The Integrated Density of States for a Random
Schrodinger Operator in Strong Magnetic Fields.
II. Asymptotics near Higher Landau Levels

GEORGI D. RAIKOV

Abstract. We consider the three-dimensional Schrédinger operator with strong constant
magnetic field and random electric potential. We investigate the asymptotic behaviour
of its integrated density of states near the gth Landau level, for any fixed g > 1.

1 Introduction

In this paper we consider the three-dimensional Schrodinger operator with constant
magnetic field and random scalar potential, and analyze the asymptotic behaviour
of its integrated density of states (IDOS) as the intensity b of the magnetic field
tends to infinity. The paper should be regarded as a continuation of [K.R] where
we studied the asymptotics as b — oo of the IDOS near the first Landau level,
while here we consider the same type of asymptotics near the gth Landau level,
q > 1. Here we recall briefly the basic definitions from [K.R].

Let b:=(0,0,b),b> 0, x = (z,y, z) € R3 Introduce the unperturbed self-adjoint
Schrodinger operator

) b/\x2_ 0 by\? 0 bx\® 02

defined originally on C§°(R?), and then closed in L?(R?). We have

a(Ho(b)) = [b, +00),b > 0, (1.2)

where o(Hy(b)) denotes the spectrum of the operator Ho(b) (see e.g. [A.H.S]).
Let (§2, F,P) be a probability space, and V,,(x), w € £, x € R3, be a real random
field. We assume that V,, is G*-ergodic with G = Z or G = IR (see [K, Section 3.1]).
In other words, there exists an ergodic group of measure preserving automorphisms
Ti : 2 — 2, k € G?, such that Vo(x+ k) = Vao(x) for x € R3 and w € 2. We
recall that ergodicity of a group G of automorphisms of 2 means that the G-
invariance of a given set .4 € F implies either P(A) = 1 or P(A) = 0.

For x € R? we write x = (X, z) with X € R? z € R. Hence, z is the variable along
the magnetic field b = (0,0, ), while X runs over the plane perpendicular to b.
We suppose that V,, is G-ergodic with G = 7Z or G = R in the direction of the
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magnetic field, i.e. that the subgroup {7x|k = (0,0, k), k € G} is ergodic. Further,

we assume that the realizations of V, are almost surely uniformly bounded, i.e.

co :=ess — sup sup |V, (x)] < oo. (1.3)
wEN xeR3

Finally, we suppose that the realizations of V,, are almost surely continuous.

Let T be a selfadjoint operator in a Hilbert space. Denote by Pr(T) its spectral
projection corresponding to the interval Z C R. Set N (X;T) := rank P_q »)(T),
A€ RIFT =T* is compact, put nt(s;7) := rank Ps yoo)(£7), s > 0. Finally, if
T'is a linear compact operator in Hilbert space which is not necessarily self-adjoint,
set nu(s; 1) 1= rank Pz 4oo) (T7T), s > 0.

On D(Hg(b)) define the perturbed Schrédinger operator H (b, w) := Hy(b)+V,,. On

the Sobolev space H? ((—%, %)3) with Dirichlet boundary conditions, define the

2 . .
operator Hé?R(b) = (iV + bATx) . Then there exists a non-random non-decreasing
function Dy, : R — R4 such that almost surely

lim R™ N (u; H (b) + Vi) = Dy (p), (1.4)

R— oo

provided that x4 € R is a continuity point of Dy (see [N], [H.L.M.W]). The function
Dy(p), p € R, is called the IDOS for the operator H(b,w).

In this paper we consider the asymptotic behaviour as b — oo of Dy (Aa+(2¢—1)b)—
Dy(A1 + (29 — 1)b), the parameters A1, As € R, A\ < Az, and ¢ € N, :={1,2,.. .},
being fixed. Recall that the numbers {(2¢ — 1)b}¢Z; are called Landau levels.

2 Statement of Main Result

Let ho g := _(1(12_22 be the self-adjoint operator defined on H? ((— %, g)) with Dirich-
let boundary conditions.

