outperforming k-NN, SVM and deep neural networks. The ef-
ficiency of Random Forest algorithm in NILM is also realized
in [126], where the authors formulate the problem as a multi-
label classification task. The suggested approach is more effi-
cient both in terms of accuracy and training time, compared to
other multi-label classification NILM approaches found in the
literature. Ensemble tree methods have also shown great suc-
cess, composing a weighted combination of multiple regression
trees (weak learners), aiming to form a stronger learner. The
work presented in [91] uses a decision tree ensemble based on
the bagging technique. A novel set of frequency domain fea-
tures is utilized and results indicate that appliances with simi-
lar consumption are successfully disaggregated. The boosting
ensemble technique is implemented in [127], where XGBoost
algorithm is used for energy disaggregation. XGBoost outper-
forms bayesian network, SVM, random forest, neural network
and HMM, while it reduces the training overhead of the model.

4.4. Feed-forward Neural Networks

Feed-forward neural networks (FFNN) are the first and the
simplest deep learning models. They consist of numerous nodes
or units that are arranged in layers. Each layer is connected to
the neurons of the next one. All the connections have a dif-
ferent weight, that defines each neuron’s importance in the net-
work. The overall structure of a neural network includes the
input nodes, that always compose the first layer. There, the raw
data are imported to the network, after they are fed in the hid-
den layers that are responsible for transforming the input data
into feature vectors, and then to the output layer which is the
last part of an FFNN topology and is responsible to produce the
necessary values.

Regarding the adaptation of FFNN in NILM literature, this
study [128] proposed a FFNN that aimed at extracting three
appliances’ power consumption signals. In [129], the authors
employed several MLPs with different combinations of hyper-
parameters for load identification. The final results showed that
each device performed better with a combination of different
hyperparameters.

4.5. Convolutional Neural Networks

Convolutional Neural Networks are a popular deep learning
model that has achieved state-of-the-art performance in many
different tasks [130, 131, 132, 133]. A convolutional layer is
the major building block of a CNN architecture where the con-
volution operation is performed. The CNN architectures ex-
cept for the convolutions, also include several other types of
layers, such as pooling layers, normalization layers, activation
function layers, Flatten and Fully Connected layers. Also most
times, convolutional layers are in combination with other types
of DNN layers, such as RNNs, Attention Mechanism.

In terms of the energy disaggregation task, a variety of CNN
architectures have been employed both for regression and clas-
sification. The study presented in [134], had a great impact
on the NILM literature. The authors proposed a new CNN
model that was trained to predict the midpoint of the output
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signal instead of the whole sequence. They implemented the
same architecture for both output strategies and compared the
experimental results on two residential datasets. Their new ap-
proach performed the best results and shaped a new way to de-
sign DNN models for energy disaggregation. The work in [135]
is also inspired by the aforementioned sequence to point (s2p)
model. The authors applied four pruning algorithms, to shrink
the number of weights and reduce the total number of param-
eters without affecting performance. Moreover, in [7] both se-
quence to sequence (s2s) and sequence to point (s2p) models
are applied in two industrial datasets that have been presented
in section 2.1. It was the first study that tried to apply classical
NILM approaches from a residential building to an industrial.

As mentioned in section 3.1 the work in [69] designed a CNN
architecture that had two inputs, 1D differential input and 1D
auxiliary input. The proposed network contained five 1D con-
volutional layers with 1D max-pooling layers followed, in or-
der to reduce the number of parameters and to prevent overfit-
ting. The differential signal is given as an input and it is then
processed from the part of the network described above. The
auxiliary input is concatenated with the output of the final max-
pooling layer and the resulting representation is fed into the
fully connected layers that are responsible to produce the final
output sequence.

Besides the works that used multiple inputs for training, these
studies [136, 137] adopted two sub-networks that performed re-
gression and classification simultaneously. In the first approach,
the authors were inspired by multi-task learning where a neu-
ral network learns with multiple tasks, with different loss func-
tions. The parameter sharing is utilized to improve the model’s
accuracy. The final representation was constructed by multiply-
ing the regression with the classification output. Also, the loss
function has been adjusted representing the overall loss from
the two sub-networks. In the second study, the authors pro-
posed SCANet, a multi-branch model with two sub-networks
and multiple receptive fields that are connected. The model’s
structure is based on several dilated 1D convolutional layers
that are placed in parallel, with different dilation rates. The con-
volutional branches in each sub-network are connected between
them at different scales with a simple gating mechanism. Also,
they claimed that performance improvement can be achieved by
adding an adversarial loss in the loss function proposed in SGN.
The overall results showed that SCANet performed better than
SGN overall.

Moreover, two CNN developments that have applied to the
NILM literature are dilated convolutions and CNNs with resid-
ual blocks. The authors of [138] created a convolutional se-
quence to sequence network where they used residual blocks to
distill the final output. Another study that implemented CNNs
with residual connections is presented in [139]. The authors
constructed a CNN architecture with several 1D convolutional
layers residually connected and with skip connections. Each
1D convolutional layer is followed by Batch Normalization and
ReLU as activation function. The final results are obtained in
two ways, with classical sequence to sequence and with se-
quence to short sequence, wherein at the second approach, the
output is half of the input signal. Another method proposed a

bidirectional dilated ResNet to avoid vanishing gradients [140].
Firstly, the input signal is fed into an 1D convolutional layer to
detect low-level features and then to eight residual blocks with
dilated convolutional layers. The output of each residual block
is connected with the next stack, but it also skips all the subse-
quent parts and is concatenated before the final linear layer. A
sequence to point strategy is adopted, representing the midpoint
value of the sub-metered signal. The modification of WaveNet
for NILM is presented in [141]. WaveNILM structure contains
1D dilated causal convolutions and their output is fed both into
a gating mechanism and a rectified linear activation. The output
of the two activations is multiplied and represents the output
of the block. WaveNet for NILM has also been implemented
for industrial energy disaggregation [6], outperforming FHMM.
It was the first study that applied a deep learning method for
NILM in an industrial site. Another approach was presented in
Kaselimi et al. [142], where a multi-channel hybrid architecture
that incorporated RNN properties into a CNN architecture, us-
ing a consecutive deep learning model, for enhancing appliance
signal estimation.

Furthermore, numerous publications utilized 2D convolu-
tions as a solution on NILM. The procedure of transforming
power consumption signals to images is presented briefly in
section 3.1.3. This work [143] implemented a 2D CNN archi-
tecture for load disaggregation in three residential devices. Af-
ter that, both studies [81, 144] utilized as a backbone, the VGG-
16 architecture. In the first one, the input is fed into the baseline
that is used as a standalone feature extractor. Then the output
feature vectors have been imported along with appliance labels
into a classifier. The machine learning classifier detects on/off
events. In the second study, the input is a 320 × 320 gray-scale
image and this method has been designed for event detection.
Additionally, in these publications [145, 146, 147, 148] CNN
architectures were employed for multi-appliance classification.
Especially, in these [146, 147] the authors designed an 1D CNN
network, with structure similar to VGG-16, for appliance clas-
sification. Moreover, in [146] the authors had come to several
conclusions regarding the performance of deep convolutional
networks in on/off classification. Specifically, they claimed that
power signal contains multiple low level features. Thus, they
designed with a considerable depth to capture multiple feature
characteristics but also not deep enough in order to add further
complexity. Finally, Kong et al. [149] proposed an 1D VGG-
16 for load disaggregation. Apart from this, the authors also
presented a post processing CNN model, for type II appliances,
that classified whether the predicted sequence belonged to the
target device or not.

