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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 22(1&2), 71-97 (1997) 

THE ESSENTIAL SPECTRUM OF A LINEAR 
MAGNETOHYDRODYNAMIC MODEL 
CONTAINING A VACUUM REGION 

Section of Mathematical Physics 
Institute of Mathematics and Informatics 

Bulgarian Academy of Sciences, 
P.O.B. 373, 1090 Sofia, Bulgaria 

1 Introduction 

1.1. The essential spectrum of the force operator of the ideal linear magnetohy- 
drodynamics has been extensively studied in the mathematical literature (see 
e.g. [A.L.M.S, Section 51, [Des.Gey], [Kako 11, [Kako 21, [Kako 31, [Lan.Mol], 
[Rai 11, [Rai 2, Section 41). However, all the rigorous from mathematical point 
of view works on this topic concern the magnetohydrodynamic (MHD) model 
of a plasma confined in a bounded domain 0, c R3 with perfectly conducting 
boundary. On the other hand, there exists another MHD model which is more 
realistic from physical point of view. According to this model, the plasma re- 
gion 0, is surrounded by a vacuum region 0, whose boundary consists of two 
disjoint surfaces S p  and S,. The surface S p  coincides with the plasma-vacuum 
interface, while the outer surface S ,  is perfectly conducting. The interaction 
between the plasma filling 0, and the exterior magnetic field is described by 
the MHD equations, while the dynamics of the electromagnetic field in the 
vacuum region 0, is governed by the Maxwell equations. Usually the domains 
0, and 0, are assumed to be axisymmetric. In other words, they are obtained 
by the rotation of two plane domains R, and R, (0,  being surrounded by R,), 
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72 RAIKOV 

around an axis situated at a positive distance from the closure of R, U R,. In 
the case where the ratio of the small and the large characteristic radii of the 
toroidal domain 0, U 0, is sufficiently small, one may consider 0, and, respec- 
tively, 0, as the cylindrical manifolds R, x S1 and, respectively, R, x S1 where 
S1 := R/2nZ. This is the exact meaning of the notations 0, and 0, adopted 
in the present paper. We denote by I', and r, respectively the boundaries of 
R, and Q,. Thus we have S, = r, x S1 and Sv = rv x S1. 

1.2. The stationary (i.e. independent of time) equilibrium of the plasma - 
occupying 0, is given by the macroscopic velocity V : 0, -, R3, the exte- - - 
rior magnetic field B, : 0, -, R3, the pressure P : 0, -+ [O,m), and the 
mass density Q : -+ (0, m). Moreover, we denote by y > 1 the constant 
adiabaticity index. 

Throughout the paper we assume that the plasma equilibrium is static, 
i.e. we have 

V 0 in 0,. 

The plasma equilibrium quantities P and B, satisfy the equations 

V P  = [rot B,, B,] in O,, (1.1) 

div B, = 0 in 0,. (1.2) 

The equilibrium mass density Q is an arbitrary sufficiently smooth strictly 
positive function over q. 

The stationary equilibrium vacuum magnetic field B, satisfies the equa- 
tions 

rot B, = 0, 
in 0,. 

div B, = 0, 

Moreover, the equilibrium quantities P, B, and B, satisfy the boundary con- 
ditions 

(n,B,) = 0 on S,, (1.4) 

(n,B,)  = 0 on S,, (1.5) 

1 1 1 ~ :  = P + -B: on S,, 2 (1.6) 

(fi,B,) = 0 on S,, (1.7) 

where n (respectively, n )  denotes the unit normal to S, (respectively, to S,) 
vector exterior with respect to 0, (respectively, to 0 , ) .  More details concern- 
ing the physical approach to the plasma equilibrium could be found in [Frei], 
and a rigorous mathematical approach to this problem is contained in [Tem]. 

1.3. The linear perturbations V1,  BPs1, PI, and B,,1 of the equilibrium 
quantities V ,  B, ,P, Q and B, can be written in the terms of the displacement 
vector 
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LINEAR MAGNETOHYDRODYNAMIC MODEL 73 

and the equilibrium quantities themselves. Here t denotes the time, and x E 0, 
denotes the spatial variable. The vector [ ( t ,  x)  satisfies the mixed problem 

Here we have used the notations 

and 

where 
RE = rot A, 

and A is the solution of the following auxiliary boundary-value problem: 

rot rot A = 0 in O,, 
[n,  A ]  = - ( T O  Bw on S,, (1.10) 
[ i i , A ] = O  on S,. 

The existence of solutions of the boundary-value problem (1.10) follows from 
[Mor, Theorem 7.8.21. Obviously, the mapping R is linear and continuous as 
a mapping from the Sobolev space of vector-valued functions ( ~ ' ( 0 , ) ) ~  into 
( ~ ~ ( 0 , ) ) ~  as well as from { H ~ ( O , ) } ~  into ( ~ ' ( 0 , ) ) ~  (see below Lemma 3.3). 
Moreover, we have Ker R = (0). 

Remark. Note that we do not claim that (1.10) has a unique solution A ,  
but that this boundary-value problem determines rot A uniquely. 