Proposition 2.1 ([K, Chapter7], [P.Fi, Chapter II1]) Let G = Z or G = R. Let
fu(z),w € 2, z € R, be a real G-ergodic random field whose realizations are almost
surely uniformly bounded and continuous. Then for each A € R the limat

o(\;f) = lim R™V N(\ihor + fo) (2.1)

exists almost surely. Moreover, the function o(X; f) is non-random, and continuous
with respect to A € R,

Our assumptions concerning V,, guarantee that the random field f, = V, (X, )
depending on the parameter X € R? satisfies the hypotheses of Proposition 2.1.
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Moreover, if G = Z, then the function o(X; V(X,.)) is periodic with respect to
X € R? while in the case G = IR the quantity o(\;V(X,.)) is independent of
X € R? (see [K.R]). For A € IR set

k()‘) = k()‘S V) = {f( 2 1)2 ‘Q()" V(Xa )) dX if G= Z,

Obviously, k(A) is non-decreasing and continuous with respect to A.

Theorem 2.1. Let G = Z or G = R. Let V,, be a real G?-ergodic random field
whose realizations are almost surely uniformly bounded and continuous. Assume
in addition that V,, is G-ergodic in the direction of the magnetic field. Then for
each q € Ny, and A, 2 € R, A1 < A2, we have

lim b=1 (Dy(Ay + (24 — 1)b) = Dy (A1 + (20 — 1)b)) = Zi (k(\s) = k(M1)) . (2.2)

b—o0 T

Theorem 2.1 contains the asymptotics as b — oo of the IDOS D, near the ¢th
Landau level, ¢ > 1. Since (2.2) has been proved in [K.R] for ¢ = 1, we shall prove
it here for ¢ > 1. The methods applied in this paper are similar to the ones used in
[K.R], and are based on the Birman-Schwinger principle (see [B, Lemma 1.1]), a
suitable version of the Kac-Murdock-Szego theorem (see [R, Lemma 3.2]), and the
Birkhoff-Khintchine ergodic theorem. However, the analysis near higher Landau
levels is more complicated since the first Landau level coincides with lower bound
of the spectrum of Hy(b) (see (1.2)), while the higher Landau levels (2¢ — 1),
q > 1, are internal points of o(Hg(b)). The proof of Theorem 2.1 can be found in
Section 4, while Section 3 contains preliminary estimates.

3 Preliminary Estimates

3.1. Let Hé\fR(b) be the self-adjoint operator generated in 12 ((—%, %)3) by the
. 3
closed quadratic form f(_%%)a |2Vu + b/\xu| dx, u € H (( g’ %) )

Lemma 3.1. ([N, Theorem 1], [H.L.M.W, Theorem 3.1]) Let G = 7Z or G = R.
Assume that V,, is a real G?-ergodic random field whose realizations are almost
surely uniformly bounded and continuous. Let p € R be a continuity point of Dy.
Then almost surely

Dy() = Jim RN (u; Hyp(b) + Vi)- (3.1)
Set Xr(x) =1 _

r r\3(X), X € R3. On D(Ho(b)) introduce the operator Hy(b) +
(Vo — p)xr with b

)
>0,weN, peR,R>0.
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Proposition 3.1 Under the hypotheses of Lemma 3.1 almost surely

Dyu) = lim R N(0; Ho(b) + (Ve — #)xn) (3.2)

Proof: By the minimax principle,
N(p; Hy'p + Vo) = N(0O; Hy g + Vi — i) < N(0; Ho(b) + (Vo — p)xr).  (3.3)

Set Op = R3\ [—2—2, %]3. Denote by I:I(])VR the self-adjoint operator generated by

the quadratic form fOn |iVu + b/:)\—xu|2 dx, defined initially for v € C§° ((’)_R), and

then closed in L*(Og). The minimax principle implies
N(0; Ho(b) + (Vi — p)xR) < N(0; Ho g+ Vio = 1) + N(0; HY' ). (3.4)
Since ﬁé\jR > 0, we have N (0; ﬁéYR) = 0. Hence, (3.4) can be re-written as
N(0; Ho(b) + (Vo — p)xr) < N(O; HY'p + Vo —pt) = N(p; HYp + V). (3.5)

Combining (3.3) and (3.5) with (1.4) and (3.1), we get (3.2). &

Remark. Proposition 3.1 is very similar to [K.R, Proposition 4.1]. However, the
proof presented here is much simpler because now we dispose of Lemma 3.1.

