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Asymptotic bounds on the numberof the eigenvalues in the gapsof the 2D magnetic Schr�odinger operatorG. D. Raikov1Institute of Mathematics, Bulgarian Academy of SciencesP.O.B. 3731090 So�a, Bulgaria1 Introduction1.1. For u 2 C10 (R2) introduce the quadratic form�g[u] := ZR2 njiru+Auj2� gV juj2o dxwhere A 2 L2loc(R2;R2) is the vector (magnetic) potential, �V : R2 ! R is the scalar(electric) potential, and g � 0 is the coupling constant. We suppose that the functionV is non-negative, and the multiplier by it is ��-form-compact. Then the quadraticform �g is lower-bounded and closable in L2(R2) (see [Av.Her.Sim, Sect. 2]). Denoteby Hg � Hg(A;V ) the unique selfadjoint operator generated by the closure of �g.Note that since the multiplier by V is ��-form-compact, it is also H0-form-compact(see [Av.Her.Sim, Sect. 2]). Hence, the essential spectrum of Hg is independent of g:�ess(Hg) = �ess(H0);8g � 0: (1.1)Assume that the real point � belongs to the resolvent set %(H0) of the operator H0.Denote by Ng(�) the number of the eigenvalues of the operator Hg0 which cross thepoint � as the parameter g0 grows from zero to the positive value g > 0. More precisely,we set Ng(�) := X0<g0<g dim Ker (Hg0 � �):Further, assume that the interval [�; �], � < �, belongs to %(H0), and denote byNg(�; �) the number of the eigenvalues of the operator Hg lying on the interval [�; �).Then we have Ng(�; �) = Ng(�) �Ng(�):In the present paper we consider electric potentials V which decay rapidly at in�nity(for example, potentials satisfying the estimate V (x) � Cjxj�� with � > 2 and C > 0,for jxj large enough).1Partially supported by the Bulgarian Science Foundation under Grant MM 401/941



1.2. The �rst result we obtain (see below Theorem 2.1) concerns the asymptoticsof Ng(�) as g ! 1, the number � 2 %(H0) being �xed. We �nd that under someadditional assumptions about A the main asymptotic term of Ng(�) is Weylian, i.e.we have limg!1 g�1Ng(�) = 14� ZR2 V (x) dx: (1.2)Asymptotic relations similar to (1.2) can be found in [Rai 1] and [Bir.Rai]. However,in these works only the case of dimensions higher or equal to three has been studied.The two-dimensional case is, in a way, more di�cult, since the Rozenblum-Lieb-Cwikelestimate and, in particular, its \magnetic" version (see e.g [Sim, Sect. 15]) does nothold in this case. In Lemma 4.1 below we obtain an estimate which partly substitutesthe \magnetic" Lieb estimate in the two-dimensional case.1.3. Note that the right-hand side of (1.2) is independent of �. Hence, this formulaentails just the rough estimateNg(�; �) = o(g); g !1; [�; �] � %(H0); (1.3)but does not provide any precise information about the asymptotic behaviour ofNg(�; �): the estimate (1.3) does not even imply that Ng(�; �) grows unboundedlyas g !1.Our second result (see below Theorem 2.2) concerns an asymptotic lower bound ofNg(�; �) as g !1 in the case where the magnetic �eldb := @A2@x1 � @A1@x2is constant and positive. In this case the spectrum of H0 is purely essential andcoincides with a sequence of eigenvalues of in�nite multiplicity. More precisely, wehave �(H0) = �ess(H0) = 1[q=0 f�qg ; (1.4)where the numbers �q := b(2q + 1); q 2 N := f0; 1; 2; : : :g;are known as Landau levels (see e.g. [Av.Her.Sim]). Under some additional assump-tions about A and V we get the estimatelim infg!1 g�2=�Ng(�; �) � C; [�; �] � %(H0); (1.5)where the quantity C is strictly positive. In particular, the estimate (1.5) implies thatNg(�; �) grows unboundedly as g !1. 2



