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Discrete Spectrum in the Gaps for Perturbations
of the Magnetic Schrodinger Operator

M. SH. BIRMAN AND G. D. RAIKOV

ABSTRACT. We consider the operator B(a) = A+F—al on Lz(Rd) , where

A=(—iV - 21)2 , A is the vector potential, F, V are electric potentials,
V(x) > 0, a> 0. We obtain a Weyl type asymptotic formula, as o — o0,
for the number of eigenvalues of B(a) that have crossed a fixed point in a
gap of the spectrum of 4 + F .

This paper adjoins [B2], but in fact can be read independently. The main
result is an example of the application of the abstract Theorem 1.2 in [B2].
For earlier results on the discrete spectrum asymptotics for the perturbed
magnetic Schrodinger operator, see the authors’ papers [B1, R].

§1. Formulation of the problem. Statement of the main result

1. Let $ be a Hilbert space, ||-| and (-, -) be the norm and the scalar
product in . If T is a linear operator on %, then D(T) stands for its
domain and p(T) for its resolvent set. If T is compact and s5,(7) are its
singular numbers, then

v(s, T):=card{k:s5,(T) >s}, s>0,

is the corresponding distribution function. If, moreover, T is selfadjoint,
then n (-, T) are the distribution functions for its positive and negative
eigenvalues; clearly v =n,_+n_. Theclass Z,, p >0, is distinguished by
the condition
IT15 := sups’v(s, T) < co.
§>0

We denote by Eg the separable subclass of ZP :
S={TeX,:v(s,T)=0(s"), s—0}.

In the sequel the role of the principal Hilbert space § will be played by
Lz(Rd). Throughout d > 3. For Q C RY, by H'(Q) we denote the Sobolev
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class with the metric form fQ(JVuI2 + Iu|2)dx. The class I;TI(Q) is the
closure of C3°(Q) in H'(Q). Below

D:=-iVv,;
, :=vol{xe]Rd:|x|< 1};

integration without indication of the domain extends over all of R? . By C,
¢ (possibly with subscripts) we denote various constants in the estimates.
For the operator of multiplication by a function, we use the same notation
as for the function itself.

2. Let A(X) = {«A,,...,%,} be the magnetic potential (a real vector-
valued function). Let '

Ae L,  (R;RY). (1.1)

The magnetic Schrodinger operator 4 = A() is introduced with the help of
the sesquilinear form

alu,, u,] = /(D —Du, (D —M)u,dx
whose domain d[a] is given by

dlal = {ue L,(R"):u € H. (R?), alu, u] < = }.

The set d[a] is a complete Hilbert space under the metric form a[u, u] +
||u||2 . The class C;° (]Rd) is dense in d[a]. According to general theory,

alu, v]=(4"%u, 4"y,  dla]=D(4"?).

The free particle energy operator A4(0) corresponds to the potential 2 = 0.
The associated quadratic form is

a(0)[u, u] = [ \Vul’dx,  d[a(0)] = H'(R?).

The operator 4(0) turns out to be extremal in many respects. In particular,
‘the following estimate is true (cf. [AHS, Theorems 2.3, 2.5]).

PROPOSITION 1.1. Let ¢ be multiplication by a measurable function. Then
i -1/2
le(a+7D™ ) < llpa© +7yD~"),  »>0. (1.2)

The following proposition can easily be derived from (1.2) (compare with
Proposition 9.1 from [BS3]).

PROPOSITION 1.2. If for some v > 0
2 2 00y d
loul® < € [(vul +ylulydx,  we Cr®Y,

then with the same C
00, d
lpul® < Clalu, ul +yul®),  we CPRY).



PERTURBATIONS OF THE MAGNETIC SCHRODINGER OPERATOR 77

We emphasize that y = 0 is not forbidden in Proposition 1.2. This propo-
sition implies, in particular, the “magnetic” version of the Hardy inequality

Juf* 4
—>dx < salu, u]. (1.3)
|x| (d-2)

Now let € be a ball. Then

f (Vul + |u?)dx < C(, Q)a[u, ], uedal  (1.4)
Q

Indeed, under condition (1.1), the following inequality can easily be derived
from the Sobolev embedding theorem of limit order:

]91(9 — Wuf’ dx - /AVuizdx’

saf |Vu|2dx+c(e)f wfldx, Ve>o.
Q Q

This, together with (1.3), implies (1.4).
3. Now let us introduce the form
vlu, u] = f V(x)|uldx, (1.5)
V=VeL,,®. (1.6)

By 2V, we denote the function |[V|+V .
Let n (7, s) be the distribution function for the positive eigenvalues (i.e.,
the consecutive maxima) of the quotient of quadratic forms

+o[u, ul/(alu, u] + 7wy, >0 (1.7,)

In other words, n_(y,s) = n (s, T), where T is the operator generated

by the form (1.5) on the space with the metric form afu, u] + y|lu||*. For
y > 0 the quotient (1.7) is considered for u € d[a]. For y = 0 one should
consider (1.7) on the set d[a], the completion of C;° (R%) in the metric

corresponding to the form afu, u]. It should be emphasized that dla] is a
function space by (1.3).
The following Lieb estimate is crucial for what follows.

