Georgios Exarchakis

Georgios Exarchakis
University of Bath | UB · Department of Computer Science

Dr. rer. nat.

About

25
Publications
3,808
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
300
Citations

Publications

Publications (25)
Article
Background: class III obese women, are at a higher risk of cesarean section during labor, and cesarean section is responsible for increased maternal and neonatal morbidity in this population. Objective: the objective of this project was to develop a method with which to quantify cesarean section risk before labor. Methods: this is a multicentr...
Article
Full-text available
The field of surgical computer vision has undergone considerable breakthroughs in recent years with the rising popularity of deep neural network-based methods. However, standard fully-supervised approaches for training such models require vast amounts of annotated data, imposing a prohibitively high cost; especially in the clinical domain. Self-Sup...
Article
Full-text available
The pandemic of COVID-19 is undoubtedly one of the biggest challenges for modern healthcare. In order to analyze the spatio-temporal aspects of the spread of COVID-19, technology has helped us to track, identify and store information regarding positivity and hospitalization, across different levels of municipal entities. In this work, we present a...
Article
Full-text available
Event-based cameras encode changes in a visual scene with high temporal precision and low power consumption, generating millions of events per second in the process. Current event-based processing algorithms do not scale well in terms of runtime and computational resources when applied to a large amount of data. This problem is further exacerbated...
Chapter
Current 3D imaging techniques (computed tomography scan, magnetic resonance imaging) offer poor detection of early-stage pancreatic cancers, which in turn leads to high mortality rates. Endoscopic ultrasound (EUS) is a proven alternative to increase early diagnosis and identify potentially curable surgery candidates. However, mastering EUS requires...
Preprint
Full-text available
The field of surgical computer vision has undergone considerable breakthroughs in recent years with the rising popularity of deep neural network-based methods. However, standard fully-supervised approaches for training such models require vast amounts of annotated data, imposing a prohibitively high cost; especially in the clinical domain. Self-Sup...
Article
Full-text available
We propose a simple and efficient clustering method for high-dimensional data with a large number of clusters. Our algorithm achieves high performance by evaluating distances of datapoints with a subset of the cluster centres. Our contribution is substantially more efficient than k-means as it does not require an all to all comparison of data point...
Preprint
Full-text available
The pandemic of COVID-19 is undoubtedly one of the biggest challenges for modern healthcare. From the beginning of the outbreak, new variants have also proven to be even more contagious, accelerating the spread and stressing the healthcare system. In order to analyze the spatio-temporal aspects of the spread of COVID-19, technology has helped us to...
Preprint
We propose a simple and efficient clustering method for high-dimensional data with a large number of clusters. Our algorithm achieves high-performance by evaluating distances of datapoints with a subset of the cluster centres. Our contribution is substantially more efficient than k-means as it does not require an all to all comparison of data point...
Article
Full-text available
The wavelet scattering transform is an invariant and stable signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks...
Preprint
Full-text available
ProSper is a python library containing probabilistic algorithms to learn dictionaries. Given a set of data points, the implemented algorithms seek to learn the elementary components that have generated the data. The library widens the scope of dictionary learning approaches beyond implementations of standard approaches such as ICA, NMF or standard...
Preprint
Full-text available
ProSper is a python library containing probabilistic algorithms to learn dictionaries. Given a set of data points, the implemented algorithms seek to learn the elementary components that have generated the data. The library widens the scope of dictionary learning approaches beyond implementations of standard approaches such as ICA, NMF or standard...
Preprint
Full-text available
The wavelet scattering transform is an invariant signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks. All trans...
Article
Full-text available
We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory (DFT). Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant “solid harmonic scattering coefficients” that account for different types of interac...
Chapter
We investigate the optimization of two probabilistic generative models with binary latent variables using a novel variational EM approach. The approach distinguishes itself from previous variational approaches by using latent states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the latent states, a...
Preprint
Full-text available
We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory. Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions...
Article
Full-text available
We investigate the optimization of two generative models with binary hidden variables using a novel variational EM approach. The novel approach distinguishes itself from previous variational approaches by using hidden states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the hidden states, and inves...
Article
Full-text available
We introduce a solid harmonic wavelet scattering representation, invariant to rigid motion and stable to deformations, for regression and classification of 2D and 3D signals. Solid harmonic wavelets are computed by multiplying solid harmonic functions with Gaussian windows dilated at different scales. Invariant scattering coefficients are obtained...
Article
Full-text available
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latent...
Thesis
Full-text available
English version The central task of machine learning research is to extract regularities from data. These regularities are often subject to transformations that arise from the complexity of the process that generates the data. There has been a lot of effort towards creating data representations that are invariant to such transformations. However,...
Article
Full-text available
We study optimal image encoding based on a generative approach with non-linear feature combinations and explicit position encoding. By far most approaches to unsupervised learning of visual features, such as sparse coding or ICA, account for translations by representing the same features at different positions. Some earlier models used a separate e...
Article
Full-text available
The energy model is a simple, biologically inspired approach to extracting relationships between images in tasks like stereopsis and motion analysis. We discuss how adding an extra pooling layer to the energy model makes it possible to learn encodings of transformations that are mostly invariant with respect to image content, and to learn encodings...
Conference Paper
We study a novel sparse coding model with discrete and symmetric prior distribution. Instead of using continuous latent variables distributed according to heavy tail distributions, the latent variables of our approach are discrete. In contrast to approaches using binary latents, we use latents with three states (-1, 0, and 1) following a symmetric...

Network

Cited By