Introduce the compact Birman-Schwinger-type operators
T(u) = Thw,r (1) = Ho(0) "> (Vi — p)xrHo(0)"1/? p € R, (3.6)
T =Ty g = Ho(b)™*xrHo(b) /2, (3.7)
so that we have T'(u) = T'(0) — puT.

Corollary 3.1 Under the assumptions of Lemma 3.1 almost surely

Dy(p) = lim R™>n_(1;Th o r(p)). (3.8)

R— o0
Proof: Tt suffices to recall (3.2), and to apply the Birman-Schwinger principle. ¢

2 2
3.2. Let Ho(b) := (ia% — %y) + (i;—y + ‘%) be the selfadjoint operator defined
originally on C§°(IR?), and then closed in L?(R?). The spectrum of H(b) coincides
with the set of the Landau levels, i.e. o(Ho(b)) = U;il{(?q — 1)b}. Fix ¢ >
1. Denote by p; = pgs : L2(R%) — L*(R?) the orthogonal projection onto the
eigenspace of Ho(b) associated with the gth Landau level (2¢ —1)b. In other words,

pqw = w implies w € D(Ho(b)) and Ho(b)w = (29 — 1)bw. It is well-known that

(pgw)(z,y) = /Rzpq(m,y;:p',y')w(m',y') dz'dy’, we LQ(RQ),
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with
Pylz,y; 2’ o) =
b —b[(p—p')? V22 (py — ! (I—I/)Q-I-(y—y/)?
e te—e") =y 2y v [ ( : (3.9)
where Ly (&) := %eg dd;s (Ese_ﬁ), s >0, ¢ € R, is the Laguerre polynomial of order

s. Note that we have
b
Po(z,y;2,9) = o, (v,y) €R?, Vg €., (3.10)

Define the orthogonal projection Py = Py : L%(R3) — L%*(R3) by Pq::fngGB Pq dz,

1.e.

(P, )(:r,y,z):/ Pq(m,y;m',l')u(m',y',z) dz'dy, u€L2(IR3_).
RE

Then P, commutes with Hy(b) and 2, and we have

Hy(b)Pyu = <—§% + (29 — 1)b> P,u, wue D(Ho(b)), (3.11)

(see (1.1)). For v > 0 define the operator

82 —-1/2
0= (g ta) (3.12
bounded and selfadjoint in L?(IR?). Evidently,
1 /
(r(v)*u)(z,y,2) = ﬁ/ eV (e, y, ) d, we IP(RY). (3.13)
R

Moreover, the operators P, and r(y) commute.
3.3. In this subsection we estimate a quantity which yields the main asymptotic

term as b — 0o of Dy(Az + (2 — 1)b) — Dp(A1 + (2¢ — 1)b).

Proposition 3.2 Let the hypotheses of Theorem 2.1 hold. Then for every A € R,
q €Ny, s> 0, and v > 0 almost surely

. . 1 ‘ 1 A4y 1
Jim - lim W"—(S,T(“Y)Pq(vw — A= xrPer(y)) = 5k ( Pait ;V> :
(3.14)

Idea of the proof. The proof is analogous to the one of [K.R, Corollary 4.3] which
corresponds to ¢ = 1 and vy = 1. By (3.9), (3.10), and (3.13), the extension to
general ¢ and v can be carried out in a quite straightforward manner. ¢

Let ¢ : [bg, +00) = Ry, by > 0, be a strictly decreasing function such that ¢(bg) <
1 and limy_, o, b(b) = 0.
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Corollary 3.2 Let the hypotheses of Theorem 2.1 hold. Then for every A € R,
q € N, almost surely

lim lim b='R™3n_(14 ¢(b); P,T(A + (2¢ — 1)b) P,) = ik(A;V), (3.15)

b—oo R0 2

the operator T(u) being defined in (3.6).

