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1 Introduction

1.1. For v € C§°(R?) introduce the quadratic form
Xglu] = / {|@Vu + Aul® — gV|u|2} dx
R2

where A € L} _(R* R?) is the vector (magnetic) potential, —V : R? — R is the scalar
(electric) potential, and g > 0 is the coupling constant. We suppose that the function
V' is non-negative, and the multiplier by it is —A-form-compact. Then the quadratic
form y, is lower-bounded and closable in L*(R?) (see [Av.Her.Sim, Sect. 2]). Denote
by H, = H,(A,V) the unique selfadjoint operator generated by the closure of .

Note that since the multiplier by V' is —A-form-compact, it is also Hp-form-compact
(see [Av.Her.Sim, Sect. 2]). Hence, the essential spectrum of H, is independent of ¢:

Oess(Hy) = 0ess(Ho), Vg > 0. (1.1)

Assume that the real point A belongs to the resolvent set o( Hy) of the operator Hy.
Denote by N, (A) the number of the eigenvalues of the operator H, which cross the
point A as the parameter ¢’ grows from zero to the positive value ¢ > 0. More precisely,
we sef
N,(A) == > dim Ker (Hy, — ).
0<g'<yg

Further, assume that the interval [A, u], A < p, belongs to o(Hp), and denote by
N, (X, i) the number of the eigenvalues of the operator H, lying on the interval [\, ).
Then we have

Ng()‘vﬁ‘) = Ng(ﬁ‘) - Ng()‘)-

In the present paper we consider electric potentials V' which decay rapidly at infinity
(for example, potentials satisfying the estimate V(x) < C'|x|~ with @ > 2 and C' > 0,
for |x| large enough).
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1.2. The first result we obtain (see below Theorem 2.1) concerns the asymptotics
of N,(A) as ¢ — oo, the number A € o(Hy) being fixed. We find that under some
additional assumptions about A the main asymptotic term of A,()) is Weylian, i.e.
we have

1
glirgo g NN = yp /R2 V(x) dx. (1.2)
Asymptotic relations similar to (1.2) can be found in [Rai 1] and [Bir.Rai]. However,
in these works only the case of dimensions higher or equal to three has been studied.
The two-dimensional case is, in a way, more difficult, since the Rozenblum-Lieb-Cwikel
estimate and, in particular, its “magnetic” version (see e.g [Sim, Sect. 15]) does not
hold in this case. In Lemma 4.1 below we obtain an estimate which partly substitutes

the “magnetic” Lieb estimate in the two-dimensional case.

1.3. Note that the right-hand side of (1.2) is independent of A. Hence, this formula
entails just the rough estimate

Ny(A 1) = olg), g — o0, [A, p] C o(Ho), (1.3)

but does not provide any precise information about the asymptotic behaviour of
Ny(A, i): the estimate (1.3) does not even imply that N,(A, ) grows unboundedly
as g — oo.
Our second result (see below Theorem 2.2) concerns an asymptotic lower bound of
N,(\, 1t) as g — oo in the case where the magnetic field

b 0Ay 04

T 8:1;1 81'2

is constant and positive. In this case the spectrum of Hy is purely essential and
coincides with a sequence of eigenvalues of infinite multiplicity. More precisely, we
have

o(Hy) = oess(Ho) = |J {Ay}, (1.4)
q=0
where the numbers
Ay :=0(2¢+ 1), g e N:={0,1,2,...},

are known as Landau levels (see e.g. [Av.Her.Sim]). Under some additional assump-
tions about A and V' we get the estimate

liminf g™ "Ny (A 1) 2 C, [\, 4] C o(Hy). (1.5)

where the quantity C is strictly positive. In particular, the estimate (1.5) implies that
N, (A, i) grows unboundedly as g — oo.



2 Formulation of the main results

2.1. For m € Z? set Q,, := (0,1)? + m. Define the space £,, p > 1, as the space of
(classes of ) functions f defined over R? for which the norm

1lley = D 1 fllzr(om)

meZ?2

is finite (see e.g. [Bir.Sol 2]).
We shall say that the electromagnetic potential (A, V) belongs to the class Ky if and
only if the following conditions are satisfied:

(i) The magnetic potential can be written as A = AMD 4+ A®) where AD ¢ (O}

loc

(R* R?)
satisfies the estimates
sup 0AM(x)/02,| < C, j=1,2, k=1,2, (2.1)
xeR?

and |A@|? ¢ L, for some ¢ > 1;
(ii) V € L, for some p > 1, and V > 0.