PROPOSITION 1.3. Under conditions (1.1), (1.6), the following estimate for
n,(y,s) holds:

n,(y,s) < C(d)s_dﬂ[Vid/zdx. (1.8,)
The constant C(d) in (1.8) does not depend on % and on y 2 0.

We make some necessary explanations. Under condition (1.6) the form
a_(a) := a F av is bounded from below and closed on d[a], whatever be

a > 0. Let A _(a) be the operator generated by this form on Lz(Rd).
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Denote by N (7, %, V; a) the number of eigenvalues of 4 () lying to the
left of the point A = —y < 0. Then

-1
NG, % Via)=n(r,a ), (1.9)

and .(1.8,) turns into an estimate for N, . If % = 0, this estimate becomes
the well-known inequality of Rozenblyum, Lieb, and Cwikel (cf., e.g., [RS]
or [BS2]). In [AHS] it was indicated (Theorem 2.15) that Lieb’s method
of deriving estimates for N_(y, 0, V'; a) extends directly to the “magnetic”
case, moreover, the constant in the estimate does not become larger.

REMARK 1.1. Of course, (1.8_) follows from (1.8,) by substituting —V
for V.

4. In what follows we suppose that ¥ in (1.5), (1.6) is nonnegative (the
only exception is Subsection 5 of §2). In accordance to that, (1.5) can be
rewritten as

olu, W] = |[Wul?,  W(x)20, WelL,R%. (1.10)
d

In the case considered, (1.8,) with y > 0 is equivalent to the following
statement.

PROPOSITION 1.4. Let (1.1) be satisfied and W € Ld(Rd). Then for y >0
‘we have

W(Ad+yl) ez, (1.11)

and
= d
W(A+3D)" ", < (€@ IWl, gy, >0 (L12)

5. To pass to the operator 4_ (o) means to incorporate the electric poten-

tial FaW? into the magnetic operator A(A). Here a > 0 is the coupling
constant that we shall suppose large in the sequel. Besides that, we incor-
porate into A(2) an electric potential F that does not contain «. Let us
impose the condition

le(x)Hulzdx <8/|Vu|2 dx+c(a)[|u|2dx,
Ve >0, ueCoRY).

ProPOSITION 1.5. Let the function F satisfy (1.13). Then, with the same
constant c(e), we have

(1.13)

[lF(x)||u|2dx <eafu, ul+c(e)ul’, ve>0, ueCPRY). (1.14)

The proof reduces to a reference to (1.2). It should only be taken into
account that (1.14) is equivalent to the inequality

1/2

1/2 -1
2o e=IFI'"?, y=¢"c(e).

—1/2
loa+yD)""P<e
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REMARK 1.2. A sufficient condition for (1.13) (and then also for (1.14))
is
sup[ |F| dx < oo, Qn.-—_[O,l)d+n, 2r>d.
nezd Qn

This condition is a particular case of condition (2.14) in [B2].

6. Let F =F and (1.14) hold. Then the form &,

b:=a+f, fluy, uy) = (Fu,, u,), (1.15)
is bounded from below and closed on d[a]. The same is true for the form
ba)=bFav=a+fFav, a>0, (1.16)

where v is the form given by (1.10). Let us denote by B, B_ (a) the selfad-

joint operators on L, (]Rd) generated by the forms b, B_(a). Furthermore,

let A=21¢€ p(B). Wedenote by N_(A, B, W; a) the number of eigenvalues
of the operator B_(t) that cross the point A as t increases from 0 to o> 0.
The following theorem is the main result of this paper.

THEOREM 1.1. Suppose that conditions (1.1), (1.13) are satisfied and let the
form v be defined by (1.10). Let the operators B, B, (a) be generated by

the forms b, b_(c) defined in (1.15), (1.16). Then for every A =1 € p(B)

lim o”N, (A, B, W; a) = (2n)_dwd/dex, (1.17)
1ir§°ad/2N_(z,B, W;a)=0. (1.18)

REMARK 1.2. For A <0 the function N_(4, 4, W; -) coincides with the
number of eigenvalues of A4 lying to the left of A. In this case considerations
of variational nature can be applied to obtain asymptotic formulas (see [R],
and also Theorem 2.1 below). The general case can be reduced to the case
B = A, A < 0 with the help of the abstract Theorem 1.2 from [B2]. This
plan of the proof will be implemented in §2.

