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On the Singularities of the Magnetic Spectral Shift
Function at the Landau Levels

Claudio Fernandez, Georgi Raikov

Abstract. We consider the three-dimensional Schrédinger operators Ho and H4
where Ho = (iV + A)2 — b, A is a magnetic potential generating a constant mag-
netic field of strength b > 0, and Hy+ = Ho £V where V > 0 decays fast enough at
infinity. Then, A. Pushnitski’s representation of the spectral shift function (SSF)
for the pair of operators H4, Hy is well-defined for energies E # 2gb, ¢ € Z.
We study the behaviour of the associated representative of the equivalence class
determined by the SSF, in a neighbourhood of the Landau levels 2¢gb, ¢ € Z.
Reducing our analysis to the study of the eigenvalue asymptotics for a family of
compact operators of Toeplitz type, we establish a relation between the type of the
singularities of the SSF at the Landau levels and the decay rate of V' at infinity.

Résumé. On considére les opérateurs de Schridinger tridimensionnels Ho et Hy
ot Ho = (iV + A)2 — b, A est un potentiel magnétique engendrant un champ
magnétique constant d’intensité b > 0, et H+ = HoxV ou V' > 0 décroit assez vite a
Pinfini. Alors, la représentation obtenue par A. Pushnitski de la fonction du décalage
spectral pour les opérateurs H+, Hg est bien définie pour des énergies E # 2gb, q €
Z 4. On étudie le comportement du représentant associé de la classe d’équivalence
déterminée par la fonction du décalage spectral, au voisinage des niveaux de Landau
2bg, ¢ € Z 4. En réduisant ’analyse a I’investigation de I’asymptotique des valeurs
propres d’une famille d’opérateurs de Toeplitz compacts, on établit une relation
entre le type des singularités de la fonction du décalage spectral aux niveaux de
Landau et la vitesse de la décroissance de V' a ’infini.

1 Introduction

In this paper we analyze the singularities of the spectral shift function (SSF) for the
three-dimensional Schrodinger operator with constant magnetic field, perturbed
by an electric potential which decays fast enough at infinity. Let us recall the
definition of the abstract SSF for a pair of self-adjoint operators. First, let us
consider two self-adjoint operators 7y and 7 acting in the same Hilbert space,
such that 7 — 7o € S1 where S; denotes the space of trace class operators. Then,
there exists a unique function £(.; T, 7o) € L'(R) such that the Lifshits-Krein trace
formula

Te(§(T) — $(Ts)) = / (BT, To)d (B)E, ¢eCF®), (L)

holds (see e.g. [17, Theorem 8.3.3]). Let now Ho and H be two lower-bounded self-
adjoint operators acting in the same Hilbert space. Assume that for some vy > 0,
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and )¢ € R lying strictly below the infima of the spectra of Ho and H, we have
that
(H — )\0)77 — (HO - )\0)77 € 5. (12)

Set

E(B; 1, Ho) = { SEUE ) AT (= de) ) B>

Then, similarly to (1.1),
Te(d(H) — $(Ho)) = / E(B;H, Ho)¢(E)AE, ¢ € CE(R),

(see [17, Theorem 8.9.1]). The function &(.; H,Ho) is called the SSF for the pair
of the operators H and Hy. Evidently, it does not depend on the particular choice
of v and A in (1.2). If E lies below the infimum of the spectrum of Hg, then the
spectrum of H below E could be at most discrete, and we have

§(E;H, Ho) = —N(E; H) (1.3)

where N(E;H) denotes the number of eigenvalues of H in the interval (—oo, E),
and counted with the multiplicities. On the other hand, for almost every E in
the absolutely continuous spectrum of Hy, the SSF £(E;H, Ho) is related to the
scattering determinant det S(E; H, Ho) for the pair (H,Ho) by the Birman-Krein
formula

det S(E;H, Ho) = e~ 2mie(EiH Ho)

(see [2] or [17, Section 8.4]). A survey of various asymptotic results concerning the
SSF for numerous quantum Hamiltonians is contained in [15].

In the present paper the role of H is played by the operator Hy := (iV + A)? — b,
which is essentially self-adjoint on C§°(R®). Here the magnetic potential A =
(—b22 b1 0) generates the constant magnetic field B = curl A = (0,0,b), b > 0.
It is well-known that o(Hp) = 0ac(Hp) = [0,00) (see [1]), where o(Hp) denotes
the spectrum of Hy, and o,c(Hp) its absolutely continuous spectrum. Moreover,
the so-called Landau levels 2bq, ¢ € Z := {0,1,...}, play the role of thresholds
in O'(HO).

For x = (z1,%2,73) € R® we denote by X, = (z1,z2) the variables on the plane
perpendicular to the magnetic field. We assume that V' satisfies

14 ¢ 07 Ve C(R3)7 0< V(X) < CO<XL)_mJ_ <$3)—m37 X= (XJ_7'Z.3) € R37
(1.4)
with Co > 0, m, > 2, mz > 1, and (z) := (1 + |z|*)"/2, z € R?, d > 1. Most of
our results will hold under a more restrictive assumption than (1.4), namely

V0, VeClR), 0<VE <Cox)™™, m>3, xecR. (L5
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Note that (1.5) implies (1.4) with any mg € (0, m) and m, = m — mg3. In partic-
ular, we can choose m3 € (1,m — 2) so that m > 2.

Set Hy := Hy + V so that the electric potential £V has a definite sign. Ob-
viously, info(Hy) = 0, info(H_-) > —Cp. The role of the perturbed opera-
tor H is played in this paper by Hi. By (1.4) and the diamagnetic inequal-
ity (see e.g. [1]), VY/2(Ho — Xo)~" with Ao < 0 is a Hilbert-Schmidt operator.
Therefore, the resolvent identity implies (Hi — Ao)™! — (Ho — Xg)~! € S; for
Xo < info(Hy) <info(Hyp), i.e. (1.2) holds with H = Hy, Ho = Hp, and v = 1,
and, hence, the SSF £(.; Hy, Hp) exists.