The linear mixed problem (1.8) was derived heuristically from the orig- 
inal non-linear-problem in the pioneer work [B.F.I<.K] (see also the survey 
article [Frei]). Some rigorous results concerning the derivation of this mixed 
problem can be found in [Lau.Shen] and [Lau]. 

1.4 .  It has been shown in [Ush] and [Lau.Shen] that under some addi- 
tional hypotheses concerning the eciuilibrium, the operator 3 with domain 
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74 RAIKOV 

is symmetric and lower-bounded in the Hilbert space {L2(UP; edx)}3. Note 
that the validity of the inequality 

is one of the important assumptions imposed in [Ush] and [Lau.Shen]; together 
with some hypotheses about the smoothness and the regularity of the equilib- 
rium quantities it guarantees the lower-boundedness of the force operator F 
(see (1.14) and (1.16) below). 

Denote by F the Friedrichs extension of the operator F. The operator 
F is known in the physics literature as the linear MHD force operator. The 
present paper is devoted to the localization of the essential spectrum of the 
operator F related to a particular MHD equilibrium described explicitly below 
in Subsection 2.1. 

The reason of the existence of non-empty essential spectrum of the oper- 
ator F could be explained heuristically in the following manner. The principal 
matrix-valued symbol F(x ,p) ,  (x ,p)  E T'O,, of the operator F is equal to 

( B ~ ( x ) ,  P ) ( ~ P , J ( x ) P ~  + ~ ~ . k ( ~ ) ~ ~ ) ) ; , k = ~  7 

where 
v2 := v i  + v i ,  v i  := y P / ~ ,  v i  := 1Bpl2 /Q. (1.12) 

The quantities v i ,  v i  and v2 have respectively the physical meaning of 
the squares of the Alfvkn velocity, the sound velocity and the magnetosonic 
velocity. 

The eigenvalues p ~ ( x ,  p), p+ (x, p) and p- (x, p) of the matrix F(x,  p) can 
be easily calculated explicitly: 

In the physics literature the eigenvalue p~ is associated with the AlfvCn 
polarization, the eigenvalue p+ - with the fast magnetosonic polarization, 
and the eigenvalue p- - with the slow magnetosonic polarization. Evidently, 
the eigenvalue p+(x,  p) is elliptic under the natural assumption v2(x) > 0, 
x E c, while pA(x,p) and p-(x,p) are not elliptic on the set {(x,p) E T'O, : 

(Bp(x),p) = 0). Moreover, we have p-(x,p) = 0 for all x E such that 
P ( x )  = 0. 

The operator F admits an equivalent description. For 
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LINEAR MAGNETOHYDRODYNAMIC MODEL 75 

(see e.g. [Lau.Shen] or [Ush, Lemma 2.11). Moreover, the  quadratic form a  de- 
fined on Do[a]  is lower-bounded and closable in {L2(Op; e d ~ ) ) ~ .  T h e  operator 
generated by the closed quadratic form a  coincides with the  force operator F 
(see [Ush, Proposition 2.41). 

I t  will be  useful to  compare here the force operator F with t h e  force 
operator Fp occurring in the MHD model related to  a domain O, with perfectly 
conducting boundary. In order to  introduce the operator Fp, one defines the 
quadratic form a ,  on the  domain 

and then closes it in {LZ(Op; e d 1 ) l 3 .  The  operator Fp is defined as the  operator 
generated by the closure of a,. Note that  if we come back to the  MHD model 
containing a vacuum region studied in the present paper, and restrict the  
quadratic form a  on the domain Do[ap] ,  we would get 

(see (1.14), (1.15), ( 1 . 9 ) ,  (1.10) and (1.16)). 
Hence, the operators F and F, could be considered as two different self- 

adjoint realizations of one and the same formal differential operation, corre- 
sponding t o  two different boundary conditions. Since t h e  operators F and Fp 
are not elliptic, one of the  most natural and interesting questions in t h e  spectral 
theory of these two operators is whether their essential spectra  coincide or not. 

1.5. The  paper is organized as follows. In Section 2  we describe the par- 
ticular equilibrium we study, and s tate  the main result of the  article. T h e  equi- 
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76 RAIKOV 

librium is supposed to possess a translational symmetry, so that in Section 3 we 
employ the Fourier decomposition of ( E Do(F) with respect to the negligible 
variable in order to show that F is unitarily equivalent to the orthogonal sum 
CkEZ $F(k) where F (k ) ,  k E Z, are operators selfadjoint in {L2(Rp; edy))3. 
Moreover, we show that the equality u,,,(F) = UkeZ uem(F(k)) holds under 
certain hypotheses. In Section 4 we introduce the auxiliary Neumann-to- 
Dirichlet maps and Dirichlet-to-Neumann maps (see e.g. [Hor], [SyLUhl]) 
which play an important role in the proof of the main result. Further, in Sec- 
tion 5, we use the ideas of the Weyl-Friedrichs decomposition of a vector-valued 
function into an orthogonal sum of a gradient and a divergence-free vector in 
order to show that u,,,(F(k)), k E 2, coincides with the essential spectrum of 
the orthogonal sum c:=, $ F , ( k )  where F,(k), j = 1,2,3, k E Z, are scalar 
operators. In Section 6 we show that u,,,(F,(k)) = 0 and localize ucrs(F3(k)), 
k E Z. Finally, in Section 7 we localize a,,,(Fz(k)), k E Z. 