2 Formulation of the main results2.1. For m 2 Z2 set Qm := (0; 1)2 +m. De�ne the space Lp, p > 1, as the space of(classes of) functions f de�ned over R2 for which the normkfkLp := Xm2Z2 kfkLp(Qm)is �nite (see e.g. [Bir.Sol 2]).We shall say that the electromagnetic potential (A;V ) belongs to the class K1 if andonly if the following conditions are satis�ed:(i) The magnetic potential can be written as A = A(1)+A(2) where A(1) 2 C1loc(R2;R2)satis�es the estimatessupx2R2 j@A(1)k (x)=@xjj � C; j = 1; 2; k = 1; 2; (2.1)and jA(2)j2 2 Lq for some q > 1;(ii) V 2 Lp for some p > 1, and V � 0.Remark. Note that if (A;V ) 2 K1, then the multiplier by V is ��-form-compact, andthe relation (1.1) is valid.Theorem 2.1 Suppose that (A;V ) 2 K1. Assume � 2 %(H0). Then the asymptoticrelation (1.2) holds.Remark. We do not seek for the most general class of magnetic potentials A for whichTheorem 2.1 is valid. Our aim is to consider a class of magnetic potentials whichadmits a comparatively brief description and a simple proof of Theorem 2.1, and atthe same time contains the important from physics point of view linear potentials A.2.2. We shall say that a function f 2 C1(R2) belongs to the class D�, � > 0 if andonly if the estimates�����@�1+�2f(x)@x�11 @x�22 ����� � C�hxi����1��2; hxi := (1 + jxj2)1=2;hold for each x 2 R2 and each multiindex � = (�1; �2) 2 N2;We shall say the electromagnetic potential (A;V ) belongs to the class K2;�, � > 0, ifand only if the following conditions are satis�ed:(i) The magnetic �eld b is constant;(ii) The electric potential V belongs to the class D�, and V � 0;(iii) There exists a positive function v 2 C(S1) such that we havelimjxj!1 jxj�V (x) = v(x̂); x̂ := x=jxj:3



Remark. If the magnetic �eld b is constant, we assume without any loss of generalityA = (� bx22 ; bx12 ). Hence, the class K2;� with � > 2 is contained in the class K1.It is convenient to remind here the results obtained in [Rai 1] and [Rai 2] (see also[Rai 3]) concerning the asymptotics of Ng(�) as g ! 1 in the case where (A;V ) 2K2;�, � 2 (0; 2], and � 2 %(H0), i.e. either � < �0, or �q < � < �q+1 for some q 2 N(see (1.4)). Namely, the asymptotic relationslimg!1 g�2=�Ng(�) = b4� Xq:�q>�(�q � �)�2=� ZS1 v(!)2=� dS(!); � 2 (0; 2); (2.2)limg!1 g�1(ln g)�1Ng(�) = b8� ZS1 v(!) dS(!); � = 2; (2.3)are valid. Note that the series Pq:�q>�(�q��)�2=� occurring at the right-hand side of(2.2) converges if and only if � 2 (0; 2).If [�; �] 2 %(H0), the asymptotics (2.2) entailslimg!1 g�2=�Ng(�; �) = b2�� Z �� 8<: Xq:�q>�(�q � t)�1�2=�9=; dt ZS1 v(!)2=� dS(!); � 2 (0; 2);(2.4)while the asymptotics (2.3) implies just the rough estimateNg(�; �) = o(g ln g); g !1:Note that the series Pq:�q>�(�q � t)�1�2=� occurring at the right-hand side of (2.4)is uniformly convergent with respect to t 2 [�; �] for every � > 0, and not only for� 2 (0; 2).Theorem 2.2 Suppose that (A;V ) 2 K2;�, � � 2. Assume [�; �] � %(H0). Then wehavelim infg!1 g�2=�Ng(�; �) � b2�� Z �� 8<: Xq:�q>�(�q � t)�1�2=�9=; dt ZS1 v(!)2=� dS(!): (2.5)Remark. The quantity at the right-hand side of (2.5) (coinciding with C in (1.5)) isstrictly positive. Hence, the estimate (2.5) implies that Ng(�; �) grows unboundedlyas g !1 under the assumptions of Theorem 2.2.Our conjecture is that the asymptotic formula (2.4) is valid for all � > 0 and not onlyfor � 2 (0; 2). The lower bound (2.5) is the �rst step of the proof of this conjecture.Unfortunately, at present we are not able to prove the corresponding upper bound.Asymptotics of the type of (2.4) for � > 0 has been obtained in [Sob] for the operatorhgu := �d2udx2 + pu + gqu4