Proof: First of all note that
P,T(A+ (2¢— 1)b) Py =7((29 — 1)b)Py(V — A — (29 — 1)b)xrP,r((2¢ — 1)b)
(see (3.6), (3.11) and (3.12)). Then the Birman-Schwinger principle entails

n_(1x£¢(b); P,T(A+ (29 — 1)b) Py)) =

62
N <0; 5.7 +(2¢— Db+ (b)Py(V — A — (29 — 1)b)XRPq> , (3.16)
where @4 (b) := 1/(1+ ¢(b)). Note that limp_ o 01 (b) = 1, limp_y oo b(1 — £ (b)) =
0. Let us re-arrange the terms appearing at the right-hand side of (3.16). We have

82 2
—87+(2q—1)b+90:t(b)Pq(Vw—A—(?q—l)b)xRPq = —a 5
where v > 0 is a fixed number, E,, := ((2¢ — 1)b—v)(1 — P,xrPy), and V[/'i
Po{Vo = A=y —=(1—9+(0)(Vo = A= (2¢ — 1)b)} xgrP,. Fix § > 0, and assume
that b 1s so large that we have

+y+Eqp+ Wiy, (3.17)

Py(Vi = A=~ = 8)xrPy < W;b < Py(Ve = A =y + d)xrPy. (3.18)

Assume as well that b > v/(2¢ — 1) so that the operator F,; is non-negative. By
the minimax principle, (3.16) — (3.18) imply

82
N((); 82+7+Eqb+P(V )‘_7+5)XRPq>§

2

n-(L£6(0); FT(A+ (20 = 1)b) Fy) < N (05—

T+ Py(Vo = A =7 —08)xrFy).

(3.19)
By the Birman-Schwinger principle,

32
N<0; 5.7 +v+ Py(Va —A—7—5)XRPq) =

n_(1;r(y)Py(Vo = A = v = 8)xrPyr(7)). (3.20)



Integrated Density of States in Strong Magnetic Fields 7
It follows from (3.14) with s = 1 that

Iim lim —n
b—oo R— o0 bRS

The second inequality in (3.19), and (3.20) - (3.21) imply that for any d > 0

(1) Py(Ve = A= = 8)xnPyr()) = Sk 4 6:V). (321)

_(1£(b); P,T(A+ (20 — 1)) Py) < %k()\ 16 V). (3.22)

limsuplimsup —=n
b— oo R—o0 bRS

Now assume that 4 > 0is so large that almost surely V,, (x) —A—~44 < 0 for every
x € R3 Then we have Py(V, — A —y + d)xrP, = —S5*S with S := UxgPy, and

2 —1/2
U := v+ X=V, — 4. Introduce the operator 7(y) := (—% + v+ Eq’b> ,
bounded and self-adjoint in L?(R?). By the Birman-Schwinger principle,

N (0; —a% +y+ Egp+ Py(Vo = A=+ 5)XRPq> =ny(L;#(y)S*SF(v)) =
na(1;57(7)) = na(1;7(7)5*) = ny (1; 57(7)*S%). (3.23)

Applying the resolvent identity 7(v)? = 7(v)? — r(y)2Eys7(7)?, we get
4 (1;S7(4)%5) > ny(14€;Sr()*S") = ny (65 Sr(7) Eqpi(7)° S*), Ve > 0.
Let us estimate the first term at the right-hand side of (3.24). We have .
ny(1+e5r(7)*S%) = ny (1 +e57()S™Sr(y)) =
n_(1+e&r()Py (Ve — X —=v+8)xrPyr(v)), Y& > 0. (3.25)
By (3.14) with s = 1 + ¢,
lim lim b7'R™n_(14¢&;r(v)Py(Vo — A — v+ 0)xrPyr(7))

b—oo R—c0
1 Ady—46 %4 )
_ﬁk< l+e¢ _7’1—1-6)' (3:26)

Let us now estimate the second term at the right-hand side of (3.24). We have

Sr(v)? By p#(7)2S* = ((2¢ = 1)b — 1) Uxr Pyr(y)* (1 = PyxrP,)#(v)*S*.