2 Formulation of the main result 

2.1. In thus subsection we describe the particular MHD equlibrium we inves- 
tigate in this article. 

As stated above, we assume Up = Rp x S1 and 6, = R, x S1 where 
R, c RZ and R, c R2.  Moreover, rp = dR, and F, = dfl, \ r, are supposed 
to be disjoint Cm-smooth closed simple curves. 

For x E Up (respectively, t E U,), we set x = (y,z)  where y E Rp 
(respectively, y E 0,) and z E S'. We assume that the equilibrium quantities 
P, B,, e and B, are independent of the variable z. 

Further, we assume that 

where b, E Cm(q) .  Thus, the equation (1.2) and the boundary condition 
(1.4) are satisfied. In the case where (2.1) holds, the equation (1.1) reads 

1 
P + -bz = const in R,. 

2 (2.2) 

Moreover, we suppose P f 0, bp f 0 in 0,. 
Finally, we assume that 

BY = (O,O, b,) (2.3) 

where b, is a non-zero constant. Thus the equations (1.3) and the boundary 
conditions (1.5) and (1.7) are satisfied. 

Note that (2.3) and (2.2) imply that both sides in (1.6) are (equal) con- 
stants. Moreover, the relations (2.3) and (2.2) entail G = 0 (see (1.11)) and, 
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LINEAR MAGNETOHYDRODYNAMIC MODEL 77 

hence, as [ ( ]  - 0 (see (1 .l4)). 
The motivation for the choice of the particular equilibrium described 

above is explained in Subsection 2.3. 

2.2. In this subsection we state the main result of the article. 
Set 

(see (1.12); in the sequel the notation V A  should be understood as V A  bp / f i ) ,  
and for I; E Z introduce the closed sets 

Here and below we parametrize rp by its arc length s, and denote by f ( s )  the 
restriction onto rp of any quantity f (y) defined over T, or over Ti;. 

Theorem 2.1 Under the hypotheses concerning the equilibrium described in 
the Introduction and in Subsection 2.1, we have 

In order to compare a,,(F) with the essential spectrum of the force 
operator Fp arising in the MHD model with perfectly conducting boundary, 
we recall here the result of Theorem 2.2 and Corollary 2.4 in [Rai 11: 

Comparing (2.4) and (2.5), one finds easily that there exist MHD equilib- 
ria such that the corresponding set a,,,(F) \ a,,,(Fp) is not empty. To our 
knowledge, this effect is described here for the first time not only at rigorous 
mathematical level, but even at heuristic one. 

2.3. In this subsection we discuss the reasons for which we consider the 
particular MHD equilil~rium described in Subsection 2.1. 

First of all, we would like to underline that our aim is not the analysis 
of a general MHD equilibrium. Our result should be considered rather as 
an explicit comparison of ae,(F) and ae,,(Fp) for a particular MHD model; 
as far as we are informed such a result has not been achieved for any MHD 
equilibrium. 
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T h e  plasma equilibrium we consider is a generalization of the  so-called 8- 
pinch model (see e.g. [Frei, Section IV.B.11) where R, is a disk, and b, depends 
only on the distance to  the axis of the circular cylinder 0,. We restrict our 
attention to this simple plasma equilibrium since it  is among the rare MHD 
models for which the  essential spectrum of the operator Fp has been localized 
(see (2.5)). T h e  intrinsic and not quite evident reason for the availability of 
this result is the fact that the force lines of the magnetic field B, are straight 
and parallel to  the generatrix of the cylinder 0,. 

It should be noted that the essential spectrum of the  ideal linear MHD 
equations for quite general equilibria has been studied in various works (see 
e.g. [Ham], [Lif]). In these works, however, the authors prove only tha t  a given 
set C is included in the essential spectrum, but  not tha t  C coincides with the  
essential spectrum. 

Moreover, there exist rigorous results on the  localization of a,,,(F,) for 
some symmetric equilibria (see [Des.Gey], [Kako 11, [Kako 21, [Kako 31, [Rai 2, 
Section 4]), but  they involve only the localization of the  essential spectrum of 
the  force operator F,(k) with fixed wavenumber(s) k corresponding to the  
negligible variable(s). 

In order t o  justify the choice of the vacuum equilibrium (see (2.3)),  we 
need several auxiliary assertions. 

Set 

E := {Y E { H ~ ( o , ) ) ~  : rot w = 0, divw = 0, ( n , ~ ) ~ ~ ~  = 0, ( ~ i . w ) ~ ~ ~  - - 0} . 
(2.6) 

Some well-known facts from the Hodge theory (see e.g. [Mor, Chapter 
71) entail the  following lemma. 

Lemma 2.1 We have dim Z = 2, and the orthogonal (not necessarily normal- 
ized) basis in Z can be written in the form {wl,wz) where wl := (0 ,0 ,1 )  and 
wz := (a2$, -dl$, 0), = $(y) being the unique solution of the boundary-value 
problem 

A$ = 0 in R,, 
$ = 1 on r , ,  
$ =  0 on r,. 