acting in L2(R). Here p is a periodic potential, q is a perturbation decaying at in�nity,and g is the coupling constant. In this case however some methods from the theory ofthe ordinary di�erential equations have been used. Evidently, those methods are notapplicable in the case considered in the present paper.3 Notations and preliminaries3.1. Let T be a linear selfadjoint operator in a Hilbert space H. Then �(T ) denotesthe spectrum of T , and �ess(T ) denotes its essential spectrum. Let PI(T ) be thespectral projection of T corresponding to the interval I � R. SetN(�; �;T ) = rank P(�;�)(T ); �; � 2 R; � < �;N(�;T ) = rank P(�1;�)(T ); � 2 R:Assume that T is a compact linear operator acting in H. For s > 0 set�(s;T ) = rank P(s2;1)(T �T ):If, in addition T = T �, putn�(s;T ) = rank P(s;1)(�T ); s > 0:3.2. Set W = V 1=2. Here we remind an important representation of the quantityNg(�), � 2 %(H0).Lemma 3.1 ([Bir, Proposition 1.6]) Let � 2 %(H0). Then under the hypotheses ofTheorem 2.1 or Theorem 2.2 we haveNg(�) = n+(g�1;W (H0 � �)�1W ); g > 0: (3.1)4 Proof of Theorem 2.14.1. Let (A;V ) 2 K1. Introduce the quadratic-forms ratioZR2 V juj2 dx=a[u] (4.1)where a[u] := ZR2 njiru+Auj2 + juj2o dx;and u belongs to the domain D[a] of the closure of the quadratic form a de�nedoriginally on C10 (R2). Denote by T = T (V ) the operator generated by the quadratic-forms ratio (4.1). 5



Lemma 4.1 Let (A;V ) 2 K1. Then the estimaten+(s;T (V )) � Cs�1kV kLp (4.2)holds for every s > 0 with a constant C which depends on A and p but is independentof V and s.Proof. Denote by T (1) = T (1)(V ) the operator generated by the quadratic-forms ratioZR2 V juj2 dx=a(1)[u]; u 2 D[a];where a(1)[u] := ZR2 njiru+A(1)uj2 + juj2o dx:Note that the quadratic form a[u] � a(1)[u] is compact in D[a]. Moreover, for eachu 2 D[a], u 6= 0, we have a[u] > 0. Hence, there exists a positive constant c such thatthe estimate a[u] � ca(1)[u];8u 2 D[a]:is valid. Therefore, we get n+(s;T ) � n+(cs;T (1));8s > 0: (4.3)Next, �x m 2 Z2 and denote by Tm � Tm(V ) the selfadjoint compact operatorgenerated by the quadratic-forms ratioRQm V juj2 dxRQm fjiru+A(1)uj2 + juj2g dx ; u 2 H1(Qm):Then the minimax principle enatailsn+(s;T (1)) � Xm2Z2 n(s;Tm);8s > 0: (4.4)Fix m 2 Z2 and denote by T (1)m � T (1)m (V ) the operator generated by the quadratic-forms ratio RQ0 V (x+m)jw(x)j2 dxRQ0 fjirw(x) + (A(1)(x+m)�A(1)(m))w(x)j2 + jw(x)j2g dx ; w 2 H1(Q0):Note that we have Tm = U�mT (1)m Umwhere (Umu)(x) = exp (�iA(1)(m):x)u(x+m);x 2 Q0;m 2 Z2:Thus we obtain n+(s;Tm) = n+(s;T (1)m );8s > 0;8m 2 Z2: (4.5)6