A priori the SSF &(E; Hy, Hy) is defined only for almost every E € R. In Sec-
tion 2 below we introduce a representative &(.; Hy, Hy) of the equivalence class
determined by &(.; Hi, Hp), which is well-defined and uniformly bounded on each
compact subset of the complement of the Landau levels. Moreover, £ is continuous
on R\ 2bZ everywhere except at the eigenvalues, isolated, or embedded in the
continuous spectrum, of the operator H.

The main goal of the paper is the study of the asymptotic behaviour as A — 0
of £(2bg + A; Hy, Hp) with fixed ¢ € Z . Our results establish the asymptotic
coincidence of £(2bq + A; Hy, Hp) with the traces of certain functions of compact
Toeplitz operators. Many of the spectral properties of those Toeplitz operators
are well-known, which allows us to describe explicitly the asymptotics as A — 0
of £(2bq + \; Hy, Hp) in several generic cases. These asymptotic results admit an
interpretation directly in the terms of the SSF, which is independent of the choice
of the representative of the equivalence class. In particular, these results reveal the
link between the type of the singularities of the SSF at the Landau levels, and the
decay rate of V' at infinity.

The paper is organized as follows. In Section 2 we introduce the representative &
of the SSF. In Section 3 we formulate our main results, summarize some known
spectral properties of compact Toeplitz operators, and obtain as corollaries explicit
asymptotic formulas describing the singularities of the SSF at the Landau levels.
Section 4 contains some preliminary estimates. The proofs of our main results can
be found in Section 5. Finally, in Section 6 we prove some of the corollaries of the
main results.

2 A. Pushnitski’s representation of the SSF

2.1. In this subsection we introduce some basic notations used throughout the
paper.

We denote by S, the class of linear compact operators acting in a fixed Hilbert
space.

Let T = T* € Sw. Denote by P;(T) the spectral projection of T' associated with
the interval I C R. For s > 0 set

n+(8;T) := rank P, oo\ (£T).
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For an arbitrary (not necessarily self-adjoint) operator T € S, put
ny(8;T) := ny (8%, T*T), s> 0. (2.1)
If T =T, then evidently
n(s;T) =ny(s,T)+n_(s;T), s>0. (2.2)
Moreover, if T; = T} € S, j = 1,2, then the Weyl inequalities
na(s1 + s2, 71 + To) < na(s1,T1) + ni(s2, ) (2.3)

hold for each s;, s9 > 0.
Further, we denote by S, p € [1,00), the Schatten-von Neumann class of compact

operators for which the norm ||T|, : = (p f0°° sP71in,(s;T) ds)l/p is finite. If T' €
Sp, p € [1,00), then the following elementary inequality

n«(s;T) < s7P||T|3 (2.4)
holds for every s > 0. f T =T* € Sp, p € [1,0), then (2.2) and (2.4) imply
ne(siT) < sPITIE, 5> 0. (25)

Finally, we define the self-adjoint operators Re T' := (T + T*) and Im T :=
3: (T — T*). Evidently,

ne(s;ReT) <2n.(s;T), ni(s;ImT) < 2n.(s;T). (2.6)

2.2. In this subsection we summarize several results due to A. Pushnitski on the
representation of the SSF for a pair of lower-bounded self-adjoint operators (see

(8] - [10]).
Let I € R be a Lebesgue measurable set. Set (1) := + f; 11%. Note that u(R) = 1.

Lemma 2.1. [8, Lemma 2.1] Let Ty =T} € S and Ty =Ty € S1. Then
1
/ ny(sy + so; Ty +tTo) du(t) < ni(sy;Th) + 71_—82||T2||1, s1,82>0.  (2.7)
R
Let Hi+ and Ho be two lower-bounded self-adjoint operators acting in the

same Hilbert space. Let Ao < info(H+) U o(Ho). First of all, assume that (1.2)
holds with H = H_ for some v > 0. Further, let

Vi=+(Hs — Ho) >0, (2.8)
VY2(Ho — Xo) V% € S (2.9)

Finally, suppose that )
V1/2(7'[0 — )Y €S,y (2.10)

holds for some 4’ > 0. For z € C with Im z > 0 set T(2): = V'/?(Hy — 2)~V/2.
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Lemma 2.2. [8, Lemma 4.1] Let (1.2) with H = Hy, and (2.8) — (2.10) hold. Then
for almost every E € R the operator-norm limit T (E +i0) := n —lims o 7 (E +16)
exists, and by (2.9) we have T (E +i0) € Soo. Moreover, Im T (E +i0) € S;.

Theorem 2.1. [8, Theorem 1.2] Let (1.2) with H = Hi, and (2.8) — (2.10) hold.
Then for almost every E € R we have

(B Mo, Ho) = j:/n;(l;ReT(EJriO)+tImT(E+iO)) du(t).
R

Remark. The representation of the SSF described in the above theorem has been
generalized to non-sign-definite perturbations in [6] in the case of trace-class per-
turbations, and in [10] in the case of relatively trace-class perturbations. These
generalizations are based on the concept of the index of orthogonal projections.
We will not use them in the present paper.

Suppose now that V satisfies (1.4). Then relations (1.2) and (2.8) — (2.10)
hold with V =V, Ho = Hp, and vy =+ = 1. For z € C, Imz > 0, set T(z) :=
VY/2(Hy — 2)~'V1/2, By Lemma 2.2, for almost every E € R the operator-norm
limit

T(E+10):=n— EJI}’)I T(E + id) (2.11)

exists, and
ImT(E +1i0) € S;. (2.12)

For trivial reasons the limit in (2.11) exists and (2.12) holds for each E < 0. In
Corollary 4.3 below we show that this is also true for each E € [0,00) \ 2bZ.
Hence, by Lemma 2.1, the quantity [, n+(1;ReT(E +10) 4+t Im T'(E 4 i0)) du(t)
is well-defined for every E € R\ 2bZ . Set
(B Hy, Hy) = + / ne(L; ReT(E +i0) + t In T(E +i0)) du(t), E € R\ 2bZ.
R

(2.13)

By Theorem 2.1 we have

&(B; Hy., Ho) = £(E; H, Ho) (2.14)

for almost every E € R.