Remark. Note that if (A, V) € Ky, then the multiplier by V' is —A-form-compact, and
the relation (1.1) is valid.

Theorem 2.1 Suppose that (A, V) € Ky. Assume X € o(Hy). Then the asymptotic
relation (1.2) holds.

Remark. We do not seek for the most general class of magnetic potentials A for which
Theorem 2.1 is valid. Our aim is to consider a class of magnetic potentials which
admits a comparatively brief description and a simple proof of Theorem 2.1, and at
the same time contains the important from physics point of view linear potentials A.

2.2. We shall say that a function f € C°°(R?) belongs to the class D,, o > 0 if and
only if the estimates

oo t0e f(X)

Do | S OB ) = ()

hold for each x € R? and each multiindex 8 = (3, 32) € N?;

We shall say the electromagnetic potential (A, V') belongs to the class Ky, o > 0, if
and only if the following conditions are satisfied:

(i) The magnetic field b is constant;

(ii) The electric potential V' belongs to the class Dy, and V > 0;

(iii) There exists a positive function v € C'(S') such that we have

lim |x]*V(x) = v(%x), X :=x/|x].

|x]—0c0



Remark. If the magnetic field b is constant, we assume without any loss of generality
A=(- 1”252, b%) Hence, the class K3, with a > 2 is contained in the class K;.

It is convenient to remind here the results obtained in [Rai 1] and [Rai 2] (see also
[Rai 3]) concerning the asymptotics of N,(A) as g — oo in the case where (A, V) €
Koo, o € (0,2], and A € p(Hp), i.e. either A < Ag, or Ay < A < Ayqq for some ¢ € N
(see (1.4)). Namely, the asymptotic relations

glggog HaNL(N) = 41; (A, — \)~e /sl v(w)¥*dS(w), a €(0,2), (2.2)
lim g~ (Ing) '\, (A) = (w) dS(w), a =2, (2.3)

g—00

are valid. Note that the series 37 .4 < (Aq ) 2/°“ occurring at the right-hand side of
(2.2) converges if and only if a € (0
If [A, i] € o(Hyp), the asymptotics (2.

2).
2)

entails

lim g~ 2N, (A p) = L/;{ 3 (Aq—t)—H/a} dt /Slv(w)Z/adS(w),oz € (0,2),

g—00 27 Ao
(2.4)

while the asymptotics (2.3) implies just the rough estimate
Ny(A i) = o(glng), g — oc.

Note that the series 37 .5 5, (A — )71 occurring at the right-hand side of (2.4)
is uniformly convergent with respect to ¢t € [\, u] for every o > 0, and not only for

€ (0,2).

Theorem 2.2 Suppose that (A, V) € Kqn, o > 2. Assume [A, ] C o(Hy). Then we
have

b p

.. —2/a > _/  -1-2/a / 2/o

h;gglfg Ny ) > 5om )\ { AZ: (A, — 1) } dt Slv(w) dS(w). (2.5)
G:Ag>

Remark. The quantity at the right-hand side of (2.5) (coinciding with C in (1.5)) is

strictly positive. Hence, the estimate (2.5) implies that N, (A, 1) grows unboundedly

as ¢ — oo under the assumptions of Theorem 2.2.

Our conjecture is that the asymptotic formula (2.4) is valid for all & > 0 and not only
for a € (0,2). The lower bound (2.5) is the first step of the proof of this conjecture.
Unfortunately, at present we are not able to prove the corresponding upper bound.

Asymptotics of the type of (2.4) for o > 0 has been obtained in [Sob] for the operator

d*u
)

hgu == — + pu + gqu
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acting in L*(R). Here p is a periodic potential, ¢ is a perturbation decaying at infinity,
and ¢ is the coupling constant. In this case however some methods from the theory of
the ordinary differential equations have been used. Evidently, those methods are not
applicable in the case considered in the present paper.

3 Notations and preliminaries

3.1. Let T be a linear selfadjoint operator in a Hilbert space H. Then o(T') denotes
the spectrum of T, and oe(7T) denotes its essential spectrum. Let Pz(T) be the
spectral projection of T' corresponding to the interval Z C R. Set

N(A, p; T) = rank Py (), \,p € R, A < p,

N(AT) =rank P_ \y(T), A € R,

Assume that T is a compact linear operator acting in H. For s > 0 set
v(s;T) = rank P o) (T7T).
If, in addition T' = T, put
ni(s; 1) = rank P, ooy (£T), s > 0.