Taking into account the estimate (2.1) combined with the Lagrange formulaA(1)j (x+m)�A(1)j (m) = Z 10 x:rA(1)j (m+ �x) d�; j = 1; 2;we �nd that the quantity supm2Z2 supx2Q0 jA(1)(x+m)�A(1)(m)jis bounded. Hence, there exists a constant c1 independent of m 2 Z2 such that wehave ZQ0 njirw(x) + �A(1)(x+m)�A(1)(m)�w(x)j2 + jw(x)j2o dx �c1 ZQ0 njrw(x)j2+ jw(x)j2o dx;8w 2 H1(Q0): (4.6)Fix m 2 Z2 and denote by T (2)m � T (2)m (V ) the operator generated by the quadratic-forms ratio RQ0 V (x+m)jw(x)j2 dxRQ0 fjrw(x)j2 + jw(x)j2g dx ; w 2 H1(Q0):Then the estimate (4.6) entailsn+(s;T (1)m ) � n+(c1s;T (2)m );8s > 0;8m 2 Z2: (4.7)By [Bir.Sol 1, Theorem 4.12] we haven+(s;T (2)m ) � cps�1kV (:+m)kLp(Q0);8s > 0;8m 2 Z2; (4.8)where the constant cp is independent of V and m. Putting together the estimates(4.3), (4.4), (4.5), (4.7) and (4.8), and taking into account the obvious identitykV (:+m)kLp(Q0) = kV kLp(Qm);8m 2 Z2;we get (4.2).4.2. The following lemma implies that it su�ces to prove (1.2) for � = �1.Lemma 4.2 Under the hypotheses of Theorem 2.1 we havelim infg!1 g�1Ng(�) = lim infg!1 g�1Ng(�1); (4.9)lim supg!1 g�1Ng(�) = lim supg!1 g�1Ng(�1): (4.10)7



Remark. The advantage of the point �1 2 %(H0) occurring at the right-hand side of(4.9){(4.10) in comparison with the arbitrary point � = � 2 %(H0), is that the point�1 is situated below the bottom �0 of �(H0).Proof of Lemma 4.2. Writing the resolvent identityW (H0 � �)�1W = W (H0 + 1)�1W + (1 + �)W (H0 � �)�1(H0 + 1)�1W;and taking into account the equality (3.1) and the Weyl inequalities for the eigenvaluesof compact operators, we �nd that it su�ces to prove the estimate�(s; (H0 + 1)�1W ) = o(s�2); s # 0; (4.11)in order to deduce (4.9){(4.10). Note that we have�(s; (H0 + 1)�1W ) � �(s; (H0 + 1)�1=2W );8s > 0;�(s; (H0 + 1)�1=2W ) = n+(s2;T (W 2));8s > 0:Since the class C10 (R2) is evidently dense in the space of (classes) of functions ffor which the norm �Pm2Z2 kfk2L2p(Qm)�1=2 is �nite, the estimate (4.2) implies that itsu�ces to prove (4.11) for W 2 C10 (R2) (cf. [Bir, Sect. 2]).The proof of the estimate (4.11) for W 2 C10 (R2) is completely analogous to thedemonstration of Lemma 2.7 in [Bir.Rai].4.3. The following lemma is a special case of Theorem 2.1 for � = �1.Lemma 4.3 Let (A;V ) 2 K1. Then we havelimg!1 g�1Ng(�1) = 14� ZR2 V (x) dx: (4.12)The proof of the lemma is quite the same as the one of Theorem 2.1 in [Bir.Rai]. How-ever, here we apply again the estimate (4.2) instead of the \magnetic" Lieb estimate.Now the asymptotic relation (1.2) follows immediately from (4.9), (4.10) and (4.12).5 Proof of Theorem 2.25.1. Introduce the selfadjoint operatorh := b � d2dx2 + x2! ; x 2 R;8