REMARK 1.3. Gaps inside the spectrum of B can appear, for example, in
the following cases. 1) The potentials %, F are periodic; 2) B = 4 and the
spectrum of A = A() is discrete (“magnetic bottles”; cf., say, [AHS, CV]);
3) the case of constant magnetic field of maximal rank (this is possible only
if d is even).

REMARK 1.4. The asymptotic formula (1.17) was obtained in [B1] under
much more restrictive assumptions on 2. In particular, the boundedness of
2A and divA was required.

§2. Proof of Theorem 1.1

1. Under the assumptions of Theorem 1.1, the relations (1.11), (1.14)
hold. Suppose also that the following relation has already been established

under these assumptions:

-1 0

W(A+D)~ eX, (2.1)
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Then, by virtue of Theorem 1.2 from [B2], (1.18) holds and it is sufficient
to obtain the asymptotic formula (1.17) for B = 4 (that is, for F = 0) and
A < 0. The last result is contained in Theorem 1.1 of [R]. However, here we
shall give an independent argument, differing from that in [R] (see Theorem
2.1 below). Our main objective is to prove inclusion (2.1).

2. We begin with statements of technical nature pertaining to the case of
a bounded domain. Let Q be a ball in R?; by |||l we denote the norm
in L,(2). The following lemma can easily be derived from the Sobolev
embedding theorem of limit order.

LEMMA 2.1. Let h € L,(Q). Then the form ||hu||§1, u € H(Q), is
compact on H 1(Q).

Let us introduce the form a,, closed on L,(Q) and defined on d [ag] =
H' (Q2) by the formula:
aglu, u] := [ |(D—2l)u[2dx = f[Vu a/x <+
-+ I/UZu/a{x 2Re/ uDudx, uecH' (Q). (2.2)

LEMMA 2. 2 Let (1.1) be satisfied. Then the form aglu, u] — HVu”f1 is
compact on H' (Q).

Indeed, by Lemma 2.1, the second (and hence also the third) summand
on the right-hand side of (2 2) is a compact form on H' (Q). |:1

Below we denote by aQ the restriction of a, to d[aQ] = (Q) let Ag
and A be the selfadjoint operators on L,(Q2) generated by the forms aq
and ag respectively.

LEMMA 2.3. Let p =9 € L;,(Q) and

0
ni(y:Q,Ql,(o;'), ni(yagygl)(a;.)

be the distribution functions for the positive spectrum of the quotient of
quadratic forms
2 2,-1 1
£ [ plul dx(aglu, w4 yluly)™, 750, weH\@), 23,)
2 = A
:t:[QqJ|u| dx (aglu, u]+y|[u||f,) o y20, ueH (Q). (24,)

Under condition (1.1), we have the following asymptatic Jormula:

. d/2
lims /
s—0

n (7, Q, 9%, p; s)—hms i()J,Q A,9;95)

= em™a, [ 93 ax 25,)
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PROOF. A power type spectral asymptotic formula for the quotient of two
quadratic forms will not change if a compact perturbation is incorporated
into the denominator (i.e., into the metric form; cf. [BS1, Lemma 1.3]).
Consequently, Lemma 2.2 allows one to replace the form afu, u] in (2.3),
(2.4) by the form ||Vu||f1 , that is, to reduce the verification of (2.5,) to the
case 2 = 0. In this case the desired result is well known (see, e.g., [BS2] or
[Rs]). O | ‘

REMARK 2.1. If ¢ =1, then (2.5,) gives a spectral asymptotic formula
for compact operators (A4, + yI)_1 , y>0, and (Ag2 + )}I)'1 ,720.1n
particular, these operators belong to X, 2

3. Let us return to the operator A = A(2) on Lz(]Rd) .
LEMMA 2.4. Let { € C°(R?), u € D(A). Then {u€D(A) and
A(Lu) — CAu = =2i(VE)(D — X)u — (Al)u =: h. (2.6)
ProoF. The relation u € ®(A4) means that u € Hlf)c(Rd), (D—-Au €
L,(R%) and
alu, yl=(h,v), heL,®’), vyeCO®R). (2.7)

Moreover, h = Au. Substituting {w for w in (2.7), we obtain after ele-
mentary calculations

allu, 1= (Ch+h, ), VyeCo®. (2.8)
Since evidently (u € d[a], we get the desired result from (2.8). 0O
LEMMA 2.5. Let { € CS‘”(R"). Then

1A+ DECw| < CONA+Dull,  ueDA). (2.9)
ProoF. By (2.6) we have
(A + D(Cw)|| < NC(A+ Dull + 1Al

<
< c(Jl(A4 + Du|| + (D — A)u| + lul)).
It remains to take into account the inequalities
1/2
(D — 2A)ull = |4 ull < (4 + Dull, llull < I(4+Du|. O

Observe also the following version of Lemma 2.4 involving the operator
Ag from Subsection 2.