3.2. Set W = V2. Here we remind an important representation of the quantity

Ny(A), A € o(Ho).

Lemma 3.1 ([Bir, Proposition 1.6]) Let A € o(Hy). Then under the hypotheses of
Theorem 2.1 or Theorem 2.2 we have

N,(N) =ni (g7 W(Hy — )W), g > 0. (3.1)

4 Proof of Theorem 2.1

4.1. Let (A, V) € Ky. Introduce the quadratic-forms ratio

/RQ V[ul? dx/a[u] (4.1)

where

alu] := / {|@Vu + Aul* + |u|2} dx,
R2

and u belongs to the domain D[a] of the closure of the quadratic form « defined
originally on C§°(R?). Denote by T'= T'(V) the operator generated by the quadratic-
forms ratio (4.1).



Lemma 4.1 Let (A, V) € Ky. Then the estimate
ni(s;T(V)) < Cs7H Ve, (4.2)

holds for every s > 0 with a constant C' which depends on A and p but is independent
of V and s.

Proof. Denote by T") = T((V) the operator generated by the quadratic-forms ratio
/ Vul? dx/aD[u],u € Dla],
R2

where

aVu) == /R2 {|@Vu + AWy ? 4 |u|2} dx.

Note that the quadratic form afu] — a(V[u] is compact in D[a]. Moreover, for each
u € Dla], u # 0, we have a[u] > 0. Hence, there exists a positive constant ¢ such that
the estimate

au] > caV[u], Yu € Dla].
is valid. Therefore, we get
ny(s;T) < ny(es; T(l)),‘v’s > 0. (4.3)

Next, fix m € Z? and denote by Ty, = T(V) the selfadjoint compact operator
generated by the quadratic-forms ratio
Jo. Vul? dx
Ton (7% + AT 4 o7} &

u € H'(Qm).

Then the minimax principle enatails

—

ny(s;TW) < n(s;Tm), Vs > 0. (4.4)

meZ?

Fix m € Z? and denote by 7)) = T\)(V) the operator generated by the quadratic-

m
forms ratio

Joo V(x + m)w(x)|* dx
Joo HiVw(x) + (A (x + m) — AW(m)) w(x)[* + |w(x)[?} dx’

w e Hl(Qo).

Note that we have

where

(Umu)(x) = exp (—AD(m).x)u(x + m),x € Qp, m € Z>.

Thus we obtain

ny(s;Tm) = ny(s; T), Vs > 0,Vm € Z2. (4.5)
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Taking into account the estimate (2.1) combined with the Lagrange formula
(M (M ' (M :
AV (x4+m) - A7 (m) = /0 x.VA; (m + ) dr, j = 1,2,
we find that the quantity
sup sup |AM(x +m) — AV (m)|

meZ2 xeEQo

is bounded. Hence, there exists a constant ¢; independent of m € Z? such that we
have

/QO {liVew(x) + (AD(x +m) — ADm)) w(x)]* + [w(x)]*} dx >

& /Q [1Ww()]? + [w(x)]*} dx,Vw € H'(Qo). (4.6)

Fix m € Z? and denote by T¥ = T3)(V) the operator generated by the quadratic-

m
forms ratio

Joo V(x + m)w(x)|* dx

Too (VeI + )P} e & 12
Then the estimate (4.6) entails
ny(s; T < ny(eps; T, ¥s > 0,¥Ym € Z2. (4.7)
By [Bir.Sol 1, Theorem 4.12] we have
ny(s;TP) < e,s7 V(. + m)||rr(go), Vs > 0,Vm € Z?, (4.8)

where the constant ¢, is independent of V' and m. Putting together the estimates
(4.3), (4.4), (4.5), (4.7) and (4.8), and taking into account the obvious identity

V(- +m)zoo0) = 1VI[zr(ou), Ym € Z7,
we get (4.2).

4.2. The following lemma implies that it suffices to prove (1.2) for A = —1.

Lemma 4.2 Under the hypotheses of Theorem 2.1 we have

lig(i)gfg_l./\/g()\) = ligglfg_l./\/g(—l), (4.9)
limsup g~ ' N, (A) = limsup g7 ' N, (—1). (4.10)
g—00 g—00



Remark. The advantage of the point —1 € p(Hy) occurring at the right-hand side of
(4.9)-(4.10) in comparison with the arbitrary point A = X € o(Hy), is that the point
—1 is situated below the bottom Ay of o(Hp).