4.6. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a deep learning ar-

chitecture that is suitable for sequential data. Their intuition
is that information from the previous states is also used as in-
put to the current state. However, RNNs have certain limita-
tions, facing gradient vanishing & explosion problems. To ad-
dress this, variations of RNNs have been employed, Gated Re-
current Units (GRU) and Long Short Term Memory (LSTM)
networks. In NILM literature, various approaches have been
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published the last few years using recurrent models. In Kelly
and Knottenbelt [55] an RNN architecture containing one con-
volutional layer and two bidirectional LSTMs after the fully
connected output layers is implemented. In [150] a network
with two LSTM layers is applied. The studies analyzed in
[59, 151] constructed RNN-based networks to perform com-
parisons. In the first one, a model with one convolutional and
two bidirectional GRU layers was created. The second study
utilized two parallel 1D convolutional and two bidirectional
LSTMs before the two final fully connected layers. The first
work that explored state detection with RNN-based architec-
tures was [152]. A GRU-based approach aiming at improv-
ing disaggregation accuracy and simultaneously reducing mem-
ory usage and computational complexity is presented in [153].
The authors claim that GRU networks are a more appropriate
method for NILM compared to LSTMs, due to their computa-
tional efficiency. Moreover, these studies [154, 155] designed
two LSTM networks for appliance classification. In the first
one the model included an 1D convolutional process before the
input neurons that fed the input signal into the stacked LSTM
layers. The proposed approach was implemented for load clas-
sification in ELV dc picogrid. In the second one, a comparison
was performed between Markovian models and a simple RNN
model. Additionally, another approach for appliance identifica-
tion was presented in [156]. The authors combined a dAE and
a LSTM network, to reconstruct the appliance specific signal
and then to identify in which appliance this signal belongs to.
Furthermore, several RNN-based approaches have been pub-
lished [157, 158, 159, 160, 161, 162, 163, 164] for state de-
tection or load disaggregation while in some occasions RNN
models also deployed for real-time disaggregation [165, 166] in
residential buildings. Though, until [167] was published, there
wasn’t a study that had employed RNN for industrial energy
disaggregation. The authors constructed a DNN for performing
classification. Additionally, in Kalinke et al. [7], the authors
adopted the models constructed by Kelly and Knottenbelt [55]
and the Online-GRU proposed by Krystalakos et al. [153]. The
selection of these RNN-models is based on their compatibility
with the open framework NILMTK [168]. Finally, it is nec-
essary to mention recent contributions in NILM literature with
RNNs. This work [169], proposed two architectures with paral-
lel LSTMs stacks for appliance power consumption estimation.
The first network was composed of three parallel stacks, that
each stack contained one 1D convolutional and two LSTM lay-
ers, that were concatenated before final fully connected layer.
The second topology, also comprised three stacks with the first
one based on convolutional layers and the other two on LSTM.
Both approaches were trained and tested on REDD dataset. Ad-
ditionally, Kaselimi et al. [170], a LSTM network with a classi-
cal structure is proposed, comprising of two biLSTM layers but
with a novel hyperparameters optimization method. The study
in [171] presents a more composite LSTM network for energy
disaggregation. The main innovation proposed is the one-to-
many structure that helped towards improving the model’s dis-
aggregation accuracy and also repeated training.

4.7. Autoencoders

An autoencoder is a type of neural network architecture that
is having three core components: the encoder, the decoder, and
the latent-space representation. The encoder compresses the in-
put to a lower latent-space representation and then the decoder
reconstructs it. In NILM, the encoder creates from the aggre-
gate signal the latent space representation and then the decoder
tries to create the sub-metered signal. In the early years of deep
learning applications in energy disaggregation, denoising au-
toencoders (dAE) have received enough attention. Kelly and
Knottenbelt [55] employed first, a dAE model. The main in-
tuition behind the denoising procedure is that the NILM can
be defined as a denoising problem. Based on this, the aggre-
gate power consumption is the combination of the individual
appliances’ consumptions plus the noise. This assumption was
employed in several studies [107, 60, 56] where they proposed
dAE improvements with convolutional and fully connected lay-
ers to improve disaggregation accuracy. Only in [172], they
utilized gaussian noise layer before the fully connected en-
coder. Beyond the dAE architecture, the authors of this work
[173] proposed CAEBN-HC, a 1D-convolutional autoencoder
with batch normalization and hyperparameter tuning with hill
climbing algorithm. Finally, Faustine et al. [174] adopted the
traditional autoencoder-like Unet architecture adjusted for one-
dimensional data. They also utilized multitask learning in or-
der to predict both appliances state and power consumption and
this strategy proved effective, improving models generalization
ability.

4.8. Attention Mechanism

Recurrent Neural Nets and their variations have been the pre-
vailing way to address problems with sequential data. Never-
theless, their weakness to perform parallel computations makes
them computationally inefficient. Also the fast exponentially
gradient growth or decrease that RNNs and their variants suf-
fer from affects the training of the network. To overcome these
boundaries the attention mechanism is introduced as a solution
[175]. Attention mechanism, contrary to recurrent architectures
uses all the prior states of the encoder in sequence-to-sequence
architectures, in order to provide a set of features to the de-
coder to produce the final representation. Despite this, most of
the works still utilized attention along with RNN models. In
Vaswani et al. [176] the Transformers architecture is presented,
which is based completely on self-attention free of recurrent
layers. The core of this model is multi-head attention and has
achieved great results in a variety of domains, such as com-
puter vision, NLP, time series forecasting. The intuition behind
this module is that a sequence representation contains valuable
information in different subspaces. Thus, in the Transformer
architecture self-attention is calculated simultaneously in mul-
tiple heads and then concatenated and projected again, in order
to produce the final sequence vector outputs.

In NILM literature, there is an increasing interest in apply-
ing Attention and Transformers in energy disaggregation. The
authors of [177] presented two different networks, MA-net and
MAED-net. The first one is composed of convolutional and
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two transformer layers, 6 identical attention blocks, and with
fully connected layers. The second one is a multi-head attention
encoder-decoder architecture. The MAED-net is an autoregres-
sive model and as we can observe MA-net and MAED-net share
the same configurations. MAED outperformed all the other
approaches in the REDD dataset. Another work that applied
Transformers in NILM is demonstrated in [178]. The authors
proposed an architecture that was inspired by BERT and a novel
loss function as a solution to energy disaggregation, achiev-
ing state-of-the-art results. Furthermore, three studies recently
adopted attention and multi-head attention as a part of their
architecture. The first study [179] employed the same model
with [153], but the authors replaced the one bi-GRU layer with
an attention mechanism. They also performed additive and
dot attention, to compare the experimental results. The sec-
ond study was designed one regression and one classification
sub-network, for multi-task learning [180]. For the classifica-
tion, the sub-network that has been adopted is the sequence-to-
sequence architecture that was proposed by Zhang et al. [134].
The multiplication of the regression sub-network output with
classification sub-network output produces the final result. The
third study proposed COLD, which is a model with several
residually connected position-wise feed-forward networks and
multi-head self-attention applied before the final output layers
[181]. COLD was constructed to perform event detection.