Remark. In [4] it is shown that the function & defined on R\ 2bZ is continuous
away from the eigenvalues of the operator Hy. Note that, in contrast to the case
b = 0, we cannot rule out the possibility of existence of embedded eigenvalues,
by imposing short-range assumptions of the type of (1.4) or (1.5): Theorem 5.1
of [1] shows that there are axisymmetric potentials V' of compact support such
that below each Landau level 2bq, ¢ € Z, there exists an infinite sequence of
eigenvalues of H_ which converges to 2bg. On the other hand, generically, the
only possible accumulation points of the eigenvalues of the operators Hy are the
Landau levels (see [1, Theorem 4.7], [5, Theorem 3.5.3 (iii)]). Further information
of the location of these eigenvalues can be found in [4].
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3 Main Results

3.1. In this subsection we formulate our main results. To this end we need some
more notations. Introduce the Landau Hamiltonian

L . 6 b.CL'Q 2 . 8 b.’L‘l 2

i.e. the two-dimensional Schrédinger operator with constant scalar magnetic field
b > 0, essentially self-adjoint on C§°(R?). It is well-known that o(h(b)) = U2,
{2bq}, and each eigenvalue 2bq, q € Z, has infinite multiplicity (see e.g. [1]).

For x,x' € R? denote by P, ;(x,x') the integral kernel of the orthogonal projection

Pq(b) onto the subspace Ker (h(b) — 2bq), ¢ € Z4. It is well-known that

b blx — x'|? b _
Pyp(x,x") = %Lq (%) exp (—Z(|x —x'|2 + 2i(z12h — x'lxz))) (3.2)

(see [7] or [12, Subsection 2.3.2]) where

_Lditte ) - (q) (=p)F
Lq(t) = ae T—kz k k" ; tER, q€Z+,
=0

are the Laguerre polynomials. Note that Py ;(x,x) = lﬁ for each ¢ € Z, and

x € R%. Introduce the orthogonal projections P, : L? (]R3§ — L?(R®), g € Z4, by
(Pu)(X1,23) = ‘/R;P S XL, XDu(X L 23)dX', we L*(R®). (3.3)
Assume that (1.4) holds. Set
W(X1):= /RV(XJ_,xg)dars, X, e R (3.4)
If, moreover, V satisfies (1.5), then
0<W(XL) SCHX )™ X, e R, (3.5)
where C§ = Co [,(xz)~™dx. For q € Z4 and A > 0 introduce the operator
1
wq(A) := mqupq- (3.6)

Evidently, w,()) is self-adjoint and non-negative in L?(R?).

Lemma 3.1. Let U € L"(R?), r > 1, and q € Z4. Then p,Up, € S,.
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Proof. If U € L°°(R?), then evidently ||p,Upq|| < ||U||p. If U € L*(R?), we write
pUpy = pq|U|1/26iargU |U|1/2pq, check that

b o b
llpgl U215 = 5 IUlEe, lle?8 Y [U[*2py I3 = 5 IUlEe,

and conclude that ||pUpglli < %”U”Ll. Interpolating, we get ||pUpqllr <

2 ||U||%.~ which implies the desired result. O

Remark. The proof of Lemma 3.1 follows the idea of the proof of [11, Lemma 5.1].
We include it here in order to make the exposition self-contained.

If A > 0, and V satisfies (1.4) with m > 2 and m3 > 1, then Lemma 3.1
with U = W implies w,(\) € S;.

Theorem 3.1. Assume that (1.5) is valid. Let ¢ € Z 4, b > 0. Then the asymptotic
estimates

£(2bq — A; Hy, Ho) = O(1), 3.7)

and

—ny (1 = €);wy(N) + O(1) < €(2bg — A H_, Ho) < —ny (1 +);wg(N)) + O(1),
(3.8)
hold as X | 0 for each ¢ € (0,1).

Suppose that the potential V satisfies (1.4). For A > 0 define the matrix-
valued function

w11 w12
w21 W22

Wi = Wa(XL) == ( ) , X, eRe, (3.9)

where

w11 = / V(XJ_,ZL‘3) COS2 (\/X$3)d$3, Wao 1= / V(XJ_,SL';;) sin2 (\/X.’L';;)d.’l:;g,
R R

w1 = W21 = / V(Xl,xg) COS (\/X.’E:;) sin (\/X.’E3)d.’ﬂ3
R

Introduce the operator

1
Qp := ——=p,IVapq.- 3.10
q 2\/qu APq ( )

Evidently, Q,()) is self-adjoint and non-negative in L?(R?)2. Moreover, using the
fact that wq(A) € S, it is easy to check that Q,(\) € S; as well.
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Theorem 3.2. Assume that (1.5) is valid. Let ¢ € Z 4, b > 0. Then the asymptotic
estimates

+ 1Tr arctan ((1+¢)7'Q,(\) + O(1) < £(2bg + \; Hy, Hy) <
m

+ 1 Tr arctan (15 6)7'Q,(\) + 0(1)  (3.11)

™

hold as A 1 0 for each € € (0,1).

The proofs of Theorems 3.1 and 3.2 can be found in Section 5. In the fol-
lowing subsection we will describe explicitly the asymptotics of &(2bg — \; H_, Hy)
and £(2bq + X\; Hy, Hy) as A | 0 under generic assumptions about the behaviour
of W(X ) as | X | — oo.