Proof of Lemma 4.2. Writing the resolvent identity
W(Ho - )\)_IW - W(Ho —|— 1)_1W —|— (1 —|— )\)W(HO - )\)_I(HO —|— 1)_1W,

and taking into account the equality (3.1) and the Weyl inequalities for the eigenvalues
of compact operators, we find that it suffices to prove the estimate

v(s; (Ho + 1)_1W) = 0(5_2),3 10, (4.11)
in order to deduce (4.9)-(4.10). Note that we have
v(s;(Ho+ 1)7'"W) < w(s; (Ho + 1)7*W), Vs > 0,

v(s; (Ho 4+ 1)7Y2W) = ng (8% T(W?)), Vs > 0.
Since the class C5°(R?) is evidently dense in the space of (classes) of functions f

1/2
for which the norm (ZmeZQ HfH%QP(Qm)) / is finite, the estimate (4.2) implies that it

suffices to prove (4.11) for W € C5°(R?) (cf. [Bir, Sect. 2]).
The proof of the estimate (4.11) for W € Cg°(R?) is completely analogous to the
demonstration of Lemma 2.7 in [Bir.Rai].

4.3. The following lemma is a special case of Theorem 2.1 for A = —1.
Lemma 4.3 Let (A, V) € Ky. Then we have

lim ¢~ '\, (—1) = i /R V() dx. (4.12)

g—00

The proof of the lemma is quite the same as the one of Theorem 2.1 in [Bir.Rai]. How-
ever, here we apply again the estimate (4.2) instead of the “magnetic” Lieb estimate.

Now the asymptotic relation (1.2) follows immediately from (4.9), (4.10) and (4.12).

5 Proof of Theorem 2.2

5.1. Introduce the selfadjoint operator

d? 5
h::b(—w—l-x),xER,



defined originally on C§5°(R) and then closed in L?(R). The spectrum of h is purely
discrete and consists of simple eigenvalues coinciding with the Landau levels A,, ¢ € N.
The corresponding orthonormal eigenfunctions can be written in the form

fq(x) = ,PQ(J;) exp(—xz/Q),q S vi S R7

where P,, ¢ € N, are polynomials with real coefficients (normalized Hermite polyno-
mials).
Introduce the operator

52
Ho ::/ h dy
R
which is selfadjoint in L*(RZ2 ). Further, set
Vi(a,y) == V(672,671 %y), (a,y) € R,

and define the the operator V, selfadjoint and bounded in LQ(R;Z/), as a pseudodiffer-
ential operator (PDO) with Weyl symbol

‘/b(x -1y - 5)7 (l‘, Y 57 77) S T*Razc,yv
(see [Shu, Chapter 4]). Thus, for u € L*(RZ ) we have
1 N ! !
(Vu)(a.y) = W/m exp {i[¢.(x —2) + 1.(y — )]}

1 1
x Vi (5(1‘ +2') — 1, §(y +y') — §) u(z',y') da'dy'dédn.

For g > 0 set
Hg = Ho - gV.

Lemma 5.1 ([Rai 2, Subsection 2.1]) The operators H, and H, are unitarily equiva-
lent.

Since we have (A, ) C [A, ), Lemma 5.1 entails the following elementary inequality
Ny(As ) = N(A s Hy), [A 1] C o(Ho), g > 0. (5.1)
5.2. For A < p such that [A, u] C o(Hop) set

A+ L= A
= = , 2

Then the spectral theorem for selfadjoint operators entails
N(A, i Hy) = N (1% (Hy — 7)) (5.3)
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Denote by m the number of the Landau levels smaller than p (hence, amongst the
Landau levels greater than pu, the level A, is nearest to ). Fix an arbitrary integer
M greater than m. Define the orthogonal projection P = Py by

(Par)( Z fie) [ ula ) (e de's w e LHRE).
Since M is finite, the set
Ly = PMLQ(R;Z/)
coincides with Pay D(Hg). Moreover, we have Ly C D(Hp). Put
QEQMizld—PM.

Denote by Fi = Fi, and F; = F;y, respectively the restrictions of the operators
P(H, —v)P(H, —v) and P(H, — v)Q(H, — ) onto the subspace L3;. Obviously,
the operators F; and F; are seltadjoint and bounded in £;. Since the projection P
commutes with the operator Hy — 7, we have

Fy = *PYQVic,, = ¢* (PVE, — PYPVic,,) - (5.4)

The identity
P(H, — ’Y)|,cM Fi + Fo,

combined with the minimax principle, entails
N(T% (Hy, —7)%) > N(7% F + Fa). (5.5)
On the other hand, the minimax principle implies that the inequality
N(r% Fi 4 Fa) 2 N(72 = s Fi) — ny (&3 F2) (5.6)
holds for each ¢ € (0, 7?).