In conclusion, the recent trend of applying attention layers
and Transformers architecture on a variety of domains influ-
enced researchers to apply them to the NILM task. Despite
showing vast improvement contrary to RNNs, in several tasks,
both in terms of accuracy and training time, Transformers still
remain a hard solution to implement, so the adaptation of their
recent advances that enhance their predictive and computational
performance [182, 183, 184] in the NILM task is necessary.

4.9. Deep Generative Models

Deep Generative Models (DGM) are a type of a deep neu-
ral network that is trained in a large amount of data, that tries
to synthesize high-dimensional distributions. The two most
commonly implemented approaches are Variational Autoen-
coders (VAE) and Generative Adversarial Networks (GAN). In
Sirojan et al. [185] a Convolutional Variational Autoencoder
that extracted appliance-specific signal from the main is pro-
posed. The suggested model is trained in the UK-DALE dataset
achieving state-of-the-art results. Variational Autoencoder for
NILM is also implemented in [186], where a Variational Re-
current Neural Network (VRNN) generating appliance signals
using as an input the total power consumption is analyzed.

This study [57] introduced a model that is trained to syn-
thesize appliance-specific signals from a latent representation
Z. The generator G is responsible for producing from the la-
tent representation device sequences for each appliance. Then
the produced sequences and the training appliance sequences
are observed from the discriminator D, which tries to deter-
mine if the generated sequences are real or fake. The current
approach is composed of two components: G and the disaggre-
gator Yα, where the first one is responsible for mapping a latent

representation into an appliance sequence and the Yα at creat-
ing the latent representation from the main signal. In [187], the
authors proposed a network that was consisted of three com-
ponents, namely the seeder S that corresponds to the encoder
part in a DAE model, G that is responsible to synthesize new
signal waveforms from the dAE’s latent space, and D that is
a binary classifier that aims to clarify which signals are real or
fake. Also, an improvement to this architecture was proposed in
[188]. The authors added in the D network two Gated Recurrent
Units to perform the discrimination. A cGAN for energy disag-
gregation is implemented in Pan et al. [189]. The network’s G
was a 1-D UNet that was fed with the main signal as an input
and generated an appliance-specific signal. The D was a fully
convolutional network, with several convolutional layers. The
authors adopted sequence-to-subsequence output, by choosing
the optimal output window based on the training process esti-
mated time. Finally, in [190] GAN-NILM is proposed. The net-
work is composed by an autoencoder as G, being responsible to
produce the appliance specific signal. The authors concatenated
the mains signal with output of G, claiming that this technique
ensures training stability. The discriminator aims to identify if
the disaggregated signal was real or fake. Also, second-to-last
D layer produces the output features that are fed in the next it-
eration to G. Also using parameter sharing approach they mod-
eled a transferable Generative model and they tested it in three
publicly available datasets.

4.10. Transfer Learning
Transfer Learning (TL) is the process of transferring a neu-

ral network’s knowledge from one domain to another and usu-
ally, it utilizes an already pre-trained model or a part of it.
TL can be employed in different scenarios, using for instance
a large pre-trained model trained in a large dataset as a fea-
ture extractor by removing the network’s head or fine-tuning
the whole network, or using the pre-trained without interven-
ing. Even though transfer learning is an existing methodology
in a variety of domains the lack of pre-trained models in a well-
established dataset in energy disaggregation, makes it an open
affair. Also, bearing in mind the different characteristics of the
publicly available datasets, the different appliances, and energy
consumption habits between users, the implementation of both
appliance and cross-dataset (TL) is necessary. In Murray et al.
[191], two multitask network architectures are proposed aiming
to accurately solve both NILM tasks and to facilitate success-
ful transfer learning between different datasets. The work in
[192] explores Transfer Learning in energy disaggregation from
different aspects. Based on the online NILM tool NILMTK
the authors trained two models, Seq2Point and Online-GRU
in a range of application scenarios. The two networks have
been trained and tested on the same dataset, and then across
multiple buildings from multiple datasets, combining energy
consumption recordings with different appliance characteristics
and usage patterns. Another publication that also utilized the
Seq2Point model for TL is suggested in [193]. Seq2Point is
a lightweight model that can be easily reproduced. The au-
thors, are examining the generalization ability considering two
approaches, appliance and cross-domain transfer learning. In
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the first case, the model was trained and tested on the same
datasets. Seq2Point was trained on REFIT which is the largest
one and Transfer Learning was performed on REDD and UK-
DALE. For the appliance TL, the models were pre-trained on
the washing machine, and for the other devices the convolu-
tional layers were used as feature extractors and the fully con-
nected layers were fine-tuned. With this approach they man-
aged to reduce, even more, the required training time. For the
cross-dataset approach, they have performed the base training
on the REFIT dataset and utilized UK-DALE and REDD as tar-
get datasets. The authors concluded that the adaptation of trans-
fer learning on datasets that are having the same characteristics
helps at increasing disaggregation accuracy. In a domain like
NILM, where there is a great need for predictive algorithms that
are able to generalize well, future progress in TL approaches
could be promising.

4.11. Federated Learning

As mentioned in the section 2, NILM is a problem that re-
lies heavily on data availability. However the required equip-
ment power consumption usually differs among regions, users,
equipment type. The collection and storage in a remote server
of consumer electric recordings data, is often privacy sensitive
and risks potential leaks. Along with the progress made over
the last few years in machine/deep learning and in cloud infras-
tructures a new field was introduced to address this issue, Fed-
erated Learning (FL). FL is an alternative that keeps stored all
the required data locally on devices and trains a shared model,
without the need to centrally store it [194]. The main advantage
of this method, is that it reduces potential privacy and security
risks, by restricting possible attacks only on the devices.

In NILM domain the training data are containing informa-
tion about the clients (domestic, commercial, industrial) and
possible exposition may result, in data manipulation, infer hu-
man actions inside a building or data breach. In the last few
years several studies have been published that investigated FL,
for energy disaggregation. The work presented in Pötter et al.
[195] introduces a framework that is able to train and test NILM
utilizing FL. The authors implemented a s2p model combining
REDD and UK-DALE datasets for three devices. Finally, their
proposed DPFL model found out to be more robust in FL than
other non-privacy models. Another study exploring NILM-FL
is presented in [196], where the authors train a RNN model
locally, using metering data and are then sharing the model
parameters. Their approach showed that communication costs
can be decreased and that FL trained models can approximate
the predictive accuracy of regular trained models. In conclu-
sion, FL can overcome the arisen privacy and security issues in
NILM, and help towards creating more generalized models.