Since B, satisfies (1.3), (1.5), (1.7), we have B, E Z, i.e. 

where cl and c2 are  real constants. The  relation (2.3) is equivalent t o  cz = 0. 
Note that  if c2 # 0, then (1.11) is violated already for some quite simple 

doma.ins 0, (e.g. we have G(s) < 0 for all s E rp in the case where 0, is 
a circular annulus). Even if we had demonstrated that  the operator F was 
lower-bounded despite the violation of (1.11), the picture in the  case c2 # 0 
would change dramatically in comparison with the case c2 = 0. T h e  intrinsic 
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LINEAR MAGNETOHYDRODYNAMIC MODEL 

reason for this phenomenon would be again th e fact that if c2 = 0, the force 
lines of B, are straight and parallel to the generatrix of O,, and if c2 # 0 they 
are not. 

Finally, there is get another methodological reason for the choice of the 
equilibrium studied here. We would like to display clearly enough the re- 
lation between the non-local boundary condition arising in the MHD model 
containing a vacuum region, and the Neumann-to-Dirichlet and Dirichlet-to- 
Neumann maps described below in Section 4. In particular, we would like 
to show that the pseudo-differential methods enter the analysis of the MHD 
model containing a vacuum region in a fairly natural way. If we had consid- 
ered a more general MHD equilibrium, this methodological novelty could be 
completely hidden by the tedious technicalities typical for the MHD theory. 

We hope that we shall be able to extend our analysis to more general 
MHD equilibria in a future work. 

3 Fourier decomposition 

3.1. Expanding [ E D o ( F )  into a Fourier series 

we get 

(see (1.13)), where 

3.2. Our next goal is to introduce the quadratic forms aL1)[q; k], k E Z, 
q E Do[a(')], such that the equality 

holds (see (1.15)). 
Consider the boundary-value problem 
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80 RAIKOV 

( A@ = 0  in O,,. 

where ( E D o [ a ]  ( ~ ' ( 0 , ) ) ~  

Lemma 3.1 The boundary-ualue problem (3.4) has a unique solution @ = 

@(<) E H1(O"). 

Proof. The  lemma concerns a classical result on the solvability of the Neu- 
mann boundary-value problem for the  Laplace equation in a three-dimensional 
bounded cylindrical manifold (see e.g. [Vla, Theorem 23.11 where a slightly 
different version of the lemma is proved). We shall just note that  if we put 

then the condition JaO, dS = 0  guarantees the solvability of the  problem 
(3.4); here the quantity Jao, y d S  should be understood as the  duality pair 
< cp,1 > between H - 1 / 2 ( d 0 , )  and H ' / ~ ( ~ o , ) .  

Lemma 3.2 The operator R introduced in (1.9) is uniquely defined b y  the 
relation 

R( = v@(c) + 5 / ( n .  0 d ~ ,  
24rPl SP 

(3.5) 

where ( E D o [ a ] ,  = @(() i s  the solution of the boundary-value problem (3.4), 
and Irpl denotes the length of I?,. 

Proof. Set 
w = R( - V Q  E rot A - V Q ,  (3.6) 

where A is a solution of the  boundary-value problem (1.10). Then we have 

rot w = rot rot A - rot VCJ = 0, 

divw = div rot A  - ACJ = 0. 

Further, on Sp we have 

aa 
( n ,  W )  = ( n ,  rot A )  - ( n ,  V Q )  = -Div [n ,  A] - - = 

an 

a@ a ( n , ( )  a@ 
Div ( ( n , ( ) B , )  - - = 6,- - - - 

an an - 01 
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LINEAR MAGNETOHYDRODYNAMIC MODEL 81 

where Div denotes the divergence operator acting on the Riemannian manifold 
S,. Analogously, on S, we have 

Therefore, we have w E Z (see (2.6)), and it can be written in the form 

(see Lemma 2.1) with 

It is easy to check the validity of the equalities 

Since (B,,w2) E 0 in El we get a2 = 0. Hence, we obtain 

Combining (3.6) and (3.7), we obtain (3.5). 

Remark. Lemma 3.2 has been proved in a slightly different form in 
[Ush, Proposition 4.71. Heuristically, this result has been known long ago (see 
[Liist.Mar]). We include the proof of Lemma 3.2 for reader's convenience. 

Corollary 3.1 Let t E Do(F) Then we have 

where a([) is the soht ion of the boundary-value problem (3.4), and 

C := (b , /2~lr ,1)~ v01 U,,. (3.8) 

For k E Z, k # 0, consider the boundary-value problem 

where q E Do[a(')] (see (3.3)), and v (respectively, fi) denotes the unit normal 
to r, (respectively, T,) vector, exterior with respect to R, (respectively, 0,). 
Hence, we have (vlql + ~ ~ q 2 ) ~ ~ ~  E H1/'(rp). 
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82 RAIKOV 

Lemma 3.3 The boundary-value problem (3.9) has a unique solution $k = 
& ( I ] )  E H1(R,) ,  k E 2, k # 0 .  Moreover, if € E Do[a] is written in the form 
(3. I ) ,  we have 

where a ( ( )  is the unique solution of the boundary-value problem (3.4). 