3.2. Relations (3.8) and (3.11) allow us to reduce the analysis of the behaviour as
A— 0of € (2bqg + A\; Hy, Hyp), to the study of the asymptotic distribution of the
eigenvalues of Toeplitz-type operators p,Up,. The following three lemmas concern
the spectral asymptotics of such operators.

Lemma 3.2. [11, Theorem 2.6] Let the function U € C*(R?) satisfy the estimates
0<UXL) <CX1) ™, [VUXL)| S OXL) ™, XL eR,
for some a > 0 and Cy > 0. Assume, moreover, that
U(X1) = wo(X /I XLDIXLT* (1 +0(1)), |Xi] = o0,

where ug is a continuous function on S* which is non-negative and does not vanish
identically. Then for each q € Z 4 we have

b
n (5:p,Upq) = o {XL eR|UXL) >s}| (1+0(1) =
Q/JQ(S;U(),I)) (1+O(1))a 510,
where |.| denotes the Lebesgue measure, and

Ya(8) = Ya(s;ug,b) := s_Q/O‘i/ uo(t)?/%dt, s> 0. (3.12)
Sl

4

Remark. Theorem 2.6 of [11] contains a considerably more general result than
Lemma 3.2. For the sake of the simplicity of exposition, here we reproduce only
the special case of asymptotically homogeneous U.

Lemma 3.3. [13, Theorem 2.1, Proposition 4.1] Let 0 < U € L®(R?). Assume that

InU(X1) = —pX1|*(1+0(1), |Xi|— oo,
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for some B € (0,00), u € (0,00). Then for each q € Z4 we have

n4(s:pgUpg) = pp(s)(1 +0(1)), sl0,
where

©p(s) = pp(s;p,b) := m“nﬂ it g=1, s € (e,00).
F2(In|lns))~!Ins| if 1<f < oo
(3.13)

Lemma 3.4. [13, Theorem 2.2, Proposition 4.1] Let 0 < U € L*(R?). Assume
that the support of U is compact, and that there exists a constant C' > 0 such that
U > C on an open non-empty subset of R%. Then for each q € Z we have

n4(8;p,Upy) = poo(s) (1 +0(1)), 10,

where
Yoo(8) := (In|Ins)~!Ins|, s € (e,00). (3.14)

Remark. For each § € (0,00] and ¢ > 0 we have pg(cs) = ¢g(s)(1+0(1)) as s | 0.

Employing Lemma 3.2, 3.3, 3.4, and the above remark, we find that (3.8)
immediately entails the following corollary.

Corollary 3.1. Let (1.5) hold with m > 3.
i) Assume that the hypotheses of Lemma 3.2 hold with U = W and o = m — 1.
Then we have

£(2bg — N\, H_, Ho) = —% HXL e R|W(X.) > 2&}‘ (1+0(1) =

~hm—1(2VX;u0,b) (1 +0(1)), A10, (3.15)

the function ¥, being defined in (3.12).
i1) Assume that the hypotheses of Lemma 8.3 hold with U = W. Then we have

£(2bg — N H_, Hy) = —ps(VA; p1,b) (1 +0(1)), AL0, B € (0,00),

the functions pg being defined in (3.13).
i11) Assume that the hypotheses of Lemma 3.4 hold with U = W. Then we have

£(2bg — N H_, Hy) = —po(VA) (1 +0(1)), A 1O,

the function o, being defined in (3.14).
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Remark. In the special case ¢ = 0 when —&(—\; H_, Hp) coincides for almost ev-
ery A > 0 with the eigenvalue counting function for the operator H_ (see (1.3)),
relation (3.15) was established for the first time in [16]. Here we use a different
approach related to the one developed in [11].

Similarly, the combination of Theorem 3.2 with Lemmas 3.2 — 3.4 yields the
following corollary.

Corollary 3.2. i) Let (1.5) hold with m > 3. Assume that the hypotheses of Lemma
3.2 are fulfilled for U =W and o = m — 1. Then we have

£(2bqg + \; Hy, Hy) = ﬂ:QLQ arctan ((2VA)"TW(X1))dX 1 (1+0(1)) =
™ R2
1
+

2cos (w/(m — 1))
it) Let (1.5) hold with m > 3. Suppose in addition that V satisfies (1.4) for some
my > 2 and msz > 2. Finally, assume that the hypotheses of Lemma 3.3 are fulfilled
for U =W. Then we have

Ym—1(2V X\ u0,b) (1 + 0(1)), A L0.

- 1
6(2bq+)‘;H:|:aH0) = igwﬁ(\/x;uab) (1+0(1))7 A0, ;8 € (0,00)

ii1) Let the assumptions of the previous part be fulfilled, except that the hypotheses
of Lemma 3.3 are replaced by those of Lemma 3.4. Then we have

E(2ba+ X Ha, Ho) = + 5 poc (VD) (14 0(1)), AL0.

The proof of Corollary 3.2 can be found in Section 6.

3.3. In this subsection we present a possible interpretation of our results directly
in the terms of the SSF £(.; Hy, Hy) which is invariant of the choice of the repre-
sentative of the equivalence class determined by the SSF. For A > 0, and q € Z,
introduce the averaged values of the SSF

n 1 2bq 1 A
===t [ el Hy, Hoyds = / €(2bq — t; Hy, Ho)dt,
A 2bg—A A 0

2bg+A

1 1 [
=500 = 5 €(s; Hy, Ho)ds = X/ €(2bq + t; Hy, Ho)dt.
0

—q,
2bgq

Since &(.; Hy, Hy) € LL (R), the quantities Ei<()\) and Ei>()\) are well-defined

loc

for every A > 0. Applying (2.14), we find that the asymptotic bound E,‘; <(A) =
O(1) as A | 0 follows from (3.7). Further, Corollary 3.1 i) implies

Eq_,<(’\) = - :—:; ¢m_1(2\/X, u07b) (1 + 0(1))7 A ~L 07 m > 37
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while Corollary 3.1 ii) — iii) entails
eV = = 0s(VXi,b) (1+0(1), A40, B € (0,00]-

Finally, it follows from Corollary 3.2 i) that

1 m
2cos(m/(m—1)) m

==+ U (VR u0,b) (14 0(1)), AL0, m >3,

while Corollary 3.2 ii) — iii) implies

=E () =+ % 0s(VAi1,b) (1+0(1)), A L0, B € (0,00].