5. Performance evaluation and comparability

5.1. NILM evaluation metrics

Performance evaluation in NILM studies is not standardized,
as there is not a commonly accepted way of evaluating the dis-
aggregation models with specific metrics. Studies may utilize

metrics that are generally used in machine learning (classifica-
tion/ regression problems), or apply targeted metrics that have
been explicitly proposed for load disaggregation systems. The
first category includes common metrics such as True Positives
(TP), True Negatives (TN), False Positives (FP), False Neg-
atives (FN), Accuracy, Precision, Recall, f-score, Mean Ab-
solute Error (MAE), Root Mean Squared Error (RMSE). On
the contrary, some of the most widely used metrics introduced
specifically for NILM are the Total Energy Correctly Assigned
(TECA) [24], the Energy Accuracy (EA) [197] and the Energy-
based f-score [107].

Another fundamental separation is proposed in [197], where
evaluation metrics are categorized as Event Detection (ED) or
Energy Estimation (EE). ED metrics evaluate the performance
of the algorithm in the identification of an appliance’s oper-
ational state, treating NILM as a classification problem. EE
metrics estimate the precise amount of energy consumed by an
appliance at each timestamp, following an approach which is
used in regression problems. According to the authors’ view,
the inclusion of both ED and EE metrics enables a thorough as-
sessment of the performance of a disaggregation model. Thus,
it is suggested that EE along with ED metrics should be in-
cluded in the studies, as state detection and energy estimation
are equally important. The selection of the most appropriate
evaluation metrics should take into consideration two main fac-
tors in order to avoid misleading results: a) appliance’s opera-
tional power level and b) appliance’s frequency of usage. The
level of power at which an appliance operates, proportionally
affects the value (high or low) of certain EE metrics, such as
MAE and RMSE. For example, comparing MAE between two
appliances operating at 100W and 4000W respectively is not
expected to give any meaningful conclusions, since the appli-
ance that operates on a higher power level is expected to have
higher MAE. For this reason, MAE and RMSE are considered
inappropriate even if they are commonly used in NILM stud-
ies. On the contrary, a great alternative could be TECA which
can be applicable to appliances with many states or ”smooth”
power ons and does not rely on removing edges in the aggregate
power signal. However, making use of TECA, high power ap-
pliances can be naturally weighted more heavily than low power
appliances and this may lead to optimistic results for low power
appliances. Alternatively, energy-based precision/recall/f-score
can be used as they are able to cover multiple aspects of the
performance of a NILM model. Energy-based recall measures
the portion of the power consumption that has been accurately
identified, whereas energy-based precision denotes the amount
of energy that has been assigned to an appliance and actually
belongs to it. Energy-based f-score is the geometric mean of
precision and recall [107].

The frequency of appliance usage also plays an important
role, since most of the appliances may operate for short peri-
ods of time. In this case, ED metrics give a complete picture
of the active and inactive intervals of each appliance, giving
the opportunity to specify type I or type II errors made by the
predictive model. This way, explainability of the results is fa-
cilitated, which in turn allows taking more targeted actions to-
wards the improvement of the predictive models. In the case
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of ED metrics, TPs/ TNs/ FPs and FNs seem to be the most
intuitive results, as they are the primary source of information
for the extraction of other metrics such as precision, recall and
f-score.

The authors in [198] highlight the need to quantify certain
properties that are related to the complexity of a dataset and
moreover define a common format for reporting testing setup
and accuracy results. For this purpose, they suggest two new
metrics based on the observation that data properties may vary
significantly across different chunks of the same dataset. Test
Set Ratio (TSR) is defined as the ratio between the test set du-
ration and the total energy time series duration. It is experi-
mentally found that lower TSR leads to more accurate results,
hence it can be concluded that comparing two studies on the
same dataset but with different TSR, can be a biased compari-
son. Similarly, Event Ratio (EVR) gives the ratio between the
number of events in the test set and the number of events in the
whole dataset.

The increasing number of deep learning implementations in
the field of NILM, makes the evaluation of the algorithm’s com-
putational cost a necessity. Computationally demanding mod-
els may have limitations, since they require huge amount of
resources for training, and as a result their deployment on real-
time applications is difficult. A study which estimates the pro-
cessing time and the processing energy of a NILM system is
presented in [199]. The authors investigate the potential for
large load scale deployment of Cloud-based Online-NILM al-
gorithms by comparing the algorithm’s computational perfor-
mance on a dedicated server and a cloud virtual server. It is
concluded that more studies should be encouraged to consider
the computation cost perspective and not only the disaggrega-
tion accuracy obtained.

The lack of a standardized procedure for the evaluation pro-
cess, leads to comparability issues among different NILM ap-
proaches. According to [198], there are multiple factors that
characterize a disaggregation approach, such as dataset selec-
tion, performance metrics, disaggregation techniques and the
evaluation process. All the previous factors comprise the exper-
imental setup of each method. In order to achieve fair assess-
ment among various methods, the experimental setups need to
be totally aligned. An important contribution towards this di-
rection is made by nilmtk framework [200], however the inte-
gration of custom NILM algorithms to this framework can be
complex.

Summarizing, we list the following suggestions that lead to-
wards more easily comparable NILM implementations:

• A general evaluation framework is important to be defined.
Regarding the metrics, taking into consideration relevant
studies [198], we propose the wider adoption of Energy
F-Score, TECA metrics for load disaggregation and TPs/
TNs/ FPs and FNs for event detection.

• TSR and EVR metrics introduced in [198]should be more
widely adopted, so that comparisons conducted among
studies utilizing the same dataset are facilitated.

• Concerning datasets, the evaluation procedure through

cross validation, especially in datasets that contain several
buildings, is necessary since each premise maintains dif-
ferent type of information.

5.2. Tables summary
Regarding shallow learning approaches in Table 3, empha-

sis is given on the dataset being used (low or high frequency)
in combination with the extracted features. Moreover, the pre-
dictive algorithms tested in each study are reported, as well as
the evaluation metrics which define the approach that has been
followed (classification or regression). Results suggest that the
majority of the studies utilize data from real-life datasets, while
only a few prefer simulated data. Concerning the feature ex-
traction process, a lot of studies use only the active power signal
and this probably happens due to data unavailability. The inclu-
sion of additional electrical and statistical features has proven
to be beneficial for the model’s accuracy in multiple studies. It
is observed that NILM is treated as a signal processing prob-
lem in some cases, making use of frequency domain transfor-
mations of the power signal. Chronologically older studies are
largely based on HMM models for the selection of predictive
algorithm. HMM methods are sometimes used until today as
a benchmark, however their performance is significantly lower
compared to machine learning models. Tree-based approaches
and some more sophisticated variations of classical optimiza-
tion methods are the solutions being used more often in recent
literature studies, nonetheless deep learning methods are domi-
nant in the field at this point. Analyzing the metrics being used
by the examined studies, it becomes apparent that most of them
are making use of typical metrics applied to classification or re-
gression tasks (accuracy, precision, recall, f-score, RMSE etc.),
even if there are specialized metrics suggested for NILM. Fur-
thermore, the majority of the studies does not use both EE and
ED metrics, as suggested in 5.1, and as a consequence the eval-
uation of the models’ performance is not straightforward.