The operators ((2¢ — 1)b — v)U and 7(y)2S* are uniformly bounded with respect
to R. Therefore,

ny(g;Sr(7)? Equf(7)*S*) < na(n; xrPyr(7)* (1 = PoxrPy)) (3.27)

where 1 > 0 is independent of R. Further,

n (0 X Pyr(4)* (1 = PyxaPy)) < 072 lIxaPyr(1)*(1 = PoxaPy)llirs,  (3.28)
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||-||zrs being the Hilbert-Schmidt norm. A straightforward calculation yields
Tim R xrPor()*(1 — PyxePs)lirs = 0. (3.29)
Putting together (3.27)—(3.29), we obtain

lim R™%ny (g; Sr(7)? Egp(7)?5*) = 0, Ve > 0. (3.30)

R—o0
Combining the first inequality in (3.19) with (3.23)—(3.26) and (3.30), we get
liminfliminfb="R™?n_ (1 £ ¢(b); P,T(A + (2¢ — 1)b)P,) >

b—soo R—co
1 A+y—-4 1%
—k — . 31
o ( 1+e 7’1+e> (3:31)

Letting € | 0in (3.31), and then § | 0in (3.22) and (3.31), and taking into account
the boundedness of ¥, and the continuity of k, we arrive at (3.15). ¢

3.4. In this subsection we estimate certain quantities which do not contribute to
the main asymptotic term as b — oo of Dyp(Aa + (29 — 1)b) — Dp(A1 + (29 — 1)b).
Introduce the orthogonal projections Py := Zq_} Py, qg > 1, ]5q_ =1 | Py,

qZLanqu‘F ::Zjo:q+1psaqzl'

Proposition 3.3 Assume that (1.3) holds. Let p_,py € R, p_ < pg, ¢ > 1.
Then almost surely

lim limsupb™' R™?(n_ (1 — ¢(b); PrT(py + (29 = 1)b)xr Py )

b—=00 R0

—n_(1+¢(b); P, T(p- + (2¢ — 1)b)xrP; ) = 0. (3.32)

Proof. Assume that b is so large that (2¢ — 1)b+ p4 + co > 0, g being defined in
(1.3). Set 4 () := (1 F 0(b))/((2¢ — 1)b + px =+ co). Evidently,

n- (1= o(b); Py T(ps + (24 = Dh)xrPy) < ny (¥4 (b); Py TF), (3.33)
n_(1+ ¢(b); Py T(p_ + (29 — 1)b)xr Py ) > ny (- (b); Py TP ), (3.34)

T being defined in (3.7). Obviously, Pq_TPq_ is a trace-class operator, and

lim R™3Tr (P, TP ) = b q_I/ 4 leN
R—00 N PE ® (C2+ (25 — 1)b)1’ *

(]

s=1

Applying the Kac-Murdock-Szegé theorem (see [R, Lemma 3.2]), we get

R—o00

. p =]
lim R™%n (e; Py TPy) = @7 Y meas {¢ € R|((*+ (25 — 1)) ™' > ¢} =
s=1
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boL
s (e (25 - 1)8)\/%, ve > 0,v6 > 0. (3.35)

s=1

Combining (3.33)-(3.35), we get

limsup R™3(n_(1 = ¢(b); Py T(pg + (20 — 1)b)xrP;)

R—o0

—n_ (14 ¢(b); Pq_T(u_ + (29 — ],)b)XRPq_)) <

3or {07 = 2= 0 - o - -} 330)