4 Preliminary estimates

-1
For z € C with Im 2z > 0, define the operator R(z) := (—j—; - z) bounded in
3

L?(R), as well as the operators
T,(2) == VY2P,(Hy — 2)"'VY2 qeZy,

bounded in L?(R?) (see (3.3) for the definition of the orthogonal projection P,).
The operator R(z) admits the integral kernel R,(zs — x4) where R, (z) =
ie?V?71 /(24/z), € R, the branch of \/z being chosen so that Im y/z > 0. More-

over, T,(z) = V'/? (pq(b) ® R(z — 2bq)) Vi,
For A € R, A # 0, define R()\) as the operator with integral kernel Ry (z3 — z%)
where

70 i A<
Ra(z) :=lmRypi5(z) = e SE z € R (4.1)
10 W if A > 0,

Evidently, if w € L%(R) and X # 0, then wR(A\)w € Ss. For E € R, E # 2bgq,
q € Z, set

T,(E) := V1/? (pq(b) ® R(E — 2bq)) V2,

Proposition 4.1. Let E € R, q € Zy, E # 2bq. Let (1.4) hold. Then T,(E) € Sa,
and

ITo(B)|l5 < C1b/|E — 2bq] (4.2)

with Cy independent of E, b, and q. Moreover,

lim |T,(E +i8) — T, (E)l|2 = 0. (4.3)
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Proof. The operator Ty(E) admits the representation

Te(E) =M (Gy @ Jg—2pq) M (4.4)
where M : L?(R?) — L?(IR®) is the multiplier by V(X |, z3)'/2(X 1 )"+/?(x5)™3/2
G,:L? (]Rg(l) — L?(R% ) is the operator with integral kernel

(X 1)L PPy (X, XX )™ /2, X1, X e R,

(see (3.2) for the definition of P, ), while Jy : L*(R,; ) = L*(Ry,) is the operator
with integral kernel

(;1:3)_’"3/27?,,\(303 — x'3)<x'3>_m3/2, z3,75 € R, X e R\ {0} (4.5)
Evidently, [|T,(E)|I3 < |M||*|GqlI3lTe—254ll3- By (1.4) we have [[M[|* < CF.
Further,

15 —amql2 = / IR p—avg (s — o) (wa) ™5 ()™ das iy <

1 2
o
4| E — 2bq| (/R<””3> dmg) '

Finally, since ||Gql| < 1, we have [|G,|3 < [|Gqlli = & [2(X1) ™+dX . Hence,

4.2) holds with C; = % T3)”"™3dx3 > AX 1)~ ™LdX, . To prove (4.3), we
; 87 R R
write

IT,(E +i8) - T, (E)|2 = / / / / V(XL 20V (XL, 2)[Pas(X0, X2
R2JR2JR JR

|RE72bq+i6($3 - ib'g) - REfzbq (5173 - :U'3)|2d:c3dm'3dXJ_de_,

note that lims o RE—2bg+i5 (¥) = RE—25q() for each x € R, and that the integrand
in the above integral is bounded from above for each § > 0 by the L!(R%)-function

1

MV(XL$3)V(Xlawé)\Pq,b(XL,Xi)Pa (X1,23, X, a5) € R°.

Therefore, the dominated convergence theorem implies (4.3). O

Remark. Using more sophisticated tools than those of the proof of Proposition
4.1, it is shown in [4] that for E # 2bg we have not only T,(E) € S,, but also
T,(E) € S1. We will not use this fact here.

Corollary 4.1. Assume that (1.4) holds. Let E € R, q € Z4, E # 2bq. Then
Im T,(E) > 0. Moreover, if E < 2bq, then Im T,(E) = 0.
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Proof. The non-negativity of Im T, (E) follows from the representation
Im T,(E + i6) = 6VY/2P,((Hy — E)? + 8*)7'P, VY2, §>0,

and the limiting relation Im T, (E) = n —lims o Im T, (E + id), E # 2bg, which on
its turn is implied by (4.3). Moreover, if E < 2bg, then (4.1) entails T (E) = T,(E)*
so that Im T,(E) = 0. O

Corollary 4.2. Under the assumptions of Corollary 4.1 we have ImT,(E) € S;.
Furthermore, if E > 2bq, then

b (E —2bg)~'? | V(x)dx. (4.6)

Im T, (B)x = Tr InT,(E) = -
47 R3

Proof. Bearing in mind the representation (4.4), we find that the inclusion
ImT,(E) € S; would be implied by the inclusion G, € S and Im Jg_op, € Si.
The first inclusion follows from Lemma 3.1, and the second one from the obvious
fact that rank Im Jg_apq < 2.

Further, the first equality in (4.6) follows from the non-negativity of the operator
Im T}, (E+140) which is guaranteed by Corollary 4.1. Since the operator Im T (E+i0)
with E > 2bq admits the kernel

VV (X1, 3) cos (\/E " 2bq(xs — a:'3))’Pq,b(XL, X\

V(Xj_amg)a (XJ_,JI3),(X1,.’L’I3) € R3a

1
2/ E — 2bq

the Mercer theorem (see e.g. the lemma on pp. 65-66 of [14]) implies the second
equality in (4.6). O

Proposition 4.2. Let ¢ € Z4, A € R, |A\| € (0,b), and § > 0. Assume that V
satisfies (1.4). Then the operator series

oo

T (2bg + A +i6) := Y Ti(2bg + A +id), (4.7)
l=q+1
T (2bg+ A) := »_ Ti(2bg+ A) (4.8)
l=q+1
are convergent in So. Moreover,
" s _ Cob < —3/2
T, (2bg + Mll5 < == D (2b(1—q) = A) V(x)dx. (4.9)
q 87T I=g11 R3