Amongst the characteristics that define deep learning models,
the learning framework, the input dimensions and the output
strategy are considered. Tables 4, 5 present the main compo-
nents of each reviewed work according to the above elements.
The publication data correspond to the year that each work was
published, dataset column presents the dataset type that deep
learning models were trained and evaluated on, learning frame-
work includes four attributes, learning method (regression or
classification), the main elements of the proposed approach, the
number of layers and the training criterion. Finally the last two
columns present the input and output shape for each approach,
respectively.

One of the core elements in DNN training is the loss func-
tion that indicates how well the neural network is trained. In
the NILM literature, several different loss functions have been
employed. As is depicted in the loss column of the Tables 4, 5
most of the works that are published utilize Mean Squared Er-
ror for regression and Binary Cross-Entropy for classification.
Also, a smaller percentage of published works used MAE due
to its limitations and its sensitivity to outliers. Finally, some
studies investigated training DNNs with KL divergence or an
MSE and KL divergence combination. Though, in the NILM
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domain, there is not a deeper investigation of each loss func-
tion’s impact on the training procedure.

In Section 3.1 the different pre-processing techniques for the
mains signal are presented. Different methodologies and ap-
proaches have been proposed, aiming at reducing training time
and decreasing error rates. Tables 4, 5 present in the final col-
umn the output methodology that was adopted in each publi-
cation. S2s is the most widely used output approach and it
means that the DNN model receives as an input a fixed-length
sequence of the mains signal and outputs a sequence of predic-
tion data. The DNN is trained to remove the power consump-
tion contribution of all appliances except for the device under
consideration. For each output sliding window, the mean or
median of the predicted values is used as the final result. In-
stead of training computationally large DNNs, the authors of
Zhang et al. [134] proposed s2p, at which the model tries to
map an input sequence of data to a single output prediction
value. The core idea is that the input is a sequence of the to-
tal power consumption and the output value corresponds to the
midpoint element of the disaggregated appliance. Addition-
ally, sequence-to-subsequence (seq2subseq) was presented as
a compromise between the two approaches, claiming that pre-
dicting output signals of a shorter sequence will increase disag-
gregation performance comparatively to the seq2point and re-
duce the computation time during the inference against seq2seq
[189]. Regarding the evaluation methodology that is utilized
in the DNN implementations in the NILM context, most of the
studies utilize MAE as their performance metric, while several
studies also use Energy F-Score and TECA. However, a sys-
tematic comparison of the output approaches for DNNs has not
been published yet.

5.3. Quantitative Summary

As mentioned in Subsection 5.1, due to the different metrics
that are employed and the variety of used datasets, there is not
a standard evaluation methodology in NILM literature. This
creates a significant obstacle in determining which method per-
forms the best and also hinders the explainability of the pre-
dictive model’s performance. Based on this, we try to quanti-
tatively summarize the findings that are presented in Tables 4,
5. The focus is directed towards deep learning methods, since
those methods are dominating the literature in recent years. Fig-
ure 2 illustrates the number of published studies through the
years. We divide deep learning approaches based on the cate-
gories that we have previously described in Section 4. AE cor-
responds to autoencoders where its core concept is described
in subsection 4.7, AM represents attention mechanism, that in-
cludes attention and transformer based methods that are out-
lined in 4.8, CNN corresponds to those approaches that utilize
convolutional neural networks as their backbone and their anal-
ysis is found in Subsection 4.5. DGM refers to Deep Genera-
tive Models, specifically Variational Autoencoders and Gener-
ative Adversarial Networks that are highlighted in Subsection
4.9, while FFNN indicates Feed-forward neural nets, that are
reported in 4.4. Finally RNN stands for Recurrent Neural Net-
works and their variants (LSTM & GRU), presented in 4.6.

In Figure 1 all of the datasets utilized by each one of the
studies shown in Tables 3, 4 and 5 are demonstrated. It can be
concluded that residential applications are dominant in NILM
literature with REDD, UK-DALE, REFIT and AMPds2 being
the most widely used datasets. There is also a number of studies
utilizing custom datasets that are not publicly available, while
fewer studies use simulated data. Industrial datasets have been
released relatively recently, so there is not extensive research
interest yet. Many studies use more than one dataset for the
evaluation of their predictive model. This is an approach which
is encouraged by the authors in order to study how the model
performs on datasets and appliances with different properties.
Moreover, the generalization capability of the algorithms can
be studied which still remains an open research topic in NILM.
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Table 3: Shallow Learning Approaches for Energy Disaggregation

Reference
Publication

Date Dataset Method Features
Predictive
Algorithm

Evaluation
Metrics

Kolter et al. [201] 2010
Plugwise
(private) r P

Total Energy Priors
Group Lasso

Shift Invariant Sparse Coding
Discriminative Disaggregation

Sparse Coding

Total-week Accuracy

Kolter and Johnson [24] 2011 REDD r P FHMM TECA

Parson et al. [104] 2012 REDD r P HMM
Energy norm. error

RMSE

Zhong et al. [202] 2014 HES r P
AFHMM
AFAMAP

AFHMM+SAC

NDE
SAE

Liao et al. [203] 2014
REDD
REFIT c P (edges detection)

HMM
Decision Trees

DTW

TP
FP
FN

Precision
Recall
F-score

Altrabalsi et al. [204] 2014 REDD c

P
Min/Max value

Area
Event duration

HMM
SVM

k-means + SVM

Precision
Recall
F-score

Nguyen et al. [205] 2015 Simulated data c P, Q, S Decision Trees Accuracy
Alshareef and Morsi [206] 2015 Simulated data c DTW (Daubechies wavelet) AdaBoost Accuracy

Gillis et al. [94] 2015 Simulated data c
Energy of

wavelet coefficients Decision Trees
Accuracy

95% conf. interval

Bonfigli et al. [207] 2016 AMPds r &c P, Q
AFAMAP

Forward Differential AFAMAP

Precision
Recall

Energy-based f-score

He et al. [113] 2016
REDD
REFIT r & c P Graph method

Precision
Recall
F-score
ANE

Bhotto et al. [208] 2016
REDD
AMPds r P or S Aided Linear IP

Accuracy
(per appliance)

Accuracy
(Overall)

Tabatabaei et al. [209] 2016 REDD r & c
P,S

DTW (Haar wavelet)
RAndom k-labELsets (RAkEL)

Multi-Label kNN (MLkNN)
F-score

Energy error

Batra et al. [210] 2017 Dataport r
Electrical

Household info

FHMM
Latent Bayesian Melding

Discriminative Disaggregation
Sparse Codding
Gemello/kNN

Matrix Factorization

PEC

Jain et al. [211] 2017 BLUED c I

Decision Trees
SVM
k-NN

Random Forest
Extra Trees

Accuracy
Precision

Recall
F-score

Batra et al. [212] 2018 Dataport r
Home

Appliance
Seasonal

Adagrad
(Transfer Learning)