LEMMA 2.6. Suppose that under the assumptions of Lemma 2.4 we have
suppl C Q. Then

Uy = (L) €D(AY),  Agug=Ch+h|y = A(Lu)|,. (2.10)

PROOF. Since u, € H l(Q) , the desired result follows from (2.8) with
weC,(Q). O
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4. Now we proceed to the proof of (2.1). Since clearly (1.12) implies the
estimate 1
W (A+D7, <CIWI, g

it is sufficient to obtain (2.1) for
W e CO(R%) (2.11)
(compare with [B, §2]). In this case a sharper estimate holds.

LEMMA 2.7, Let (1.1), (2.11) be satisfied. Then for A(A) we have the
inclusion
WA+ €, (2.12)

ProOF. The squares of the singular numbers of W (A4+1 )_l coincide with
the consecutive maxima (i.e. the spectrum) of the quotient of quadratic forms

IWul®/I(4+Dul®,  ueD(A). (2.13)

Variational considerations allow one to obtain upper estimates for the spec-
trum of the quotient (2.13). Let Q be a ball, supp W c Q, and the function
{ € C;°(Q) satisfy {(x)W(x) = W(x). Let us use (2.9), (2.10). We obtain

2
IWul® = 1Wugllg, (A +Dull* > ell (45 + Dugly, (¢ > 0),

and so the quotient (2.13) is estimated from above (we omit the constant
factor) by the quotient

IWugllg/l(Ag + Dugllys g € D(AD). (2.14)

Moreover, an arbitrary u, € Q(A?I) instead of the u, from (2.10) can be
allowed in (2.14), and that can only increase the consecutive maxima. Finally,
it is possible to estimate W in the numerator in (2.14) by a constant. Again
omitting a constant factor, we arrive at the spectrum of the quotient

2 0 2 0
”uQIIQ/H(AQ + Dugllg » U, € D(A4g).

The latter coincides with the spectrum of the operator (A?z + 1 )—2. In
view of Remark 2.1, we have (A?z + I)_2 € 24/4. Thus the eigenvalues
(the consecutive maxima) o, of the quotient (2.13) also satisfy the estimate
a, = O(n~%*) . This is equivalent to (2.12).

Along with Lemma 2.7, we have established estimate (2.1) under the as-
sumptions of Theorem 1.1.

S. It remains to establish (1.17) for A =B, A= -y < 0. Let us prove a
somewhat more general statement. As in Subsection 3 of §1, we assume that
the form v is defined by (1.5), (1.6) rather than by (1.10). The operator
A, (@) is generated by the form a — av, a > 0; N (y,%,V;a) is the
number of eigenvalues of 4_(a) lying to the left of A= -y <0.
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THEOREM 2.1. Let (1.1), (1.6) be satisfied. Then

lim o N, (7,9, V;a) = (2n)““’wd/Vf’2dx, 20, (2.15)

ax—0C

PRrROOF. By virtue of (1.9), the problem is equivalent to that of determining
the asymptotics for n_(y, s) (we recall that this is the spectrum distribution
function for the quotient (1.7_)). Estimate (1.8) enables us to restrict our-

selves to calculating the asymptotics under the condition V € C;° (Rd) . Let
Q be a ball, supp ¥ C Q. The lower estimate for n_(y,s) follows if we
pass from (1.7,) to the quotient (2.4,) with ¢ = V. Similarly for y >0,
the upper estimate follows by passing to the quotient (2.3_.) with ¢ = V.

If y = 0, one should first add the form ||u||§2 to the denominator of the
quotient (1.7.). By (1.4), this form is compact with respect to the form a,
and hence adding this form does not change the asymptotics of z_(0, s).
After that the upper estimate follows by passing to the quotient (2.3 ) with
@ =V, y =1. These two-sided estimates together with (2.5, ), (1.9) lead
to (2.15). O

If the form v is defined by (1.10) and y > 0, then evidently

N+(ys le V, a)=N+(—)1, A, W,a)

Therefore, once the asymptotic formula (2.15) established, the proof of The-
orem 1.1 is complete.

Finally we note that the second-named author has established (cf. [R, Theo-
rem 1.1]) that the asymptotic formula (2.15) holds forevery y = -4, A < 4,;
here A, is the lower bound of the essential spectrum of A(%). If 4, =0,
then formally (2.15) with y = 0 is not implied by this result, but can be
obtained by the method of [R]. The proof of Theorem 2.1 presented here is
slightly simpler than the argument in [R].
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