Proof. The first assertion of the lemma concerns a classical result on 
the solvability of the Helmholtz equation with purely imaginary non-zero fre- 
quency (see e.g. [Vla]). The second assertion is implied immediately by the 
symmetry of 0,. Note that the Fourier series (3.10) does not contain a term 
corresponding to k = 0 since if we search for a solution Q of (3.4) in the form 
@ ( y ,  z) = d o ( y ) ,  then q!+, should satisfy the boundary-value problem 

and, therefore, 4o = 0. 
Let I] E Do[a( ' )] .  Put 

where dk(7) is the unique solution of the boundary-value problem (3.9). Fur- 
ther, put 

( h f l l t ~ 2 1 7 2 ) d s  , (1 
where C is defined in (3.8). Finally, set 

" ( ' ) I 9 ;  k ]  := k]  + a,(,')h; k], k E Z. 

Corollary 3.2 Let < E D o ( F )  be decomposed into the Fourier series (3.1). 
Then we have 

a [ ( ]  = a ( ' ) ~ ( ~ ) ;  k], 
k € Z  

3.3. It is easy to check that the non-negative quadratic form a( ' )[v;  k ] ,  
k E Z ,  defined on Do[a( ' ) ] ,  is closable in {~'(fl ,;  edy)13 .  Denote by F ( k )  
the selfadjoint operator generated in {L2(R,;  p d y ) l 3  by the closed quadratic 
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LINEAR MAGNETOHYDRODYNAMIC MODEL 83 

form a(')(k). Obviously, the  force operator F is unitarily equivalent to  the  
orthogonal sum CkEZ @ F ( k )  and, hence, we have 

U aess(F(k)) C ~ e s s ( F ) .  (3.11) 
k € Z  

Note that  one cannot exclude n priori the possibility tha t  the set a t  the 
left-hand side of (3.11) is just contained in ues,(F(k)) since certain sequences of 
discrete eigenvalues of the  operators F ( k )  with different k E Z might converge 
to  points which are  in aess(F) but  do not belong to any aess(F(k)),  k E Z. 

Coro l la ry  3.3 Assume that the equality 

Proof. Set 

Evidently, we have 

k2e; = inf {Ia(k)  U IB(k)  U Iv (k) )  ,Vk E Z, 

and, by (3.12), we get 

inf u,,,(F(k)) = k2e;, Vk E Z. 

On the other hand, the inequality vL(y) 5 v ; ( ~ ) ,  y E q, implies 

Therefore, we  obtain 

inf u ( F ( k ) )  > k2e;, Vb E Z. 

Hence, we have 

inf a ( F ( k ) )  = inf a,,,(F(k)) = kZe;,Vk E 2. (3.14) 

Assume at  first that  e; = 0. Note that  e: > 0 since we have assumed 
P $ 0, 6,  8 0. Therefore, k2e: tends to  +m as k2 -+ cu. Thus,  we get 
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T h e  trivial inclusion o,,,(F) 2 u ( F )  then entails 

Assume now that e; is strictly positive. Then (3.14) implies that  for each 
X > 0  the interval [ O , A ]  may contain points of the spectra of a finite number 
of operators F ( I ; ) ,  I; E Z .  Hence, we have 

which entails (3.13). 

The  rest of the paper is devoted to the proof of the  equalities (3 .12) .  

4 Neumann - to - Dirichlet and Dirichlet - 
to - Neumann maps 

4.1 .  Throughout this subsection the parameter k E Z, I; # 0 ,  is fixed. For a 
given f E ~ - ' / ~ ( r ~ )  denote by & = q c ( f )  E H 1 ( R V )  the  unique solution of 
the  boundary-value problem 

-nqk + k2&. = 0 in R,, 

= - f  on rp ,  
= 0  on r,. 

Note that  we have 4 k ( 7 )  = - i l " ^ b , , & ( ~ ~ ~ l  + v2q2)  where & ( 7 )  is the  solution 
of the boundary-value problem (3.9).  

Define the operator Nk : H - ' / ~ ( I ' , )  H '12(rp)  by 

We denote the restriction of NI; onto L 2 ( r p )  in the same way. 
In the sequel we shall use classical pseudo-differential operators (QDOs) 

defined and described briefly for example in [Shu, Subsection 3.71. 

Lemma 4.1 The operator Nk is a selfadjoint positive compact operator in  
L 2 ( r p ) .  Moreover, it is a classical QDO of order -1 whose principal symbol 
can be written in  the local coordinates ( s , ~ )  E T'rp as [ < I - '  for 1 ~ 1  2 1. 