PEC
RMS PEC

weighted PEC

Machlev et al. [112] 2019
REDD
AMPds r & c P, Q

HART
HART w/MAP
AFAMAP(P,Q)

Multi-objective evolutionary
optimization

Accuracy
Precision

Recall
F-score
TPCA

Shi et al. [213] 2019
REDD

Dataport
REFIT

r
P

DFT (freq. domain)

Similar Time Window (STW)
FHMM

Powerlet-based
Energy Disaggregation

Multilabel Classification
Sparse Coding (SC)
Discriminative SC
Greedy Deep SC
Extract Deep SC

Accuracy

Yuan et al. [214] 2019 AMPds r & c P

Optimized SVR (OSVR)
SVR

FHMM
DTW

F-score
PCE

RMSE

Kang et al. [91] 2020
PLAID

Private dataset c

FFT-based
(Magnitude and phase

of 3rd, 5th and 7th
current harmonics)

Bagging Decision Tree

Accuracy
Precision

Recall
F-score

Puente et al. [215] 2020
Georges Hebrail UCI

UK-DALE c P Fuzzy Clustering

TP, TN, FP, FN
Precision

Recall
F-score
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Table 4: Part I. Deep Learning Approaches for Energy Disaggregation

Reference
Publication

Date Dataset Learning Framework Input Output

Method Main Components Layers Loss

Kelly and Knottenbelt [55] 2015 UK-DALE r & c
RNN
dAE
CNN

6
6
8

MSE 1D s2s

Mauch and Yang [150] 2015 REDD r LSTM 3 Least Squares 1D s2p

do Nascimento [59] 2016 REDD r & c

CNN
RCNN
LSTM
GRU

ResNet

17
8
4
4
8

CCE 1D s2c

Mauch and Yang [216] 2016 REDD r FF-HMM 3
Negative

log-likelihood 1D s2s

Kim et al. [152] 2016 UK-DALE c
GRU
RNN

2
2 BCE 1D on/off

Mottahedi and Asadi [143] 2016 Dataport c 2D CNN 12 BCE 2D on/off

He and Chai [151] 2016 UK-DALE r
dAE

CNN-LSTM
2
2 BCE 1D on/off

Garcia et al. [172] 2017 Custom r sdAE 5 Quadratic 1D s2s

Kim et al. [157] 2017
UK-DALE

REDD
Custom

r LSTM 2 MSE 1D on/off

de Paiva Penha and Castro [145] 2017 REDD r CNN 4 BCE 2D on/off

Zhang et al. [134] 2018
UK-DALE

REDD r CNN 8 MSE 1D s2s & s2p

Bonfigli et al. [107] 2018
UK-DALE

REDD
AMPDs2

r dAE 14 MSE 1D s2s

Tsai et al. [60] 2018 Custom commercial r dAE 7 MSE 1D
s2s

on/off

Krystalakos et al. [153] 2018 UK-DALE r
CNN-LSTM
CNN-GRU 8 MSE 1D s2p

Chen et al. [138] 2018 REDD r CNN-GLU-ResNet 13 MAE 1D s2s

Valenti et al. [56] 2018
UK-DALE
AMPDs2 r & c dAE 8 MSE 1D

s2s
on/off

Martins et al. [6] 2018 IMD r & c WaveNet 9 blocks MAE 1D
s2s

on/off

Rafiq et al. [166] 2018 UK-DALE r & c
CNN-LSTM
CNN-GRU 5 MSE 1D

s2p
on/off

Sirojan et al. [185] 2018 UK-DALE r CVAE 7
MSE w/

KL divergence 1D s2s

Chang et al. [217] 2018 Custom r dAE 5 MSE 1D s2s

Cho et al. [158] 2018 Dataport r & c
FF

LSTM
2
2

MSE
BCE 1D

s2p
on/off

Harell et al. [165] 2018 Custom r & c LSTM 4 MSE 1D
s2p

on/off

Bao et al. [57] 2018 UK-DALE r GAN
6 &

6
MSE &

BCE 1D s2s

Bejarano et al. [186] 2019
DataPort
REDD r VRNN 14 KL divergence 1D s2s

Harell et al. [141] 2019 AMPds2 r WaveNet 9 blocks MSE 1D s2s
Kaselimi et al. [142] 2019 AMPds r CNN 5 MSE 1D s2s

Xia et al. [218] 2019
UK-DALE
WikiEnergy r ResNet 6 units MSE 1D s2s

Xia et al. [219] 2019
UK-DALE
WikiEnergy r

ResNet w/
Attention 6 units MSE 1D s2s

Liang et al. [139] 2019 UK-DALE r CNN 24 MSE 1D
s2s
s2ss

Buchhop and Ranganathan [129] 2019 Custom c FF 2 BCE 1D on/off
Kyrkou et al. [81] 2019 UK-DALE c VGG-16 21 BCE 2D on/off

Shin et al. [136] 2019
UK-DALE

REDD r & c
CNN w/

Multitask L 8 & 8 MSE & BCE 1D
s2s w/
on/off

Chen et al. [137] 2019
UK-DALE

REDD r & c
CNN w/

Multitask L 8
MSE & BCE &
adversarial loss 1D

s2s w/
on/off

Jasiński [128] 2019 ECO r FF 3 MSE 1D s2p
Zhang et al. [69] 2019 REDD r CNN 8 MSE 1D s2p
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Table 5: Part II. Deep Learning Approaches for Energy Disaggregation

Reference
Publication

Date Dataset Learning Framework Input Output

Method Main Components Layers Loss

Davies et al. [147] 2019 PLAID c FF & CNN 2,3,4,5
5,7,9,11 BCE 1D on/off

Linh and Arboleya [159] 2019 REDD r & c RNN 10 Levenberg-Marquardt 1D
s2p

on/off
Gopu et al. [160] 2019 AMPds r & c RNN 5 nD 1D s2s

Kaselimi et al. [162, 170]
2019,
2020

AMPds2, AMPds2
REFIT r

Bi-LSTM w/
Bayesian Opt 4 KL divergence 1D s2s

Kaselimi et al. [187] 2020 AMPds2, REFIT r GAN 6 & 4 MSE 1D s2s
Kaselimi et al. [188] 2020 AMPds2, REFIT r GAN w/ CNN-GRU 6 & 4 MSE 1D s2s