Rationalizing, we find that for each s =1,...,9 — 1, we have
Jim {4 ()7 = (25 =107 = (W) — 25— B} =0, (3.37)

Now, (3.32) follows from (3.36) and (3.37). ¢

Proposition 3.4 Assume that (1.3) holds. Fiz A € R. Then here exists b, > 0
independent of R, such that b > b, implies

n_(1+ ¢(b)); PAT(A+ (2¢ — 1)b)xrP}H) =0, YR > 0. (3.38)

Proof: Tt suffices to note that limp_ o (1 £ ¢(b)) = 1, and limsup,_, ||Pq+T(/\ +

. . cotAl+(2g=1)b _ 2¢—1
(2¢ = D)b)xr Pl < limpoo |(2|q+(1;1b L= 23+1 <L O

Proposition 3.5 For each € > 0 and ¢ < 1 we have
lim R™3ny(s;2Re (P; TP, + Py TP})) = 0. (3.39)

R—o00

Proof: Write the estimates ny (¢; QRe(Pq_TPq + lsq_TPq"')_) < 2n,(e/2; Pq_TPq_) +
2”*(6/2;15q_TPq+) < 8¢72 (||Pq_TPq||%I5 + ||}5q_TP;‘||12qS), and verify by direct

calculation that limp_; o R_3||Pq_qu||%IS = limp R_3||15q_fP;’||%IS =0.$

4 Proof of Theorem 2.1

Fix ¢ > 1, A1, A3 € R, A; < Az In order to prove (2.2), it suffices to show that for
each sequence {b;};>1 such that b; = co as j — 0o, we have

A, bi* (Do, (A2 + (20 = 1)b;) = Dy, (M + (24 = 1)by)) = % (k(X2) = k(M)
(4.1)
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Fix four sequences {/\lm}m>1, [ = 1,2, such that )\_ <N <X . m > 1,

limy— 00 )\ = = A, and )\ +(2¢ — 1)b; are continuity pomts of Dy, forallm > 1
and j > 1, 1= 1,2. Then by Corollary 3.1 we have

l,m>’

hmsupb (Dbj()\g + (29 — 1)bj) — D, (M1 + (29 — l)bj)) <

j—)OO

limsup lim b7 R=3(n_ (1,7, + (24 = Dby)) = n (15T + (20— 1)b))),
j—oo R—oo ! ’ ! ’
(4.2)

lim 1nfb (Dbj()\g + (29— 1)b;) = Dy, (M1 + (29 — l)bj)) >

j—oo

liminf lim 67" R (n_ (1, T\, + (20 = 1)) = n- (1 T\ + (20 = 1)5))).
j—o0 — 00 ’ oo ’ Tor
(4.3)

Further, note that the elementary operator inequalities
T(A+ (29— 1)b) > P,T(A+ (29 — 1)b + 2¢06) P+
TT(A+ (29— )b+ eo(1+871)P; + PAT(A+ (2 — )b+ co(1 4+ 671)) P —
2(A+ (2 — 1)b)Re(Pf TP + P7TP,),
T(A+ (29 — 1)b) < P,T(A + (29 — 1)b — 2¢q6) P+
TN+ (2¢ = 1)b—co(1+671))P; 4+ PFT(A+ (2 = 1)b— co(1 4+ 67 1)) Pf —
2(A+ (29 — )b)Re(Pf TP + P7TP,),
are valid for each A € R, b > 0, and § > 0. Therefore,

n—(L,T(A+ (2¢ = 1)8)) <n_(1— ¢ (b); PyT(A+ (29 — 1)b+ 2c0d) Py)+
( ¢(b)=PqT( (q_l)b+60(1+5 )) q)
n_(1=a(b); PfT(A+ (2¢ = )b+ co(1 +67")) P )+