de�ned originally on C10 (R) and then closed in L2(R). The spectrum of h is purelydiscrete and consists of simple eigenvalues coinciding with the Landau levels �q, q 2 N.The corresponding orthonormal eigenfunctions can be written in the formfq(x) := Pq(x) exp (�x2=2); q 2 N; x 2 R;where Pq, q 2 N, are polynomials with real coe�cients (normalized Hermite polyno-mials).Introduce the operator H0 := Z �R h dywhich is selfadjoint in L2(R2x;y). Further, setVb(x; y) := V (b�1=2x; b�1=2y); (x; y) 2 R2;and de�ne the the operator V, selfadjoint and bounded in L2(R2x;y), as a pseudodi�er-ential operator (	DO) with Weyl symbolVb(x� �; y � �); (x; y; �; �) 2 T �R2x;y;(see [Shu, Chapter 4]). Thus, for u 2 L2(R2x;y) we have(Vu)(x; y) = 1(2�)2 ZR4 exp fi[�:(x� x0) + �:(y � y0)]g�Vb �12(x+ x0)� �; 12(y + y0)� �� u(x0; y0) dx0dy0d�d�:For g � 0 set Hg := H0 � gV:Lemma 5.1 ([Rai 2, Subsection 2.1]) The operators Hg and Hg are unitarily equiva-lent.Since we have (�; �) � [�; �), Lemma 5.1 entails the following elementary inequalityNg(�; �) � N(�; �;Hg); [�; �] � %(H0); g � 0: (5.1)5.2. For � < � such that [�; �] � %(H0) set
 = � + �2 ; � = �� �2 : (5.2)Then the spectral theorem for selfadjoint operators entailsN(�; �;Hg) = N(� 2; (Hg � 
)2): (5.3)9



Denote by m the number of the Landau levels smaller than � (hence, amongst theLandau levels greater than �, the level �m is nearest to �). Fix an arbitrary integerM greater than m. De�ne the orthogonal projection P � PM by(PMu)(x; y) := MXq=m fq(x) ZR2 u(x0; y)fq(x0) dx0; u 2 L2(R2x;y):Since M is �nite, the set LM := PML2(R2x;y)coincides with PMD(H0). Moreover, we have LM � D(H0). PutQ � QM := Id� PM :Denote by F1 � F1;g and F2 � F2;g respectively the restrictions of the operatorsP (Hg � 
)P (Hg � 
) and P (Hg � 
)Q(Hg � 
) onto the subspace LM . Obviously,the operators F1 and F2 are selfadjoint and bounded in LM . Since the projection Pcommutes with the operator H0 � 
, we haveF2 = g2PVQVjLM = g2 �PV2jLM � PVPVjLM� : (5.4)The identity P (Hg � 
)2jLM = F1 + F2;combined with the minimax principle, entailsN(� 2; (Hg � 
)2) � N(� 2;F1 + F2): (5.5)On the other hand, the minimax principle implies that the inequalityN(� 2;F1 + F2) � N(� 2 � ";F1)� n+(";F2) (5.6)holds for each " 2 (0; � 2).5.3. In this subsection we prove the estimatelimg!1 g�2=�n+(";F2;g) = 0;8" > 0: (5.7)Introduce the operators O(V j), j = 1; 2, selfadjoint and bounded in fL2(Ry)gM�m+1,as 	DOs with matrix-valued Weyl symbolss(j)(y; �) = ns(j)pr (y; �)oMp;r=m ; (y; �) 2 T �Ry;wheres(j)pr (y; �) := 12� ZR3 V jb �x1 + x22 � �; y � �� ei(x1�x2):�fp(x1)fr(x2) d�dx1dx2;10