Yue et al. [178] 2020
REDD

UK-DALE r & c Transformer 8
MSE +

KL divergence +
soft-margin

1D s2s

Faustine et al. [174] 2020 UK-DALE r & c UNet 8 blocks
CE +

QuantileLoss 1D
s2s

on/off

Ahmed et al. [190] 2020
REFIT
REDD

UK-DALE
r & c GAN 7 & 5 MSE+adversarial +

BCE 1D s2s

Ayub and M. [220] 2020 ENERTALK r & c CNN 4 & 5 MSE 1D multi-s2p

Lin et al. [177] 2020 REDD r & c
Multi-Head
Attention 8 & 15 MSE 1D s2s

Bousbiat et al. [83] 2020
SynD

UK-DALE
REFIT

r 2D CNN 8 MSE 2D s2s

Barber et al. [135] 2020
REDD

UK-DALE
REFIT

r Pruned CNN 8 MSE 1D s2p

Garcı́a-Pérez et al. [221] 2020 Custom Commercial r dAE 13 MSE 1D s2s

Yang et al. [144] 2020
REDD

UK-DALE c VGG-16 21 CCE 2D on/off

Gkalinikis et al. [179] 2020
REDD

UK-DALE c
CNN-GRU

w/ Attention 6 CCE 1D
s2p

on/off
Ciancetta et al. [222] 2020 BLUED c CNN 8 CCE 1D on/off

Yadav et al. [167] 2020 Custom Industrial c CNN 8 BCE 1D on/off
Rafiq et al. [163] 2020 UK-DALE, ECO r & c bi-LSTM 4 MSE 1D s2p

Massidda et al. [223] 2020 UK-DALE c AE 18 BCE 1D on/off

Pan et al. [189] 2020
UK-DALE

REFIT c GAN
8 blocks

4
L1+BC

CCE 1D s2subseq

Zhang et al. [224] 2020 REDD c
CNN &

clustering 6 CCE 1D on/off

Kukunuri et al. [225] 2020

UK-DALE
REFIT

Dataport
DRED

r & c CNN 7 MSE 1D
s2p

on/off

Reinhardt and Bouchur [68] 2020
UK-DALE

REDD r CNN 8 MSE 1D s2s & s2p

Zhou et al. [226] 2020 UK-DALE c ResNet 14 blocks CCE 1D on/off
Jiang et al. [227] 2021 REFIT c CNN 8 CCE 1D on/off

Jia et al. [140] 2021
REDD

UK-DALE r ResNet 8 blocks MSE 1D s2p

Çimen et al. [228] 2021 REFIT r & c
Multitask

CNN-GRU 7 MSE & BCE 1D
s2p

on/off

Song et al. [164] 2021
REDD

UK-DALE
REFIT

r & c LSTM 4 MSE 1D s2p

Piccialli and Sudoso [180] 2021
REDD

UK-DALE r & c Attention 10 & 10
MSE
BCE 1D

s2s
on/off

Moradzadeh et al. [148] 2021 REDD c CNN 8 CCE 1D on/off
Huang et al. [229] 2021 REDD c LSTM-BP 4 CCE 1D on/off

Athanasiadis et al. [230] 2021 REDD c CNN 11 BCE 1D on/off

Kalinke et al. [7] 2021
IMD
HIPE r

CNN
DAE
RNN
GRU

8
6
6
8

MSE 1D
s2s
s2p

Bucci et al. [231] 2021
Custom
BLUED c CNN 8 CCE 1D on/off

de Diego-Otón et al. [232] 2021 BLUED c LSTM & FF 4 & 3 CCE 1D on/off
Jia et al. [233] 2021 PLAID c CNN 4 CCE 2D on/off
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Figure 1: Distribution of NILM datasets across studies
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Figure 2: Breaking down DL approaches across years

Figure 3: MAE metric per appliance and dataset across various DL approaches
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Figure 4: F-score metric per appliance and dataset across various DL approaches

Figure 5: MAE boxplot indicating the performance range of DL approaches per appliance across datasets
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Figure 6: F-score boxplot indicating the performance range of DL approaches per appliance across datasets
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Observing Figure 2 we can conclude that Deep Neural Net-
works are continuously gaining more and more attention. Es-
pecially over the last three years a significant number of stud-
ies have been published in NILM, adopting also recent deep
learning developments such as, GANs and Attention-based net-
works. Moreover, we observe that CNN architectures are by far
the most widely used deep learning approach in NILM litera-
ture, representing almost 50% of the implementations that are
illustrated in Tables 4 and 5. Additionally, we can notice that
there is a trend regarding the application of CNNs in NILM do-
main, thanks to their multiple variants (i.e s2p, s2s, dilated con-
volutions, residual nets). Furthermore, as it is shown in Figure
2 RNNs are the second most widely used DL approach. Their
proven ability in handling sequential data [234] made them and
their variants (LSTM, GRU) an appropriate candidate for the
NILM problem. Also, due to their simplicity, Feed-forward
networks haven’t received much attention, while autoencoder
architectures either on their denoised or classical format were
proposed as a solution in several studies through the years. Fi-
nally, as already mentioned, DGMs, attention mechanism and
Transformers have been recently adopted in NILM, since their
success in other tasks makes them a promising solution in the
energy disaggregation domain.

In Figures 3,4 visualization for MAE and F-score metrics re-
spectively, per appliance and dataset across deep learning meth-
ods are illustrated. These two metrics are selected since they
are the most commonly used in the publications that are pre-
sented in Tables 4 and 5, as each of them is appeared in 45
% of the studies. They are responsible for measuring perfor-
mance for energy estimation and event detection respectively.
For each study, the optimal model was selected, ignoring any
other benchmarking models that could possibly be included in
the study. Moreover, we obtain results for nine most frequently
utilized datasets (Fig. 1) and six appliances. It has to be high-
lighted that Figures 3, 4 don’t present a straightforward com-
parison across each approach, since the experimental setup and
evaluation settings may significantly differentiate across stud-
ies. For instance, as it was also mentioned in Section 5.1 re-
garding MAE metric, individual dataset characteristics such as
appliance properties, sampling rate, data balancing, amount of
test data, directly affect the evaluation result. The kettle and mi-
crowave appliance seem to have the lowest MAE. This is partly
explained by the fact that they operate for very short periods of
time (usually less than five minutes), hence they remain inac-
tive for the largest part of the day. Focusing on the microwave
appliance, we observe that even though MAE is low, f-score is
also low. This is justified by the fact that, the great majority
of events in microwave appliances are classified as TNs (low
MAE), however the existence of FP and FN events affects neg-
atively the f-score metric (low f-score). Examining the fridge
appliance, it is obvious that even if it operates on a low power
level ( 100 W) it presents a similar MAE with other energy-
intensive appliances. This can be interpreted by the fact that the
fridge operates in cycles, so it has many active intervals during
the day. Another interesting finding here is that fridge perfor-
mance can vary significantly across different datasets, which
highlights once again the need for conducting comparisons uti-

lizing the same datasets and testing intervals. The dishwasher
and washing machine have a similar operation, since their load
signature comprises of an energy-intensive part (water pump-
ing and heating) and a low consuming part (spinning cycle). It
is quite common for disaggregation models to detect accurately
the most energy-intensive part of the operation and fail to iden-
tify correctly the low consuming part (FNs). This large number
of FN events is depicted in low f-score performance for those
two appliances in several studies. Finally, oven is included in
relatively few studies for comparison, yet a generally high MAE
and f-score are observed since it is an appliance that is easily
distinguishable but operates on a high power level. Consider-
ably lower MAE is observed in AMPds dataset, due to the fact
that oven appliance operates rarely in this dataset.