Finally,
léiﬁ)l ||Tq+(2bq +A+i40) — Tq+(2bq + A)|l2 =0. (4.10)
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Proof. For each ¢',q¢" € Z such that ¢ +1 < ¢' < ¢" < 00 we have

qll q” —1
d?
1Y T+ N3 =1)_VVp® ( prs +2b(1 - )—A) vV <
l=q' I=q’

qll d2 _9
COZTr<pl®< d2+2b(l—)—,\) V):
I=q'

QZ/ o +2bl— Q) — N’ /Rsv(x)dxz

l_l

Cob §
8

I=q'

(2b(1 —q) = N) 32 | V(x)dx. (4.11)

R3

Since the numerical series 37,2 ., (2b(l — q) — A\)73/2 is convergent, and S is a
Hilbert (hence, complete) space, we conclude that (4.11) entails the convergence in
S of the operator series in (4.8), as well as the validity of (4.9). The convergence
of the series in (4.7) is proved in exactly the same manner. Finally, (4.10) follows
from the estimate

|IT;F(2bg + X +i6) — T, (2bg + N)[|3 <

Cob d
2 Lo n
V(x)dx <
")’ l:z;/ne 7+ 20— 0) - V(7 + =) AP +8) Jas VS
Cob _ ®  dy
82— 2b(l —q) — A 7/2/ 7/ V (x)dx.
o 32 =0 =0 [Tt [ Ve
[l

For E = 2bg + A with ¢ € Z4, and A € R, |A| € (0,b], set T,/ (E) :=
T(E) — Ty(E) — T} (E) (see (4.8)). Note that if ¢ = 0, then T, (E) = 0, and if
4> 1, then Ty (E) = S4-¢ Ti(B).

Corollary 4.3. For E = 2bg+ \ with ¢ € Z4 and A € R, |A| € (0,b] the operator-
norm limit (2.11) exists, and

T(E +i0) = T, (E) + Ty(E) + T} (E). (4.12)

Moreover,
Re T(E +i0) = Re T, (E) + Re Ty(E) + T, (E), (4.13)
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Im T(E +i0) = Im T, (E) + Im T,(E) € Si. (4.14)
Proof. Tet § > 0. Evidently, T(E+i8) = Y1, T/(E +i6) + T (E +i6) (see (4.7)).
Proposition 4.1 implies that n — limg o Yo T(E + i6) = T, (E) 4 Ty(E), while
Proposition 4.2 implies that n — limgy 7,7 (E) = T,F(E). Combining the above

two relations, we get (4.12). Relation (4.13) follows immediately from (4.12) and
TH(E) = T, (E)*, while (4.14) is implied by (4.12) and Corollary 4.2. O

5 Proof of the Main Results

5.1. This subsection contains a general estimate which will be used in the proofs
of all our main results. Informally speaking, we show that we can replace the
operator T(E + i0) by T,(E) in the r.h.s of (2.13) when we deal with the first
asymptotic term of §~ (E; Hy, Hp) as the energy E approaches a given Landau level
2bq, q € Z.

Proposition 5.1. Assume that (1.4) holds. Let E = 2bq+\ with g € Z4, and X € R,
|A| € (0,b). Then the asymptotic estimates

/ ni(l+ & ReT,(E) +t TmT,(E)) du(t) + O(1) <
/ ni(1; ReT(E +i0) + ¢ Tm T(E + i0)) du(t) <

/ ni(l —e;ReTy(E) +t Im Ty (E)) du(t) + O(1) (5.1)
R
hold as A — 0 for each e € (0,1).

Proof. Using (4.13) and (4.14), and applying the Weyl inequalities (2.3), we get
/R ni(1+ & ReTy(E) + t In T,(E)) du(t)—
/R ne(e;Re Ty (E) + T (E) + t InT; (E)) dyu(t) <
/Rni(l; ReT(E +i0) +t ImT(E +0)) du(t) <
/Rni(l —&;ReTy(E) +t ImT,(E)) du(t)+

/ ni(;Re T, (E) + T, (E) + t Im T, (E)) du(t). (5.2)
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In order to conclude that (5.2) implies (5.1), it remains to show that
/ ns(&;ReT, (B) + TH(E) + t InT, (E)) du(t) = O(1), A—0,  (53)
R
for each £ > 0. Employing (2.7) and (2.3), we find that

/ni(e;Re T, (E)+ T/ (E)+tImT, (E)) du(t) <

na(e/%ReT, (B) + T} (B)) + [T, (B)|s <

2
ni(e/4;ReT, (E)) +ni(e/4THE)) + EHImTq’(E)Hl, e>0. (5.4)
If ¢ = 0, and, hence, T, (E) = 0, we need only to apply (2.5) with p = 2, and
(4.9), in order to get

_ 200 _
ns(e/4 T, (E)) < 1672 T;H(E)||3 < 52; Z (2b(1—q) = N)7*? | V(x)dx,

l=q+1 R3

(5.5)
which combined with (5.4) yields (5.3). If ¢ > 1 we should also utilize the estimate

g—1
ns(e/4ReT, (B)) < 32e7||T, (B3 < 32e7%qC1bY (2b(g—1) +N)~" (5.6)
=0

which follows from (2.6), (2.4) with p = 2, (4.2), and

g—1

Ty (Bl < o= S @ba ~ )+ 0 [ Ve, (5.7)

1=0 R3

which follows from (4.6). Thus, in the case ¢ > 1, estimate (5.3) is implied by from
the combination of (5.4) — (5.7). O

5.2. In this subsection we complete the proof of the first part of Theorem 3.1.
Since Im T, (2bg—A) = 0 and Re T (2bg—A) = T,(2bg—) > 0if A > 0, Proposition
5.1 implies immediately the following corollary.