p; r 2 fm; : : : ;Mg; j = 1; 2:Then, according to (5.4), the operator F2;g is unitarily equivalent to the operatorg2 (O(V 2)�O(V )2), and, therefore, we haven+(";F2;g) = n+("g�2;O(V 2)�O(V )2); " > 0; g > 0: (5.8)The functions s(j)pr (y; �)� �prV jb (��; y), p; r 2 fm; : : : ;Mg, belong to the class Dj�+1,j = 1; 2. Therefore, the entries ~spr(y; �) of the symbol of the operator O(V 2)�O(V )2satisfy ~spr 2 D2�+1, p; r 2 fm; : : : ;Mg, (see [Shu, Theorem 23.6]). Hence, we haven+(s;O(V 2)�O(V )2) = O(s� 22�+1 ) = o(s� 1� ); s # 0: (5.9)The combination of (5.8) and (5.9) yields (5.7).5.4. Set ~Hg := PHg jLM ;and �1 := 
 �p� 2 � "; �1 := 
 +p� 2 � "; " 2 (0; � 2);the numbers 
 and � being de�ned in (5.2). Obviously, we haveN(� 2 � ";F1;g) = N(�1; �1; ~Hg): (5.10)Moreover, the inequalityN(�1; �1; ~Hg) � N(�1; ~Hg)�N(�2; ~Hg) (5.11)holds for each �2 2 (�1; �1).Let u = fuqgMq=m 2 fL2(R)gM�m+1. De�ne the operator �(t) : fL2(R)gM�m+1 !fL2(R)gM�m+1 by(�(t)u)q := (�q � t)�1=2uq; q 2 fm; : : : ;Mg; t 2 [�; �]:Set T (t) := �(t)O(V )�(t); t 2 [�; �]:Then the Birman{Schwinger principle entailsN(t; ~Hg) = n+(g�1;T (t)); t 2 [�; �]: (5.12)The operator T (t) can be written as the sumT (t) = T (1)(t) + T (2)(t); t 2 [�; �]; (5.13)where T (1)(t) is a 	DO with matrix-valued symboln�pr(�p � t)�1Vb(��; y)oMp;r=m ; (y; �) 2 T �Ry;11



while the entries of the symbol of the operator T (2)(t) belong to the class D�+1. Uti-lizing the general results on the spectral asymptotics for 	DOs of negative order (seee.g. [Dau.Rob]), we get n+(s;T (1)(t)) =12� MXq=m vol f(y; �) 2 T �Ry : Vb(��; y) > s(�q � t)g (1+o(1)); s # 0; t 2 [�; �]; (5.14)n+(s;T (2)(t)) = O(s� 2�+1 ) = o(s�2=�); s # 0; t 2 [�; �]: (5.15)Note that for t 2 [�; �] and q � m we have12�vol f(y; �) 2 T �Ry : Vb(��; y) > s(�q � t)g =s�2=�(�q � t)�2=� b4� ZS1 v(!)2=� dS(!)(1 + o(1)); s # 0: (5.16)Putting together (5.1), (5.3), (5.5){(5.7) and (5.10)-(5.16), and writing(�q � �1)�2=� � (�q � �2)�2=� = 2� Z �1�2 (�q � t)�1�2=� dt; q 2 fm; : : : ;Mg;we obtain the estimate lim infg!1 g�2=�Ng(�; �) �b2�� MXq=m Z �1�2 (�q�t)�1�2=� dt ZS1 v(!)2=� dS(!); 8M > m; 8�1 2 (�; �); 8�2 2 (�; �1):(5.17)Since the series 1Xq=m(�q � t)�1�2=� = Xq:�q>�(�q � t)�1�2=�converges uniformly with respect to t 2 [�; �], and the number " > 0 in (5.10) as wellas the di�erence �2��1 in (5.11) can be chosen arbitrarily small, we may letM !1,�2 # � and �1 " � in (5.17), thus obtaining (2.5).AcknowledgementsThe major part of this work has been done during the author's visit to the ErwinSchr�odinger International Institute of Mathematical Physics, Vienna, in 1995. Ac-knowledgements are due to Prof. T.Ho�mann{Ostenhof for his kind hospitality.12
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