For the evaluation of the predictive models, we supplemen-
tarily examine the results depicted in MAE and f-score box-
plots, depicted in Figures 5 and 6 respectively. It is obvious that
concerning MAE, the top-performing studies for each appli-
ance are mostly CNN implementations, while the performance
remains high when it comes to state detection (f-score). AM
approaches are able to deliver high accuracy results, especially
in energy estimation task, even if it is a relatively new method-
ology followed by a small number of studies up to this point.
On the contrary, RNNs perform remarkably better in state de-
tection as it can be seen from the f-score metric. DGMs demon-
strate an average performance compared to the rest methods in
MAE metric, while only 2 studies explored state detection with
DGMs resulting in poor performance. Lastly, AEs implementa-
tions also showcase moderate performance both for energy es-
timation and state detection tasks. It is further observed that ap-
pliances that can be approximated as On/Off type, such as kettle
and microwave have a fairly consistent range of performance
across different studies, while this range becomes much wider
when multiple state, or continuous varying consumption appli-
ances are examined. Analyzing the boxplots in more detail, it is
confirmed that the same type of appliance may be disaggregated
with varying accuracy across different datasets. In many cases,
the studies that are found in the whiskers (lower and upper quar-
tiles) of the boxplots belong on the same dataset, which means
that this specific appliance is more hard/easy to disaggregate,
compared to other appliances of the same type found in other
datasets. This observation emphasizes the need of using com-
plexity metrics for the datasets used in NILM research.

6. Further work and limitations

Observing the the current status in NILM literature, it can
be identified that deep learning approaches are gaining interest.
Most of the presented publications consider NILM as a single
task problem, trying to detect either the device status or the pre-
cise power consumption of individual electrical loads. Three
of the demonstrated methods are trained to perform simultane-
ously both regression and classification [136, 137, 228]. Their
structure shares the same methodology, with a shared model as
a feature extractor and two output vectors that are responsible
to produce the final representation for each learning approach.
The output results are obtained via the multiplication of these
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two vectors. This functionality of the corresponding architec-
tures, according to the authors, tends to yield more successful
results and reduces noisy estimations. Another noteworthy as-
pect is that most of the approaches are implemented to disag-
gregate each device separately. This produces a great limitation
since the training of multiple models is a time-consuming pro-
cedure. One publication [220] has investigated the estimation of
multiple devices at the same time, training a CNN in single and
multiple regression setting. They compared both approaches in
ENERTALK and REDD dataset. They concluded that in over-
all, the single point model achieves better performance due to
the unique features that are needed for each appliance to per-
form disaggregation accurately.

However, the multi-target approach is more computation-
ally efficient. The further investigation of multi-target and
lightweight deep learning models, in parallel with the increase
of computational power, can overcome one of the biggest limi-
tations in NILM domain, the time-consuming training routines.
However, all deep learning studies approach NILM as a super-
vised learning problem. To the best of our knowledge, there is
not an existing publication that utilized deep neural networks
for unsupervised or non-supervised NILM. Only Hsu et al.
[235] investigated self-supervised learning, to perform event
detection based on the location of the resident in the home over
time. Even though this publication had a great impact on the
NILM literature it causes privacy issues.

Finally, the generalization ability of the proposed approaches
is an open concern. As demonstrated, in the previous sections
of this chapter several deep learning methods deliver decent
disaggregation accuracy. But the different evaluation frame-
works, the lack of a universal dataset, and the absence of pub-
licly released pre-trained models create benchmarking issues.
The last few years several comparison studies have been pub-
lished in a residential [192, 168, 236, 237, 15] and in an in-
dustrial [7] setting. However, most of these publications per-
formed evaluations through the standard literature baselines. A
more complete and comprehensive comparison is needed, that
will include the recent developments and state-of-the-art mod-
els which have been presented in the literature. Summing up,
the confrontation of the aforementioned limitations, should be
a priority since it will lead to more robust models and a more
accurate real-time NILM.

7. Conclusions

The emerging concept of NILM seems to have a dominant
role as a service of future smart energy grids, enabling cus-
tomers to gain control upon their energy usage through in-
creased awareness. Breakdown of energy usage at the appli-
ance level could also help identify anomalies of malfunctioning
appliances. The current survey attempts to assess the progress
made and the limitations encountered on multiple aspects of
NILM studies. The most widely used datasets in the litera-
ture are listed, analyzing their characteristics. The advancement
of the learning algorithms from HMMs, to shallow learning
and ultimately deep learning techniques is presented. Strengths
and weaknesses of the commonly used evaluation methods are

demonstrated, and comparability across different approaches is
discussed. Future research studies are expected to face a num-
ber of challenges in trying to suggest approaches that could suc-
ceed as real-life applications. Data transmission and storage is-
sues dictate the utilization of relatively low sampling rate on
the smart meter data, while at the same time the computational
cost of the models’ training should not prevent the algorithm’s
scaling capability. The main focus of future research directions
could address one of the biggest weaknesses of NILM algo-
rithms, which is the generalization capability across different
datasets/buildings. Finally, current disaggregation solutions are
mostly tested on a residential level, while commercial build-
ings and industrial facilities could have a much larger savings
potential.
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[135] J. Barber, H. Cuayáhuitl, M. Zhong, W. Luan, Lightweight non-intrusive
load monitoring employing pruned sequence-to-point learning, in: Pro-
ceedings of the 5th International Workshop on Non-Intrusive Load Mon-
itoring, 2020, pp. 11–15.

[136] C. Shin, S. Joo, J. Yim, H. Lee, T. Moon, W. Rhee, Subtask gated net-
works for non-intrusive load monitoring, in: Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 2019, pp. 1150–1157.

[137] K. Chen, Y. Zhang, Q. Wang, J. Hu, H. Fan, J. He, Scale-and context-
aware convolutional non-intrusive load monitoring, IEEE Transactions
on Power Systems 35 (2019) 2362–2373.

[138] K. Chen, Q. Wang, Z. He, K. Chen, J. Hu, J. He, Convolutional sequence

27

http://dx.doi.org/10.1109/EI250167.2020.9347014
http://dx.doi.org/10.1109/EI250167.2020.9347014


to sequence non-intrusive load monitoring, the Journal of Engineering
2018 (2018) 1860–1864.

[139] J. Liang, Z. Ren, L. Wang, B. Tang, J. Liu, Y. Liu, Deep neural network
in sequence to short sequence form for non-intrusive load monitoring,
in: 2019 IEEE 3rd Conference on Energy Internet and Energy System
Integration (EI2), IEEE, 2019, pp. 565–570.

[140] Z. Jia, L. Yang, Z. Zhang, H. Liu, F. Kong, Sequence to point learning
based on bidirectional dilated residual network for non-intrusive load
monitoring, International Journal of Electrical Power & Energy Systems
129 (2021) 106837.

[141] A. Harell, S. Makonin, I. V. Bajić, Wavenilm: A causal neural network
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