Proof. Let f l  E H ' l 2 ( r p ) ,  f2 E ~ l l ' ( I ' ~ ) .  Set f := ( f l ,  f 2 ) .  Let Uk = 
u k ( f )  E H 1 ( R v )  be  the unique solution of the boundary-value problem 
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Define the operator Vu,k : ~ l / ~ ( d R , , )  + H - 1 / 2 ( a R v )  by 

where g  = ( g l ,  g2) and 

It is well-known that the operator Vv,k is an elliptic classical *DO of or- 
der 1 whose principal symbol can be written as Ic l  for I c l  > 1. Moreover, 
the restriction of V,,k onto H 1 ( d R , )  is a positive definite selfadjoint opera- 
tor in L 2 ( a R , )  (see [H6r, Chapter 111, [Syl.Uhl, Sections 1-21). Since we have 
L 2 ( d R , )  = L 2 ( r , )  $ L 2 ( T , ) ,  the operator VVTk can be considered as a classi- 
cal matrix *DO which can be written as V,,k =  ti + 2):: where D$ is a 
classical matrix selfadjoint QDO of order 1 whose symbol coincides with 

and $1 is a classical matrix @DO of order at most 0. 
Now, let gl E ~ - ' / ~ ( r , ) ,  g2 E H - ' / ~ ( I ' , ) .  Set g := ( g 1 , g 2 ) .  Let Wk = 

W k ( g )  be the solution of the boundary-value problem 

- A W k  + k2 W k  = 0 in R,, 
= -gl on r,, 

g2 On rv. 
Define the operator NVvk : H-' l2 (aRu)  -t H112(dR,)  by 

Nv,kg = f 

Obviously we have 
K,k = D , : ,  Vk E Z ,  k # 0. 

Therefore, the operator Kvk is a classical matrix QDO which can be written 
as = Njk) +N$! where is a classical matrix selfadjoint BDO of order 
-1 whose symbol coincides with 
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Corollary 4.1 Let f E H - 1 / 2 ( r p ) ,  and let $ k ( f )  E H 1 ( R V )  be the solution of 
the boundary-value problem (4.1).  Then we have 

Proof. The identities 

ad- a$ = l p z m d s - l  rv -4ds ac 
imply 

Corollary 4.2 For each k E 2, k # 0, we have 

4.2. It is convenient to introduce here yet another QDO acting in LZ(r , ) .  
For f E H'I2 ( rp )  consider the boundary-value problem 

Define the operator V p  : H 1 I 2 ( r p )  --+ H-'I2 ( r p )  by 

We shall denote the restriction of the operator Dp onto H 1 ( r P )  in the same 
way. 

86 RAIKOV 

for Is1 1 1, and N$ is a classical matrix *DO of order at most -2 (see [Shu, 
Subsection 5.51). 

Let fi E L 2 ( r p ) ,  j2 E L2(r , )  and f = ( f l l  f2) E L2(dR,). Define the 
orthogonal projection P  acting in L2(dflu) by P f  = ( f l ,O) .  I f f  = ( f l ,O)  E 
PL2(dRu)  define the isometric operator 1 : PL2(aR,)  --, L Z ( r p )  by Zf = f l .  
Then we have 

Nk = ZPN-",k P I * .  

Hence, the operator Nk is a positive selfadjoint classical QDO of order -1, and 
it can be written as Nk = Nil) + Ni2) where 4') is a selfadjoint classical 
QDO of order -1 whose symbol coincides with I < \ - '  for Icl 2 1, and ~ i ~ )  is a 
classical *DO of order at most -2. Finally, we note that since I', is a compact 
manifold, any classical QDO of negative order acting in L2(I',) (in particular, 
Nk) is compact. 
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L e m m a  4.2 The operator Vp is selfadjoint and positive-definite in L2(FP). 
Moreover, it is an elliptic classical QDO of order I whose principal symbol 
could be written in the local coordinates (s, <) E T'r, as e(s)l<I for 2 1. 

The lemma follows from the general properties of the Dirichlet-to- Neu- 
mann maps (see [HGr, Chapter 111, [Syl.Uhl, Sections 1-21). 

Corollary 4.3 Let f E H'/~(I',), and let x = ~ ( f )  be the solution of the 
boundary-value problem (4.9). Then we have 

5 Weyl-Friedrichs decomposition 

5.1. Our next purpose is to introduce for each k  E Z the scalar selfadjoint 
operators F,(k), j = 1,2,3,  such that we have 

Note that there is an approximate correspondence respectively between Fl(k) 
and the fast magnetosonic polarization, F2(k) and the AlfvCn polarization, and 
F 4 k )  and the slow magnetosonic polarization. 

The argument in this subsection follows quite closely the analysis in 
[Rai 1, Section 31. Since some differences caused by the change of the boundary 
conditions arise, we do not omit the details just for reader's convenience. 

Introduce the auxiliary differential operators 

Mu := -div e-' V u ,  R k u  := M + kze-'pi, k  E 2, 

on the domain 

Further, set 

Finally, put 

On Do[a(2)] introduce the operator 
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Evidently, u E Do[a(')] entails Uku E D0[a(')]. 

Lemma 5.1 The opevator Uk : ~ ~ [ a ( ~ ) ]  -+ Do[a(')], k E Z, is bijective. 

Proof. Fix q E Do[a(')]. Define 211 as the unique solution of the operator 
equation 

R k u ~  = - ( a m  + 82712 + ikP073). 

Hence, ul E D(Rk) = ~ ~ [ a : ~ ) ] .  Set 

Obviously, us E LZ(R,) = ~[a!)]. Put 

Then we have 
81x1 + 8 2 x 2  = 0 in 0,. 