q
ni(6(h);2(A + (2¢ — 1)b)Re(PFTP; + Py TRy)),
and
n_(L,T(A+ (29— 1)b)) > n_(1+ ¢(b); P,T(A+ (29 — 1)b — 2¢8) P;)+
no(14(b); Py T(A+ (20 = 1)b— eo(1+871)) Py )+
n_(1+ ¢(b); PFT(A+ (2 — 1)b— co(1 4+ 67 1)) Pf)—
n_(¢(b); 2(A + (2¢ — D)b)Re(PF TP, + PTTR)),
the numerical function ¢ being introduced before Corollary 3.2. Hence, we get

limsup lim b7 'R=3(n _(1;T(/\;m+(2q—l)bj))—n_(l;T(A£m+(2q—1)bj))) <

j—o0 R— o0
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lim suplim sup b} 'R- 3no (1= ¢(b); PqT(/\;m + (29 — 1)b; + 2¢0d) Py)

j—=oo  R—ooo
n_(1+6(b); P,T(A,, + (20 — 1)bj — 2c0d) Fy))+
limsuplimsupb; 'R™3(n_(1 = ¢(b); Pq_T(/\;m + (29 — 1)b; +co(1+ 6_1))Pq_)

j—oo  R—oo
n_(1+¢(b); Py T(ALy, + (20 = 1)bj — co(1+671)) Py))+
lim suplim sup > "R™3n_(1—6(b); P;T(A;m + (29 — 1)b; 4+ co(1 + 5_1_)Pq+)-|-

j—ooo  R—oo

lim suplim supb; ' R™(ny.(6(b); 2(MF ,,, + (2¢ — 1)b;)Re(PF TPy + Py TFy))

j—=c0  R—ooo
+n_(¢(b); 2(AT,, + (20 — V)b)Re(PF TP, + PTRy))), (4.4)
and

liminf lim bj_lR_S(n_(l; T()\Q_’m +(2¢—1)b;)) —n_(1; T(Atm +(2¢ — 1)b;))) >

j—o00 R—oo

lim inflim inf b7 "R™3(n_ (1 4 ¢(b); PT(AS,, + (29 = 1)bj — 2¢0d) Py)

j—=oo R—ooo
- (1= 6(b); PyT(A] o + (29 — 1)bj + 2c08) Py)) —
lim inflim inf b7 1R Yo (1= 6(b); Py T+ (29 — 1)bj + co(1+671) Py)

j—oo
no (14 6(b); Py T(Ay,, + (20 = 1)bj — eo(1+871)) P))—
lim inflim infb; "R™3n_(1 — 6(b); Pq+T(X1"7m + (29— 1)b; 4+ co(1+ 5_1))Pq+)—

j—=o0 R—oo

lim inflim infb; "Ry (6(0); 200, + (20 — 1)bj)Re(PFT P, + P;TPy))

+n_((b); 2(A3,, + (2¢ — 1)b )Re(Pq+TPq_ + Py TFy))). (4.5)
Employing Corollary 3.2, we find that the first term at the right-hand side of
(4.4) is equal to # (k(/\;m + 2c0d)) — k(AT — ‘2605)), while the first term at
the side of (4.5) is equal to % (k()\im — 2¢od)) — k(/\im + 2605)). Assume that
d > 0 is small enough, and apply Proposition 3.3 to the second terms at the right-
hand sides of (4.4) and (4.5) in order to check that these terms vanish. Similarly,
utilize Proposition 3.4 (respectively, Proposition 3.5) in order to verify that the
third (respectively, fourth) terms at the right-hand sides of (4.4) and (4.5) vanish.

Putting together (4.2) — (4.5), we get
hm qupb ('Dbj (A2 + (29 = 1)bj) = Do, (M + (29 — ],)bj)) <

ZL (k(\F m +2c0d)) = k(AT ,, — 2¢06)) , (4.6)
hjrg(l)rolfb ' (Do, (A2 + (2¢ — 1)b;) — Do, (A1 + (2¢ — 1)b;)) >
L (k(A7,, — 2c08)) — k(AT ,,, + 2c06)) - (4.7)

2w
Letting m — oo, and ¢ | 0 in (4.6)-(4.7), we obtain (4.1).
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