Corollary 5.1. Under the hypotheses of Proposition 5.1 the asymptotic estimates
/ n_ (1;ReT(2bg — A+i0) + ¢t InT(2bg — A +i0)) du(t) = 0(1),  (5.8)
R

and
ny(1+&;T4(2bg — A)) + 0(1) <

/ n.(1; Re T(2bg — A +i0) + £ Tm T'(2bg — A + i0)) dp(t) <
R

ny (1 —e;T,(2bg — X)) + O(1) (5.9)
hold as A | 0 for each £ € (0,1).
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Now the combination of (2.13) and (5.8) yields (3.7).
5.3. In this section we complete the proof of the second part of Theorem 3.1. For

q € Z4 and A > 0 define O,(\) : L*(R®) — L?(R®) as the operator with integral
kernel

1 /
m V V(XJ_;:E3) ,Pq,b(XJ_an_) V(Xi,.’lfé), (XJ_7$3)7 (Xj_axg) € Rg'

Proposition 5.2. Under the hypotheses of Theorem 3.1 the asymptotic estimates

ni (1 +€)s; 04(N) + O(1) < ny(55T4(2bg — A)) < ny (1 —€)s;04(A)) + O(1)

(5.10)
hold as A | 0 for each € € (0,1) and s > 0.
Proof. Fix s > 0 and € € (0,1). Then the Weyl inequalities entail
n((1+ £)53 04 (V) — n— (253 Ty(2bg — X) — Oy (V) <
(53 T,(2bg — X)) <
n4 (1 —€)s;04(X)) + ny(e5;Tq(2bg — A) — Oy (A)).
In order to get (5.10), it suffices to show that
(8 Tq(2bg — A) — Og(A)) = 0(1), A0, (5.11)

for every fixed ¢ > 0. Denote by Tq the operator with integral kernel

1
_5\/V(XJ_;$3) |73 — 23] Pyp(X 1, X1 )/ V(X 23),  (X1,23), (X, 23) € R®.
(5.12)
Pick m' € (3,m), and write

Tq = Mm,m'éq,m—m’ & j},?l)Mm,m’
where M, s is the multiplier by the bounded function \/V (X, z3) (X )(m=m/2

(z3)™ /2, (X1, x3) € B, Gymom : L*(R%) = L?(R?) is the operator with integral
kernel

(X 1) OmmmD2p (X X (X)) XL XY e R,

and jﬁ?,) : L2(R) — L?(R) is the operator with integral kernel

1 . !
—5@33) ™2y — ah|(xs) ™2, @3,a% € R
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Since m —m' > 0, Lemma 3.1 implies that the operator éq,m_mf is compact, and
since m' > 3 we have j,gf,) € Ss. Finally, since Mm,m/ is bounded, we find that the
operator Tj is compact. Further,

T, (2bg — A) — Og(A) = Mo Gmemr @ T3 My

where J (A)

m'

A > 0, is the operator with integral kernel

/
_%<$3>—m'/26—%ﬁ|w3_$l3lsinh(M) <$I3>—m’/2’ .’L‘3,$g € R

Applying the dominated convergence theorem, we easily find that limy o ||j7(n)‘,) —
JO|l, = 0. Therefore, T, = n — limy (T, (2bg — A) — O,(\)). Fix ¢ > 0. Choosing
A > 0 so small that ||T,(2bg — \) — O4(\) — T,|| < t/2, and applying the Weyl
inequalities, we get

n(t;Tq(2bg — A) — Og(X)) <

nt(t)2;Ty(2bg — A) — Oy(N) = T,) + n+(t/2;T,) = na(t/2;T,). (5.13)
Since the r.h.s. of (5.13) is finite and independent of A\, we conclude that (5.13)
entails (5.11). [
Proposition 5.3. Assume that (1.4) holds. Then for eachq € Z, A >0, and s >0

we have
n4(5;04(N) = ny (550,(N) (5.14)

(see (3.6) for the definition of the operator wq(X)).
Proof. Define the operator K : L?(R3) — L?(R?) by

(Ku)(X1) = /R/RP DXL, XV (XL, 2h)u(X, 2h) dey dX), X. € R,
where u € L?(R?). The adjoint operator K* : L2(R?) — L?(R?) is given by
(K 0)(X10) = VT [ PaalX0, XX XL, (X,00) € R,
where v € L2(R?). Obviously,
0,0) = ——K*K, w,(\) = ——K K*.

2v/X 2vVA
Since ny (s; K*K) = ny(s; K K*) for each s > 0, we get (5.14). O

Putting together (2.13), (5.9), (5.10), and (5.14), we get (3.8). Thus, we are
done with the proof of Theorem 3.1.

5.4. In this subsection we complete the proof of Theorem 3.2.
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Proposition 5.4. Let g € Z and b > 0. Assume that (1.5) holds. Then the asymp-
totic estimates

ni(s;ReT,(2bg + X)) = O(1) (5.15)
are valid as X\ ] 0 for each s > 0.

Proof. The operator ReT,(2bg + A + i0) admits the integral kernel

1 . ' ’ T
- ﬁ\/V(XJ_,IE:;) sin (\/X|x3 - x3|)Pq,b(XL,XJ_),/V(XL,:U3),
(XJ_;$3):(X3_7$13) € R3'

Arguing as in the proof of Proposition 5.2, we find that n—1limy o Re T, (2bg+ \) =
T, (see (5.12)). Fix s > 0. Choosing A > 0 so small that ||Re T,(2bg+\)—T,|| < s/2,
and applying the Weyl inequalities, we get n(s;ReT,(2bg + ) < ni(s/2;T,)
which implies (5.15). O

Taking into account Propositions 5.1 and 5.4, and applying the Weyl inequal-
ities and the evident identities

1
/ ni(s;tT)du(t) = =Tr arctan (s 'T), s> 0,
R e

where T'=T* > 0, T € S;, we obtain the following

Corollary 5.2. Let q € Zy, b > 0. Assume that V satisfies (1.5). Then the asymp-
totic estimates

L1y arctan (14 ¢)~'Tm T, (2bg + ) + O(1) <
Y

/ n+(1;Re Ty(2bg + A) + t Tm T, (2bg + A))du(t) <
R

1
—Tr arctan (1 — &) 'Im T,(2bg + X)) + O(1) (5.16)
are valid as X | 0 for each € € (0,1).