Fix yo E and set 

where the integration is taken along any piece-wise smooth contour lying in - 
R, and connecting yo with y. Since (5.1) holds, and Rp is simply connected, 
the function fz(y) is well-defined, i.e. independent of the integration contour. 
Put 

1 
U2  = U2 - - / c 2 d ~ .  

volR, n, 

Then we have alu2 = ~ 2 ,  82u2 = -xl (hence, in particular, u2 E H2(Rp)), 
and, moreover, hp u2 dy = 0. Therefore, u2 E ~ ~ [ a f ) ] .  

Finally, it is obvious that Uku = 7. 

Denote by 'H the Hilbert space defined as the closure of Do[a(2)] in the 
norm generated by the quadratic form 

b(')[u] := /n l ~ ~ u l ~  dy, u E  DO[^(')]. 
P 

Note that we have 
3 

b(')[u] = ;C] bil)[uj; b], u = (ul, 142, us) E  DO[^(^)], 
j=1 
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where 

Hence, we have 3-1 = C:=, $'Hj where the Hilbert space 3-1, coincides with the 

set {ul E H1(R,) : ul15 = 0) equipped with a scalar product generated by 

the quadratic form b r ) ,  the Hilbert space 3-12 coincides with the set 

equipped with a scalar product generated by the quadratic form b f ) ,  and the 
Hilbert space X 3  coincides with the set L 2 ( R p )  equipped with a scalar product 

generated by the quadratic form b t ) .  
Set 

u ( ~ ) [ u ]  := a(')[ZAku], u E ~ ~ [ a ( ~ ) ] .  

The non-negative quadratic form a( ' )[u;  k ]  is, evidently, closable in 3-1, and the 
selfadjoint operator p ( k )  generated by the closed quadratic form d 2 ) ( k )  in 'H 
is unitarily equivalent to F ( k ) ,  k E 2. Hence, in particular, we have 

u=(F(k)) = oess(F(k)), Vk Z. (5.2) 

5.2. Let the scalar product in some Hilbert space H be generated by 
the quadratic form qo[u], u E H .  Let q[u] be a closed lower-bounded quadratic 
form in H. We shall discuss the spectral properties of the quadratic-forms 
ratio q/qo meaning the corresponding properties of the selfadjoint operator 
generated by the quadratic form q in the Hilbert space H. In particuIar, the 
equality (5.2) could be re-written as 

L e m m a  5.2 Let the scalar product in some Hilbert space H be generated by the 
quadratic form qo. Let q be a closed non-negative quadratic form in  H .  Further, 
let ql be a real-valued quadratic form compact in  H such that the quadratic 
form qo + q, is positive-definite. Finally, let q2 be a real-valued quadratic form 
compact in the Hilbert space with a scalar product generated b y  the quadratic 
form q[u] + qo[u], u E D[q].  Then we have 

Lemma 5.3 Let the scalar product in some Hilbert space H be generated by 
the quadratic form qo. Let q be a bounded real-valued quadratic form in  H .  
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Further, let H I  be a subspace of H such that dim H 9 H 1  < m. Denote by qo 
(respectively, by 4) the restriction of qo (respectively, of q) onto H I .  Then we 
have 

g e s s ( 4 / 4 0 )  = aess(q/qo). 

Lemmas 5.2-5.3 follow easily from the well-known Weyl theorem about 
the invariance of the essential spectrum of selfadjoint operators under rela- 
tively compact perturbations (see [Re.Sim, Section XIII.41). 

5.3. Set 

b12)[u1; k ]  := b r ) [ u l ;  k ] ,  ul  E D[b?)(k)] =: D[b?)(k)] ,  k E Z.  

Further, put 
a f ) [ u 2 ;  k ]  := 

b!"[u2] := / { e l v u 2 l 2  + I U ~ I ' }  dy,  u ,  E H1(fl , )  =: D[b$]. 
RP 

Note that we have 

Next, set 

dim ~ [ b f ) ]  8 ~ [ b : ' ]  = 1 .  

b f ) [u3]  := elu312 dy,  E D[@)]  =:  by)]. 
P 

Finally, put 

3 
( 2 )  b ( 2 ) [ ~ ;  I;] := bj [ u j ;  k ] ,  u = ( u l ,  ~ 2 , 2 1 3 ) ~  U ,  E  by)], j = 1 ,2 ,3 ,  k E Z.  

j = 1  

Note that we have 
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Using the compactness of the embedding H 1 ( R p )  -+ L 2 ( R p )  and the compact- 
ness of the operator M-'I2,  we get the following result. 

Proposi t ion  5.1 For each k E Z the quadratic form b(2)[u;  k ]  - b( ' )[u;  k ]  is 
compact in  the Hzlbert space with the scalar product generated b y  the quadratic 
form b ( 2 ) ( k ) .  

Now, note that for k E Z, k # 0, we have 

C Z ( ~ ) [ U ;  k ]  - u ( ~ ) [ u ;  k] = 

where the vector-valued function curl u 2  is defined as ( 0 2 ~ 2 ,  - 8 1 ~ 2 ) .  Moreover, 
for k = 0 we have 

where C is defined in (3.8). 
Using the compactness of the embeddings H2(R,)  -+ H 1 ( R p ) ,  H1(R,)  -+ 

L 2 ( R p )  and H 1 ( R P )  -+ L 2 ( r p ) ,  as well as the boundedness of the operator M-I 
from L2(R,) into H2(R, )  and the compactness of the operator Nk in L 2 ( r p ) ,  

~ r ,  

we obtain the following result. 