5.3. In this subsection we prove the estimate

lim g=%/“ny (e; Fay) = 0,Ye > 0. (5.7)

g—00

Introduce the operators O(V7), j = 1,2, selfadjoint and bounded in {Lz(Ry)}M_m—l_1
as YDOs with matrix-valued Weyl symbols

. . M
s(])(yﬂ?) = {séi)(ym)}wzm, (y,n) € T"R,,

where

1 T (21—
sU(y,n) = zw/ sz( - 5 ? —n,y—§) 1= f (1) fo(0) dEdaydas,
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p7r€{m7"'7M}7j:172'

Then, according to (5.4), the operator F,, is unitarily equivalent to the operator

g* (O(V?) — O(V)?), and, therefore, we have
ni(e;Fay) = ni(eg0(V?) —O(V)?), e >0, g> 0. (5.8)

The functions s()(y,n) — 5pTVbj(—77, y), p,r € {m,..., M}, belong to the class Dj,41,

pr

J = 1,2. Therefore, the entries 3,,(y,n) of the symbol of the operator O(V?) — O(V)?
satisty S, € Dagg1, p,v € {m,..., M}, (see [Shu, Theorem 23.6]). Hence, we have

ny(5:0(V?) = O(V)?) = O(s %) = o(s %), 5 | 0. (5.9)
The combination of (5.8) and (5.9) yields (5.7).
5.4. Set .
H, = PHgMM,
and

Mi=y—Vri—ce, =7+ Vri—g e (0,77,

the numbers v and 7 being defined in (5.2). Obviously, we have
N(% = &5 F1y) = N(A1, pas Hy). (5.10)

Moreover, the inequality

N(Ars ps Hy) 2 N(pas Hy) — N(A2s Hy) (5.11)

holds for each Ay € (A, p11).
Let u = {uq}M € {LQ(R)}M_WH. Define the operator y(¢) : {L?(R)}M_m-l'1 —

g=m

{L2(R)PT™H by
(X(t)u)q = (A, — t)_l/zuq, ge{m,....M}, t €[\ pul

Set
T(t) == x(HOV)x(1), t € [A, .

Then the Birman—Schwinger principle entails

N(t;Hy) = ni(g 5 T(1), € [N pl. (5.12)
The operator 7(t) can be written as the sum

T(t) = TO(t) + TO0), 1 € [A 4], (513

where 7MW (1) is a WDO with matrix-valued symbol
M
{(SPT(AP - t)_l‘/b(_n7 y)}pﬂ“:m 9 (y7 77) & ,‘Z—‘*].:{:[/7
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while the entries of the symbol of the operator T(3)(¢) belong to the class Dgyi. Uti-
lizing the general results on the spectral asymptotics for WDOs of negative order (see

e.g. [Dau.Rob]), we get
(5 TO(1)) =

iﬁ Z vol {(y,n) € T"Ry : Vi(=n,y) > s(A; —t)} (140(1)), s [ 0, t € [N, p], (5.14)

ny(s;TO(1) = O(s77T) = o(s™), 5 | 0, t € [, . (5.15)
Note that for t € [A, u] and ¢ > m we have

1 .
5=Vl {(y:n) € TRy : Vi(=n,y) > s(Ay — 1)} =

SN, — 2/a4 [, v ds(@)(1 +o(1). s L 0. (5.16)
Putting together (5.1), (5.3), (5.5)=(5.7) and (5.10)-(5.16), and writing

-2/ -2/ 2 [m -1-2/a
(Aq_ﬂl) 2 _(Aq_)‘2) 2 :EA (Aq_t) 12 dt,qE{m,...,M},

we obtain the estimate

liminf g™/ "N (X, 1) >

b M
—Z/A (A, —t)"1-2/ dt/ W) dS(w), YM > m, Y1 € (A ), YAz € (A, 1)

2am /=,
(5.17)
Since the series .
Z A —t —1-2/a _ Z (Aq _ t)—1—2/oz
q=m g:Ag>p
converges uniformly with respect to ¢t € [A, u], and the number £ > 0 in (5.10) as well
as the difference Ay — A1 in (5.11) can be chosen arbitrarily small, we may let M — oo,

Ay L Aand gy T pin (5.17), thus obtaining (2.5).
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