Proposition 5.5. Assume that (1.4) holds. Then for each q € Z, A > 0, and s > 0,
we have

n (s;1Im Ty (2bg 4 A)) = n4 (53 Q4(X)) (5.17)
(see (3.10) for the definition of the operator Q4(X)). Consequently,

Tr arctan (s~ 'Im T,(2bq + A)) = Tr arctan (s~ ())) (5.18)

for each q € Z4, A > 0.
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Proof. The proof is quite similar to that of Proposition 5.3. Define the operator
K : L*(R3) — L?(R?)? by

Ku:=v = (v1,v2) € L*(R*)?, wu e L*(R?),

where

v1(X]) ::/ /Pq,b(XL,X'L)cos(\/Xmg)\/V(Xj_,xg)u(Xi,mg)da:'3 dx',
r2 JR

UQ(XJ_) = _/Rz_/l;,Pq’b(XL’Xi) Sln(\/X.’L'é)

V(X eh)u(X,oh) doy dX, X, € R,

Evidently, the adjoint operator X* : L?(R?)? — L2(R%) is given by

(K*v) (X 1, 73) 1= cos(vAzs) /T (X 1. 3) /R Pys(X1, X ur (XL) dXL+

sin(vAws)V/V (X1, 73) / Pan(X L, X' )0a(X1) dXY, (X1, 25) € B,
R2

where v = (v1,v2) € L?(R?)2. Obviously,

1 1
Im T,(2bg + ) = —=K*K, Q,(\) = —=KK*.
m Q( q ) 2\/X q( ) 2\/X
Since n4 (s; K*K) = ny(s; KK*) for each s > 0, we get (5.17). O

Now the combination of (2.13), (5.1), (5.16), and (5.18) yields (3.11).

6 Proof of Corollary 2.2

Introduce the matrix-valued functions

WO (X ) = ( v )

W(Z) (XJ_) = W(Z) (XJ_,A) = W)\(XJ_) _ W(l) (XJ_) — ( —W22 W12 )

w21 w22

(see (3.4) and (3.9) for the definitions of W and Wi, respectively), as well as the
operators

Q((JJ) ()‘) : mpqw(])pqa A> 05 /S Z+a J= 1725

compact in L2(R?)2. Evidently, Q¥ (\) € Sy, j = 1, 2.
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Proposition 6.1. (i) Let (1.5) hold with m € (3,4]. Then for each g € Z4, s > 0,
and 0 > 4_Tm, we have

Tr (arctan (s71Q,4(X)) — arctan (s~ Q) (/\))) =0(\%, Alo,  (6.1)

(see (3.10) for the definition of the operator Q4(X)).
(i) Let (1.4) hold with m, > 2, ms > 2. Then for each q € Zy and s > 0 we have

Tr (arctan (s7'Q(\)) — arctan (s~ Q) (,\))) =0@1), Alo. (6.2)
Proof. Applying the Lifshits-Krein trace formula (1.1), we easily get
Tr (arctan (s71Q,(N)) — arctan (s 1Q(l)(/\)))
/ &(E );s LM N) (1 + E?) YE, s>0. (6.3)

Therefore,
‘Tr (arctan (s71Q,()\)) — arctan (s_lﬂgl)(/\))) ‘ <

- _ 1 1
/ [€(F; 5719 (V); s AP )IAE < 119 () = 9P W = Z 19PNl (64)
(see [17, Theorem 8.2.1]). Further,

b
190 < 5 [ V(P wnalX X <

b .
27r\/_ Z / |’w12 XJ_ |dXJ_ < \/X/RQ/RV(XJ"%NSIH(\/X%)'CZ% dXJ_.

(6.5)
Assume now that V satisfies (1.5) with m € (3,4]. Pick 6 > 5™, and m' €
(=26 + 2,m — 2). Then we have

A—I/Z/ /V(XL,x3)|sin(\/Xa:3)|dx3 X, <
R2JR

A70C, / (X, )~ m=max, / (z3) ™™ |z3| 2t das.  (6.6)
R2 R

Since m —m' > 2 the integral with respect to X, € R? is convergent, and since
m' + 26 —1 > 1 the integral with respect to z3 is convergent as well. Now the
combination of (6.3) — (6.6) entails (6.1).

Further, suppose that V satisfies (1.4) with m > 2 and m3 > 2. Then

)\_1/2/ /V(XL,x3)|sin(\/Xx3)|da:3 dX, <
R2JR
Co / (X 1) ™ dX, / (w3) =™ |zs|das.  (6.7)
R2 R
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Putting together (6.3) — (6.5), and (6.7), we get (6.2). O

Now note that if V satisfies (1.5) with m € (3,4], we can choose 5™ < § <

—L_ 50 that in this case Proposition 6.1 entails

m—1
Tr (arctan (5710, ())) — arctan (s~ Q) (/\))) =o(A"V(m=1y X 10. (6.8)

Moreover, if V' satisfies (1.5) with m > 4, then it satisfies (1.4) with m > 2 and
ms > 2, and, hence, (6.2) is valid. Finally,

Tr arctan (s_lﬂgl)()\)) = Tr arctan (s w,(\)) =

* ny (st;we(N)
/0 netti S, s>0, A>0, (69)

(see (3.6) for the definition of the operator w,(A)). Putting together (6.9), (6.8),
and (6.2), we conclude that Corollary 3.2 follows easily from Theorem 3.2 and
Lemmas 3.2 — 3.4.
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