Proposi t ion  5.2 For each k E Z the quadratic form C I ( ~ ) [ U ;  k ]  - d2)[u;  k ]  is 
compact in  the H~lbert space with the scalar product generated b y  the closed 
positive-definite guadratic form u ( ~ ) [ u ;  k]  + b ( 2 ) [ ~ ;  k ] ,  u 6 ~ [ a ( ~ ) ( k ) ] .  

Applying at first ( 5 . 5 )  combined with Lemma 5.3, and then Propositions 
5.1-5.2 combined with Lemma 5.2, we obtain the following result. 

Corollary 5.1 For each E E Z we have 
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If we denote by F,(k) the  selfadjoint operator generated by the quadratic- 
forms ratio ~ ~ ~ ' ( k ) / b ~ ~ ) ( k ) ,  j = l , 2 , 3 ,  and combine (5.3) with (5.6), we get 

oeos(F(k)) = IJ aess(Fl(k)), Vk E Z.  
j=1,2,3 

(5.7) 

6 The essential spectrum due to the fast and 
slow magnetosonic polarizations 

6.1. In this subsection we investigate oe,,(l;; ( k ) )  = u,,,(ay)(k 
We recall that  we have 

Hence, the operator Fl(E) is unitarily equivalent to  the operator e V 2 R k  defined 
on D ( M ) ,  and selfadjoint in LZ(R,; e-'v-2 dy). Obviously, this operator is 
elliptic, and since R, is bounded, we obtain 

6.2. In this subsection we localize o,,,(F3(k)) = ae,,(af)(k)/bf)(k)), 
k E Z. We recall that we have 

Evidently, F3(k) is unitarily equivalent t o  the multiplier by the function k2vi  
in  LZ(R,). Hence, we get 

7 The essential spectrum due to the Alfv6n 
polarization 

7.1. At first we assume k = 0. Since ef)[u2;0]  0, we have 

In the sequel we assume b # 0. Set 
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P u t  
b f j [w j ]  := b f ) [ w j ] ,  w, E ~ [ b f j ] ,  j = 1,2,  

and 
(3) . b f ) [ w ]  := x bf:[w,], w = ( w l ,  wz), w, E D[b2,j] ,  = 1,2. 

It  is convenient to  recall here the  representation 

(see (4.3)).  Evidently, we have 

For w  = ( w l , w 2 ) ,  wj  E ~ [ b f ' j ] ,  j = 1,2, set 

(4 )  b?)[w] = 1 b 2 , 1 [ ~ j ] r  w = (w l ,w2) ,  wj E ~ [ b f ) ] ,  j = l , 2 .  
j=1,2 

T h e  quadratic forms 
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and 

are compact in ~ [ a f '  

b 3  - b  = / lw1 1' dy 
% 

k ) ]  ~ [ b f ) ]  = @D[b:)]. Applying Lemma 5.2 
(4 

combined with ( 7 . 2 ) ,  we get 

7.3. In this subsection we localize a e , , ( a ~ i ( k ) / b ~ i ) ,  k  E Z ,  k  # 0. We 
recall that we have 

Evidently, we have 

s s ( /  ( /  U { b 2 v : ( y ) )  IA(k)i k  E Z ,  k  $- 0. 
Y€K 

Using the singular Weyl sequence described explicitly in [Rai 1, Subsection 
5.21, we conclude that each X E I A ( k )  belongs to oe , (a t l (k ) /b? j ) ,  k  E Z ,  
k  # 0. Hence we have 

u,,(a(,S!(k)/bt!) = I A ( ~ ) ,  k E Z ,  k  # 0. (7 .4 )  

7 .4 .  In this subsection we localize u , , ( a t i ( k ) / b t l ) ,  k E Z ,  k  # 0. We 
recall that we have 

Substituting the functional variable wz for v ; ' / ~ w ,  w E L2(l',), we find that 

the operator generated by the quadratic-forms ratio a i : i (k ) /b t i  is unitarily 
equivalent to the operator k 2 T ,  k E Z ,  k  # 0, where 
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Using Lemmas 4.1-4.2 and the basic properties of the classical @DO (see 
[Shu]), we deduce that T is a classical @DO of order 0 whose principal symbol 
for I c l  2 1 can be written as 

Hence, the operator T coincides up to a compact operator with the mul- 
tiplier by the function (7.5). Applying Lemma 5.2, we get 

( a ( ) / b )  = u k 2  ( b )  + b )  / }  I ) ,  k Z,  k # 0. (7.6) 
sErp 

Combining (7.1)-(7.4) and (7.6), we obtain 

a,,,(F2(k)) = I A ( ~ )  U Iv(k), k E Z. (7.7) 

Finally, putting together (5.7), (6.1), (6.2) and (7.7), we come to (3.12), 
and whence to (2.4). 
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